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Abstract

To facilitate marketing and export, the Australian macadamia industry requires accurate
crop forecasts. Each year, two levels of crop predictions are produced for this industry. The
first is an overall longer-term forecast based on tree census data of growers in the Australian
Macadamia Society (AMS). This data set currently accounts for around 70% of total produc-
tion, and is supplemented by our best estimates of non-AMS orchards. Given these total tree
numbers, average yields per tree are needed to complete the long-term forecasts. Yields from
regional variety trials were initially used, but were found to be consistently higher than the
average yields that growers were obtaining. Hence, a statistical model was developed using
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growers’ historical yields, also taken from the AMS database. This model accounted for the
effects of tree age, variety, year, region and tree spacing, and explained 65% of the total var-
iation in the yield per tree data. The second level of crop prediction is an annual climate
adjustment of these overall long-term estimates, taking into account the expected effects on
production of the previous year’s climate. This adjustment is based on relative historical
yields, measured as the percentage deviance between expected and actual production. The
dominant climatic variables are observed temperature, evaporation, solar radiation and mod-
elled water stress. Initially, a number of alternate statistical models showed good agreement
within the historical data, with jack-knife cross-validation R2 values of 96% or better. How-
ever, forecasts varied quite widely between these alternate models. Exploratory multivariate
analyses and nearest-neighbour methods were used to investigate these differences. For
2001–2003, the overall forecasts were in the right direction (when compared with the long-term
expected values), but were over-estimates. In 2004 the forecast was well under the observed
production, and in 2005 the revised models produced a forecast within 5.1% of the actual pro-
duction. Over the first five years of forecasting, the absolute deviance for the climate-adjust-
ment models averaged 10.1%, just outside the targeted objective of 10%.
Crown Copyright � 2006 Published by Elsevier Ltd. All rights reserved.

Keywords: Crop forecast; Nearest-neighbour; Tree yield
1. Introduction

The production of macadamia nuts in Australia has been steadily increasing as
new areas are planted and existing trees age, from around 4000 tonnes in 1987 to
44,000 tonnes in 2004 (Fig. 1). Notably, the crops in 2002 and 2003 were under
30,000 tonnes, reflecting the high degree of year-to-year variability. With most orch-
ards having reasonably good management and pest control, this variability is gener-
ally attributed to climatic factors in the year prior to harvest. To facilitate future
marketing and export contracts, the macadamia industry needs to anticipate and
manage both future production increases and this inherent annual variability. The
objective of this project was to produce forecasts for the industry’s total production
each year, with a target of ±10% deviance.

Many agricultural systems are affected by multiple sources of influence. Here, sta-
tistical model-selection methods have been used to determine the relative importance
of these independent influences, and to estimate their effects (Garcia-Paredes et al.,
2000; Deng et al., 2005). The fitted coefficients of these statistical models can then
also be used for forecasting purposes (Chatfield, 2005).

We adopted two main stages for this macadamia forecasting project. Firstly, the
longer-term ‘expected’ yields are estimated from existing tree numbers, assumed new
plantings and estimated yields. Because of the considerable delay in achieving signif-
icant levels of production after planting, reasonable predictions out to about five
years are possible (Scott, 1992). Beyond this time frame, the effect of (unknown)
future plantings starts to impact on the accuracy. Our second stage was to take these
estimates and ‘fine-tune’ them each year, by considering the effect of the previous



Fig. 1. Australian macadamia production – historical annual totals (dots), and long-term forecasting
model (line).
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year’s key climatic factors using statistical models. A parallel task to this climate
adjustment is a survey of the growers and industry pest scouts (professional entomol-
ogists, who regularly inspect orchards to advise on spraying requirements), to make
progressive forecasts of the coming crop.

In this paper, the historical development and refinement of each of these stages is
outlined in turn, along with discussions on alternate and supporting methods. This is
followed by an evaluation of the relative success of the crop forecasts, for the years
of 2001–2005.
2. Materials and methods

2.1. Long-term forecasting model

The Australian Macadamia Society (AMS) regularly conducts a census of its
members. This has resulted in a database containing tree numbers by age, variety,
planting density and location. The current production from these recorded trees is
better than 70% of the total crop. Long-term forecasts for the total crop are based
on these trees, and ‘scaled-up’ for the unsurveyed portion of the industry. This
should not introduce any major errors; the only problem here is if new plantings
(by newer investors in this industry, and perhaps not yet AMS members) are dispro-
portionately represented. This only appears to be the case in one particular region,
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namely Bundaberg. Overall, we are incorporating best estimates of these numbers of
young trees, from both industry and government personnel.

