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Abstract. Soils with high levels of chloride and/or sodium in their subsurface layers are often referred to as having
subsoil constraints (SSCs). There is growing evidence that SSCs affect wheat yields by increasing the lower limit of a
crop’s available soil water (CLL) and thus reducing the soil’s plant-available water capacity (PAWC). This proposal was
tested by simulation of 33 farmers’ paddocks in south-western Queensland and north-western New South Wales. The
simulated results accounted for 79% of observed variation in grain yield, with a root mean squared deviation (RMSD) of
0.50 t/ha. This result was as close as any achieved from sites without SSCs, thus providing strong support for the proposed
mechanism that SSCs affect wheat yields by increasing the CLL and thus reducing the soil’s PAWC.

In order to reduce the need to measure CLL of every paddock or management zone, two additional approaches to
simulating the effects of SSCs were tested. In the first approach the CLL of soils was predicted from the 0.3–0.5 m soil
layer, which was taken as the reference CLL of a soil regardless of its level of SSCs, while the CLL values of soil layers
below 0.5 m depth were calculated as a function of these soils’ 0.3–0.5 m CLL values as well as of soil depth plus one of
the SSC indices EC, Cl, ESP, or Na. The best estimates of subsoil CLL values were obtained when the effects of SSCs
were described by an ESP-dependent function.

In the second approach, depth-dependent CLL values were also derived from the CLL values of the 0.3–0.5 m soil layer.
However, instead of using SSC indices to further modify CLL, the default values of the water-extraction coefficient (kl) of
each depth layer were modified as a function of the SSC indices. The strength of this approach was evaluated on the basis
of correlation of observed and simulated grain yields. In this approach the best estimates were obtained when the default
kl values were multiplied by a Cl-determined function. The kl approach was also evaluated with respect to simulated soil
moisture at anthesis and at grain maturity. Results using this approach were highly correlated with soil moisture results
obtained from simulations based on the measured CLL values.

This research provides strong evidence that the effects of SSCs on wheat yields are accounted for by the effects of
these constraints on wheat CLL values. The study also produced two satisfactory methods for simulating the effects of
SSCs on CLL and on grain yield. While Cl and ESP proved to be effective indices of SSCs, EC was not effective due
to the confounding effect of the presence of gypsum in some of these soils. This study provides the tools necessary for
investigating the effects of SSCs on wheat crop yields and natural resource management (NRM) issues such as runoff,
recharge, and nutrient loss through simulation studies. It also facilitates investigation of suggested agronomic adaptations
to SSCs.

Additional keywords: subsoil constraints, simulation, crop lower limit, salinity, sodicity, chloride.

Introduction

Crops growing on Vertosols (Isbell 1996) in Australia’s northern
grains zone are constrained by several subsoil factors. These
factors, collectively referred to as subsoil constraints (SSCs),

include high salt concentrations in the soil solution, increased
osmotic potential of the soil water, toxic concentrations of
chloride (Cl), high sodicity and an associated deterioration of
soil physical properties and, to a lesser extent, acidic subsoils

© CSIRO 2007 10.1071/AR06365 0004-9409/07/080802



Simulating saline and sodic subsoil effects on wheat Australian Journal of Agricultural Research 803

containing toxic levels of aluminium (Dang et al. 2006a).
Currently there does not appear to be an economically viable
soil amelioration option, and genetic solutions through breeding
of tolerance to these SSCs seem a long way off. This leaves
farmers with the option of learning to live with this problem
by developing adaptive management solutions. If the effects
of SSCs can be realistically modelled then simulation may
provide a promising approach for scientists to develop a more
quantitative understanding of the effects of these SSCs and to
experiment with management options. For example, Hochman
et al. (2004) proposed that the net effect of SSCs on wheat
(Triticum aestivum L.) can be accounted for by consideration
of their effect on CLL (soil moisture profile determined when
a wheat crop can extract no more moisture from that soil)
and thus on the PAWC of a soil (the maximum amount of
stored moisture that is available for growing a wheat crop). This
proposition enabled them to use the Agricultural Production
Systems Simulator (APSIM; Keating et al. 2003) to predict
both crop production and natural resource management (NRM)
effects of various levels of SSCs over a range of locations.

An emerging consensus from work with soils in southern
Australia is that the effect of the variable combinations of subsoil
constraints in those soils was to reduce plant-available water
by increasing the lower limit of cereal crops’ available soil
water (Hochman et al. 2002; Sadras et al. 2003; Nuttall et al.
2005; Rodriguez et al. 2006). This observation is the working
hypothesis for this paper. However, the chemical constraints
that characterise northern soils (Dang et al. 2006b) were found
to have significantly different levels and combinations of
subsoil constraints when compared with those described in
the southern studies. For example, in the current study, the
mean value of EC at 0.7–0.9 m depth was 1.6 dS/m, which
exceeds the maximum value of 1.31 dS/m in Sadras et al. (2003).
By contrast, the highest boron concentration in our dataset was
only 6 mg/kg compared with 29 mg/kg in Sadras et al. (2003).
These differences suggest the need for the working hypothesis
to be tested on soils in the northern grain zone.

The first objective of this research was to test, for soils in
the northern grain zone, the hypothesis that the net effect of
SSCs on wheat crops can be accounted for by consideration
of their effect on CLL and thus the PAWC of a soil. The
corollary of this hypothesis is that if CLL of a soil with SSCs
is measured, then simulation (using measured CLL) of a wheat
crop grown on it would require no further adjustment for the
fact that the crop was subject to SSCs. This hypothesis may
therefore be tested by measuring and simulating wheat grain
yields at a large number of sites with measured CLL values.
A reasonable test of the hypothesis would be a comparison of
the correlation of simulated and observed yields at these sites
against the benchmark correlation that was obtained with the
Queensland dataset that was used in the development of the
APSIM wheat crop module, i.e. RMSD = 0.74 t/ha with R2 = 0.8
(Wang et al. 2003).

Determining CLL (Dalgliesh and Foale 1998) is a slow and
labour-intensive process. Consequently, the number of soils that
can be measured is likely to remain limited. A more cost-
effective means of accounting for similar soils with varying
levels of subsoil constraints must be developed if we are to
have a capacity to simulate options for management of paddocks

(or management zones for Precision Agriculture) in accordance
with their levels of subsoil constraints. Currently, APSIM does
not have a specific capability for simulating the effects of salinity
and sodicity on crop growth. Two relatively simple options
for adding such a capability are investigated in this paper.
In the first approach the CLL of soils was predicted: CLL of
the 0.30–0.5 m soil layer was taken as the reference CLL of
a soil regardless of its level of SSCs, while the CLL of soil
layers below 0.5 m depth was assumed to be a function of the
0.3–0.5 m CLL as well as of soil depth and of one of the
SSC indices EC, Cl, ESP, or Na. In the second approach,
a depth-dependent CLL was also derived from the CLL of the
0.3–0.5 m soil layer. However, instead of using SSC indices to
further modify CLL, the default value of the water-extraction
coefficient (kl) of each depth layer was modified as a function of
SSC indices. Kl is a combined soil (k, representing diffusivity)
and crop (l, representing root length density) function that
defines the potential water-extraction rate from a soil layer
(Meinke et al. 1993; Robertson et al. 1993a, 1993b).

Methods
Field experiments
Thirty-three paddocks with grey, brown, and red cracking clays
(Vertosols; Isbell 1996) were selected for this study. They
included 6 sites in southern Queensland and 13 sites in northern
New South Wales in 2003, plus 14 sites in southern Qld in
2004. All the Qld sites were sown with wheat cv. Baxter, wheat
varieties sown at the NSW sites included H45, Wollaroi, Yallaroi,
Babbler, Hybrid Meteor, Strzelecki, and Sunbrook. All sowing,
harvesting, and crop management operations were carried out
using the co-operating farmers’ equipment, and planting rates
and other management practices followed the accepted district
practice. All crops were well managed, with no significant weeds,
pests, diseases, or nutrient deficiencies experienced. A more
detailed description of field experimental protocols is provided
in Dang et al. (2006b).

All sites were sampled to determine their PAWC
characteristics using the methods of Dalgliesh and Foale (1998).
Briefly, the drained upper limit (DUL) was determined by
wetting up an area of soil until it reached saturation, allowing
time for drainage, and then sampling for soil water content
in 7 depth intervals (0–0.1, 0.1–0.3, 0.3–0.5, 0.5–0.7, 0.7–0.9,
0.9–1.1, and 1.1–1.3 m). For determining CLL, a rain-exclusion
tent for each crop at each site was erected over a portion (3 by
3 m area) of the vigorously growing crop, at the time of anthesis,
and was left in place until the crop reached maturity. Soil water
content was measured at the time of installation of the rain-
exclusion tent and at crop maturity, to determine water-extraction
patterns and CLL. PAWC was obtained as the difference between
DUL and CLL.

In April–May, soil samples were taken using a 50-mm-
diameter tube and a hydraulic sampling rig. Seven depths were
examined in the segments: 0–0.1, 01–0.3, 0.3–0.5, 0.5–0.7,
0.7–0.9, 0.9–1.1, 1.1–1.3, and 1.3–1.5 m or to maximum depth
of root penetration. Each soil segment was separately dried
at 40◦C in a forced-draught oven and ground to <2 mm. Soil
pH, EC, Cl, and NO3-N were determined in a 1 : 5 soil : water
suspension (Rayment and Higginson 1992). Exchangeable
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cations (K+, Na+, Mg2+, and Ca2+) were determined by
method 15C1 (Rayment and Higginson 1992). The extracts were
analysed for exchangeable cations on an inductively coupled
plasma-optical emission spectrometer. Exchangeable sodium
percentage (ESP) was calculated as the ratio of exchangeable
Na to the cation exchange capacity. Soil organic carbon was
determined (for use in simulation) by the method of Walkley
and Black (1934) and multiplied by a factor of 1.3 to allow for
incomplete recovery of carbon by this method.

Modelling experiments
Experiment 1
This experiment was a test of the hypothesis that the net effect

of SSCs on wheat crops can be accounted for by consideration of
their effect on CLL and thus the PAWC of a soil. The corollary to
this hypothesis is that if CLL of a soil with SSCs is measured, then
simulation of a wheat crop grown on it would require no further
adjustment for the fact that the crop was subject to SSCs. To test
this corollary the APSIM model (Version 5.0), configured with
the modules Wheat, SOILN2, SOILWAT2, and RESIDUE2, was
used to simulate wheat yield in response to the environmental
and management factors at the 33 field sites.

Meteorological data were collected from the nearest
meteorological station, using the Silo Patch Point Dataset
(Jeffrey et al. 2001) to obtain daily records of maximum and
minimum temperatures, solar radiation, and vapour pressure.
Rainfall data were obtained from on-farm records. Input data for
simulation included: cultivar, date of sowing, seedling density,
dates and rates of nitrogen fertiliser, initial soil moisture and
soil nitrate levels for each layer, and the date of measurement
of these values. Measured CLL values were used for all layers
below 0.3 m depth. Because of the difficulty in differentiating
experimentally between soil evaporation and moisture extracted
by crop transpiration in the top 0.3 m, and since most Vertosols
have no obvious differences in their morphology in the top
0.5 m, the CLL of the layer between 0 and 0.3 m depth was
assumed to be equal in value to the 0.3–0.5 m layer. A standard
parameterisation of the model was applied to all unmeasured
parameters at all sites and the yield results of the APSIM
simulations were tested against observed plot yields. For a full
specification of the settings applied to APSIM, see Accessory
Publication.

Experiment 2
This experiment was designed to develop a method for

estimating CLL of soils with SSCs in order to simulate the
effects of SSCs on wheat crops without measuring the CLLs
of every paddock or management zone. The simulations in this
experiment differed from Expt 1 in the following two respects.

(1) Measured CLL values were assumed to be unavailable and
were replaced by ‘reference CLL values’. Reference CLL
values are notionally CLL values of a soil that is similar
to the measured soil in every respect except that it does not
have the SSCs that restrict the CLL of the measured soil. The
reference CLL values for each of the 33 soils were derived
by leaving unchanged the CLL values of soil layers in the
0–0.5 m range on the assumption that they were relatively
free of SSCs, while CLL of soils deeper than 0.5 m depth

were estimated as a function of the CLL of the 0.3–0.5 m
soil layer and modified as a function of soil depth, based
on the established pattern of increasing CLL values with
increasing soil depth, which is characteristic of Vertosols
(Hochman et al. 2001).

(2) The reference CLL values were multiplied by alternative
SSC factors. Each SSC factor was optimised separately as a
function of each of the SSC indices (EC, Cl, exchangeable
Na, and ESP). The estimated CLL values of each alternative
SSC indicator were then compared with the measured
CLL values for all soil depths below 0.5 m. Exponential
functions that minimise the RMDS between measured and
predicted CLL were chosen after solutions based on linear
functions were rejected on the basis that linear functions
were optimised on cut-off values (the concentrations of
SSC indices at which CLL = DUL) that were too low when
compared with measured data.

Experiment 3
This experiment was designed to develop a kl-based approach

to simulating the effect of SSCs on wheat crops without
measuring CLL for every paddock or management zone. As in
Expt 2 the measured CLL values were assumed to be unavailable
and were replaced by ‘reference CLL values’. Reference CLL
values for each of the 33 soils were derived by leaving unchanged
the CLL values of soil layers in the 0–0.5 m range, while CLL
values of soils deeper than 0.5 m depth were estimated as a
function of the CLL of the 0.3–0.5 m soil layer and modified as a
function of soil depth. In contrast to Expt 2, the CLL values were
not further modified as a function of SSC indices. Instead the
standard soil depth-dependent kl values were modified by a SSC
stress factor. The SSC stress factor was alternatively optimised
for each of the following SSC indices: EC, Cl, exchangeable Na,
and ESP. Each stress factor was an exponential function of the
SSC index that minimised the RMSD between measured and
predicted grain yield. The simulated grain yield results obtained
by using each optimised index were then compared with the
observed grain yields at the 33 field sites. To investigate whether
the kl approach results in water uptake patterns that are similar to
those observed with the measured CLL approach, the simulated
soil moisture values that were obtained from Expt 1 both at
anthesis and at harvest were subsequently compared with the
values obtained in Expt 3.

Statistical comparison of observed and predicted data
No single statistic gives an adequate overall measure of the
goodness-of-fit between observed and simulated values. We
chose to present the coefficient of determination (R2) as a
measure of the association between observed and predicted
values and the root mean squared deviation (RMSD) as
an indicator of deviations from the expected 1 : 1 line. All
optimisations in this study (Expts 2 and 3) were carried
out iteratively with the aid of simple visualisation tools
developed in Microsoft Excelr to facilitate rapid viewing (visual
assessment of the function as well as observed and predicted
data and objective measures of R2 and RMSD values) of
effects of parameter changes on goodness-of-fit of observed and
simulated results.

http://www.publish.csiro.au/?act=view_file&file_id=AR06365_AC.pdf
http://www.publish.csiro.au/?act=view_file&file_id=AR06365_AC.pdf
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Results and discussion

Soil analysis

The selected sites varied in the extent and type of SSCs present.
This is illustrated by the means, medians, standard deviations,
and ranges of values measured for pH, EC, Cl, and ESP at
0.7–0.9 m depth (Table 1). Of the 33 soils, 15 soils had EC
>0.9 dS/m; 13 soils had Cl >600 mg/kg. Four of the 33 soils
did not have Na or exchangeable cation measurements. Of the
remaining 29 soils with measured Na and ESP values, 27 soils
had exchangeable Na values >5.0 cmolc/kg, and 26 soils had
ESP values >15%. Six soils had all 4 parameters over these
threshold values and only 4 soils were below all these threshold
values. Only one soil with pH < 5.5 was above all the other
threshold values. Soil pH was therefore excluded from further
consideration in this study. The pronounced difference between
mean and median EC values is indicative of a skewed distribution
of soils with respect to EC values. This is due to the presence
of several soils with very high EC values associated with the
presence of gypsum.

The correlation coefficients for the various chemical
indicators of subsoil constraints EC, Cl, ESP, Na, and soil depth
are summarised in Table 2. The high correlation coefficient
value for Na and ESP is consistent with the observations of
Irvine and Reid (2001) and was not surprising since Na is a
component of ESP. The low correlation coefficients between EC
and Cl and EC and ESP are consistent with the confounding
effect of the presence of gypsum in some of these soils.
The covariance between Cl, Na, and ESP must be considered
when attempting to determine the separate influence of any
of these chemical parameters on observed SSCs. Similarly,
the known effects of soil depth on CLL (and kl value) of
Vertosols are difficult to separate from the effect of chemical
constraints on CLL.

Experiment 1: Measured CLL as index of SSC

The range of observed grain yields harvested at these sites
was 0.97–5.70 t/ha. Figure 1 shows the performance of the
APSIM model when measured PAWC data are used and no
specific parameter is employed to account for SSCs. The model
accounted for 82% of the observed variability in grain yield
with a RMSD of 0.50 t/ha. All attempts to improve the model’s
performance by using functions based on Cl, EC, or ESP to
restrict root development (via the root expansion factor) did not
improve on these simulation results.

Given that the performance of APSIM in simulating grain
yields for the 33 subsoil constrained sites in this study was at least

Table 1. A comparison of mean, median, standard deviation, and range of subsoil constraint indicators measured at the 0.1–0.3 m and at
0.7–0.9 m depth layers of 33 soils

Values in bold are in excess of threshold values (mean, median, and maximum values only)

Mean Median s.d. Minimum Maximum

Depth (m) 0.1–0.3 0.7–0.9 0.1–0.3 0.7–0.9 0.1–0.3 0.7–0.9 0.1–0.3 0.7–0.9 0.1–0.3 0.7–0.9
EC (dS/m) 0.33 1.6 0.22 0.81 0.48 1.6 0.07 0.19 2.88 5.8
Cl (mg/kg) 69 566 40 496 88 492 1 1 358 1985
Na (cmolc/kg) 2.58 6.63 2.46 6.10 1.26 3.38 0.01 0.18 5.99 21.0
ESP (%) 8.3 22.0 8.4 22.7 4.3 9.6 0.1 0.38 17.2 48.8
pH 8.38 7.79 8.48 7.90 0.58 1.14 7.04 4.76 9.2 9.50

as good as that reported by Wang et al. (2003) for Queensland
soils without SSCs, we continue to hold the view that SSCs
affect wheat crops primarily by increasing their CLL and thus
reducing the PAWC. Confirmation of this hypothesis supports
the use of simulation as a tool for exploring the implications
of SSC (expressed as reduced PAWC) on production and NRM
issues such as those explored by Sadras et al. (2003), Hochman
et al. (2004), Farquharson et al. (2006) and Rodriguez et al.
(2006). This result leaves unresolved the question of predicting
the effect of measured SSC indices, such as EC, Cl, and ESP
on CLL with sufficient accuracy to adequately predict their
effects on yield and soil water dynamics. Experiments 2 and 3
explore this issue.

Experiment 2: Replacing measured CLL with depth limited
CLL and direct modification of CLL by SSC indicators

(a) Determining depth limited CLL

The depth modified CLL function was determined through
the following steps.

(1) LLi is the CLL of the 0.3–0.5 m layer for each soil. This is
the soil’s reference CLL value.

(2) CLL was assumed to be equal to DUL at Dmax.
(3) For layers between 0.5 m and 1.5 m depth, CLLd was

calculated as:

CLLd = CLL0.3–0.5 + fd (1)

where fd is the depth factor calculated as:

fd = (DUL − LLi) ∗ (1.0 − [Dpare(Dmax−d)/(1.5−0.4)]) (2)

where d is depth (m) of the middle of the soil layer, and Dpar

is the depth parameter that determines the curvature of the
line describing the increase in CLL as a function of depth.

The optimal parameter value (the value that minimises the
RMSD of observed CLL values) determined for Dmax was 1.3 m
and Dpar was optimised at 0.355.

Figure 2a shows a comparison of measured CLL values with
the calculated CLLd values as determined above, with no specific
parameter used to account for SSCs. This model accounted for
67% of the observed variability in CLL with a RMSD of 0.038.
This result is consistent with the fact that depth is a significant
predictor of CLL in chemically unconstrained soils and with the
positive correlation of chemical constraints and soil depth shown
in Table 2. The challenge is to separate these 2 factors and thus
improve the prediction of CLL as a function of depth and of
SSCs. Iterative optimisation of the depth function in conjunction
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Table 2. Correlation matrix for soil chemical properties and soil depth
observed in 33 soils

EC Cl ESP Na

Cl 0.321 1
ESP 0.270 0.549 1
Na 0.559 0.600 0.817 1
Depth 0.339 0.605 0.558 0.524
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Fig. 1. Simulated and observed wheat yields at 33 sites with various levels
of EC, Cl, exchangeable Na, and ESP in the north-eastern cropping zone,
using CLL to account for the effect of the SSCs.

with SSCs indices (see Expt 2b) resulted in a modified depth
function in which:

fd = (DUL − LLi) ∗ (1.0 − [Dpare(Dmax−d)/(1.5−0.5)]) (3)

where Dmax = 1.5 m and Dpar = 0.39.
Figure 2b shows that this function accounts for 66% of the

observed variability in grain yield with a RMSD of 0.038. With
this function the great majority of data lies on or below the 1 : 1
line. This provides an opportunity to develop functions based on
each of the SSC indices and see if any of them improve the fit
of observed and predicted CLL values.

(b) Modifying predicted CLLd values as a function
of measured chemical SSC values

To account for the effect of SSCs on CLL values, the CLLd

values (using Eqn 3) were modified as a function of SSC indices
using the generalised equation:

CLLSSC = MIN (DUL, CLLd + [(1.0 − SSC Factor)
∗ (DUL − CLLd)]) (4)

and

SSC Factor = a ∗ eb∗SSC (5)

where the value of the SSC Factor is constrained to values
between 0 and 1.0.

In order to evaluate the efficacy of the 4 indices of SSCs
(EC, Cl, ESP, and Na), each of these was substituted for SSC in
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Fig. 2. A comparison of observed CLL with predicted CLL of 33 soils for
layers between 0.5 and 1.5 m depth, when predicted CLL was limited only
by soil depth and the function was either (a) optimised to minimise RMSD,
or (b) optimised iteratively so that the effect of specific SSCs was separated
from that of depth.

Eqns 4 and 5. The a and b parameter values that minimise the
RMSD between the measured CLL values and the calculated
CLLSSC values were derived for each of the SSC indices.

A comparison of the 4 SSC indices used to estimate the
effect of SSCs on CLL (Table 3) shows that ESP is the most
effective. While Na is marginally less effective than ESP, when
compared with the EC and Cl based functions, the Na function
produced a higher coefficient of determination and lower RMSD.
Given that obtaining ESP values is significantly more costly than
obtaining Na values, a cost-accuracy trade off might be usefully
considered if such a function were used for guiding site-specific
crop management.

Figure 3 shows the optimised function for ESP in which the
differences between measured CLL and CLLESP were minimised
when a = 1.7 and b = −0.04. The exponential function had
a threshold value of 13% while the concentration required
for halving the difference between CLLd and DUL was
30.5%. These critical values compare with a mean value
at 0.7–0.9 m of 22.0% for the 29 sites with ESP values
in this study.

A comparison of the measured CLL values with the
calculated CLLESP values as determined above showed that this
model accounted for 79% of the observed variability in CLL
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Table 3. Comparison of parameter values and efficacy of substituting
EC, Cl, ESP, or Na for SSC in the generalised equation SSC

Factor = a ∗ eb∗SSC, used to modify CLLd to predict CLL values

a b R2 RMSD

EC 1.0 −0.057 0.61 0.044
Cl 1.0 −0.00055 0.69 0.037
ESP 1.7 −0.04 0.79 0.032
Na 1.22 −0.10 0.75 0.035
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ESP Factor = 1.7*e–0.04*ESP

Fig. 3. Optimised factor for modifying CLL as a function of ESP.

with a RMSD of 0.032. A comparison of Fig. 2 with Fig. 4
shows the improvement obtained by using the ESP function.
Predicted CLLESP values had little systematic bias relative to
the observed CLL values and the coefficient of determination
was higher, indicating that ESP values provide a useful function
for improving prediction of CLL for these soils.

Experiment 3: Replacing measured CLL with depth
limited CLL and SSC modified kl values

(a) Determining depth limited CLL

In this step a depth limited but non-SSC limited CLL value
was calculated for each depth layer of each of the 33 soils. The
depth modified CLL function was defined as:

CLLd = CLL0.3–0.5 + fd ∗ d (6)

where CLL0.3–0.5 is the CLL measured at 0.3–0.5 m depth, fd is
the depth parameter, and d is depth (mm) of the middle of the
soil layer.

The optimal value determined for fd was 0.000045. Figure 5
shows the performance of the APSIM model when the measured
CLL values of Expt 1 were replaced by the calculated CLLd

values as determined above and no specific parameter was
used to account for SSCs. This model accounted for 70%
of the observed variability in grain yield with a RMSD of
0.78 t/ha. Compared with simulation using the measured CLL
(Fig. 1), this function resulted in significantly lower correlation
and a systematic tendency to over-predict grain yield. This
result indicates the potential for improving yield prediction if
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Fig. 4. A comparison of observed CLL with predicted CLL of 29 soils for
layers between 0.5 and 1.5 m depth, when predicted CLL was limited by soil
depth and soil ESP.
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Fig. 5. Simulated and observed wheat yields at 33 sites with various levels
of EC, Cl, exchangeable Na, and ESP in the north-eastern cropping zone,
using the calculated CLLd.

a suitable function can be developed to account for the effects
of SSCs.

(b) Replacing standard kl values with SSC limited kl
values

Here standard kl values were modified as a function of
measured chemical SSC values using the equations:

KlSSC = kl ∗ klSSCFactor (7)

and

klSSCFactor = MIN (1.0, a ∗ eb∗SSC) (8)

In order to evaluate the efficacy of the chemical indices of
SSCs (EC, Cl, and ESP), each of these was substituted for SSC
in Eqns 7 and 8. The a and b parameter values that minimise
the RMSD between measured and simulated grain yields were
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Table 4. Comparison of parameter values and efficacy of substituting
EC, Cl, or ESP for SSC in the generalised equation SSC

Factor = a ∗ eb∗SSC, used to modify kl to predict grain yield values

a b R2 RMSD

EC 3.0 −1.3 71 0.80
Cl 4.0 −0.005 84 0.53
ESP 10.0 −0.15 82 0.58

derived for each of the SSC indices. A comparison of the 3 SSC
indices used to estimate the effect of SSCs on yield (Table 4)
shows that Cl is the most effective index of SSCs.

Figure 6 shows the optimised klClFactor function in which
a = 4.0 and b = −0.005. The exponential function has a
threshold Cl value of 277 mg/kg and the concentration required
for halving the kl value was 416 mg/kg. These critical values
compare with a mean Cl value at the 0.7–0.9 m depth layer of
566 mg/kg for the 33 sites of this study. The 416 mg/kg threshold
can also be considered in the context of 62% of Queensland’s
cropping zone of 2 450 000 ha having Cl >400 ppm at 0.7–0.9 m
depth (Farquharson et al. 2006).

Table 4 shows that the EC data did not offer a useful modifier
of kl for improving yield prediction. This finding is consistent
with the observations of Dang et al. (2006b) that the presence
of gypsum in some Vertosols of this region can confound the
predictive value of EC as an index of SSC. The result of using
ESP data to modify kl values was marginally less successful than
of using Cl data. While either ESP or Cl measurement provides
a satisfactory solution for improving yield prediction for soils
with SSC, the measurement of Cl is cheaper.

Figure 7 shows the performance of the APSIM model
in predicting grain yield with the depth limited CLL values
of Fig. 5, but this time klCl values replaced the standard
kl values. This model accounted for 84% of the observed
variability in grain yield with a RMSD of 0.53 t/ha. Compared
with the measured CLL (Fig. 1) there was little loss of
correlation. Compared with Fig. 5 there was significant gain
from substituting standard kl values with Cl related kl values.
This result indicates that Cl data provide a useful modifier of
kl for improving yield prediction for soils with SSC.

In addition to comparing the performance of the two
approaches (measured CLL as per Expt 1 and the modified kl
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Fig. 6. Optimised factor for reducing kl as a function of Cl.

approach of Expt 3) with regards to grain yield, Fig. 8 provides a
comparison of model performance with regards to simulated soil
moisture of soil layers deeper than 0.5 m. Both methods simulate
similar moisture values at anthesis as well as at grain maturity.
While both correlations are quite good, the shift in data from
tending to be above the 1 : 1 line in Fig. 8a to the opposite in
Fig. 8b is not accidental and is a result of the different modes
of rationing water use that are implied by the kl and the CLL
methods. In the CLL method, water use in any depth layer is not
restricted by the presence of SSCs until the crop approaches the
CLL, while in the kl method, water use is rationed throughout
the period in which the roots occupy the depth layer.

Conclusions

Despite the different qualitative and quantitative attributes of
soil chemical factors that are thought to be implicated in SSCs
of soils in northern Australia, when compared with the attributes
of subsoil constrained soils in southern Australia, the results of
this study support and strengthen the conclusions from research
in southern Australia that SSCs affect wheat crops primarily by
increasing the CLL and thus reducing the PAWC. The imperative
to reduce reliance on the measurement of CLL for every zone
of management has resulted in two effective alternatives for
simulating the effects of SSCs. The first method is based on
the development of a depth and ESP dependent function for
predicting the CLL of subsoils. The second method also uses a
depth dependent function to reduce CLL but adds a Cl dependent
function to modify the water extraction coefficient kl.

There does not seem to be a compelling explanation in
the current dataset to account for Cl being the best predictor
of yield when used to derive a modified kl function (Expt 3)
but only marginally useful when used to derive a function to
predict CLL (Expt 2). The most likely explanation lies in the
different modes of rationing water use that are implied by the kl
and the CLL methods. In the CLL method, water use in any
depth layer is not restricted by the presence of Cl until the
crop approaches the CLL, while in the kl method, water use
is rationed throughout the period in which the roots occupy the
depth layer. To determine which of these methods better explains
the effects of Cl on the performance of wheat, it is necessary to
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Fig. 7. Simulated and observed wheat yields at 33 sites in the north-eastern
cropping zone using the calculated CLLd and klCl values.
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Fig. 8. Simulated soil moisture for layers deeper than 0.5 m, based on measured CLL compared with simulated soil
moisture based on kl as a function of Cl at (a) anthesis and (b) grain maturity.

follow soil moisture extraction from the root zone throughout the
season and observe which model predicts the water-use pattern
more closely.

The results of this study provide a solid basis for use
of simulation in extrapolating results of field experiments
across locations and seasonal conditions. Simulation can
now be used with confidence to explore the implications
of SSCs on production and NRM issues and for exploring
the likely efficacy of possible management adaptations to
SSCs. In the context of zone-specific management, simulation
studies of spatial and temporal variability of yield response
to adjusting rates of nitrogenous fertiliser inputs could be
used to develop regional/soil specific recommendations for best
practice. Similarly, simulation could be used to investigate crop
traits that are likely to be effective in combating SSCs. Traits
that could be investigated include ones that improve the wheat
crop’s ability to explore and/or take up soil water in the presence
of SSCs or, more simply, phenological traits such as early
maturity that will help a crop avoid severe terminal droughts
in some years.

The conclusions of this study apply to wheat crops grown
on Vertosols in northern Australia. Further work is required to
test the applicability of these findings to other crops and other
soil types. Of particular interest is the study of species such as
chickpea (Cicer arietinum L.), which are thought to be more
sensitive than wheat to the presence of SSCs.
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