Given tree numbers, future production is dependent on patterns of yield increases
as these trees age. Initially, yield data from the regional variety trials were investi-
gated to estimate these relationships, but comparisons (Mayer and Stephenson,
2000) showed these yields to be markedly higher than those observed on growers’
properties. Fortunately, the AMS tree census also included historical yields (1996–
2004), for each block of trees. These data were scrutinised for blocks with predom-
inantly the same age, variety type and planting density, resulting in 2698 data points.
These were used as the basis for estimating expected yield patterns. In summary, the
long-term forecasting model is an integration of existing tree numbers and assumed
future plantings with expected future yield patterns, scaled upwards to account for
non-AMS orchards.

2.2. Annual adjustment for climate

The observed variation in annual yields (Fig. 1) can be standardised to an annual
percentage deviance, by comparing observed production with expected (Mayer and
Stephenson, 2000). Expected production for each historical year was estimated by
hind-casting the scaled long-term model. The key assumption adopted for the cli-
mate adjustment is that these historical deviations are primarily a result of climatic
effects. Given the short-term nature of these adjustment models, we have ignored any
potential yield improvements from newer varieties or improved technologies.

For each historical year we have access to daily meteorological data including
temperature, rainfall, solar radiation and evaporation. These were available as inter-
polated surfaces (Jeffrey et al., 2001) covering the macadamia production regions.
The approximate centre-point of each region was selected, with these data then being
spatially integrated by using weights proportional to each region’s overall produc-
tion. From these basic data, a number of physiologically-important derived variables
were also calculated, namely degree-days above the lower (cold) threshold of 15 �C,
degree-days above the upper (hot) threshold of 30 �C, and degree-days either side of
the optimal temperature for photosynthesis, of 26 �C (Allan and De Jagar, 1979). In
addition, climatic indices were considered, namely the monthly Southern Oscillation
Index (SOI) and SOI phases. These have the advantage of being reasonably corre-
lated with future climate, both in Australia (Stone and Auliciems, 1992) and in other
countries (Stone et al., 1996).

Water-logging and water-stress events have also been implicated in yield losses
in macadamias. As we have no actual data on the distribution of these events over
past years, they were modelled for the key macadamia areas from a verified soil–
water model (McKeon et al., 1990), using best-tuned soil and plant parameters,
actual climate records, and a 100-year ‘burn-in’ period to negate any effect of
the initial soil water profiles. An index of water-stress is estimated by accumulating
the number of days per month when the modelled plant-available-water-capacity
(PAWC) is below 15%. Similarly, waterlogging is assumed to occur when PAWC
is greater than 95%.
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These data were all considered on a ‘physiological year’ basis, which for each
year’s crop commences on 1st April in the previous year and ends in March in the
year of that crop. This cut-off date was proposed by producers in the industry,
and implicitly assumes that the crop amount is ‘fixed’ by the end of March and unaf-
fected by subsequent climate. Whilst there is some effect of climate on the ease and
effectiveness of harvesting, the broad timing of harvesting (about April to August)
indicates this effect should only be minor.

Bienniality of bearing is also known to occur in many tree-crops, including mac-
adamias. Initial time-series analyses indicated the presence of a reasonable
(r = �0.52; P < 0.05) lag-1 autocorrelation in the model, with no evidence
(r = �0.01) of an additional two year effect. To allow for this possible biennial bear-
ing pattern, the percentage deviance of the previous year’s crop was included as an
independent term in the models. Since 2002, we have adopted the more conservative
approach of including this as a ‘positive only’ effect, whereby a large crop in one year
is realistically expected to decrease the crop in the following year, but the converse
does not necessarily apply.

Each year, general linear models (GenStat, 2000) were initially used to screen for
correlations between the relative yields and the measured climatic variables. This
approach has previously been adopted for data from Hawaii (Liang et al., 1983)
and Australia (Stephenson et al., 1986). In these studies, temperature, rainfall and
stress-days proved important. We adopted step-forward selection to build multiple
models. This modelling process faced the problem of having many potential predic-
tors, some of which were highly correlated. Hence there were usually a number of
alternate models with similar degrees of fit. In selecting the next variable at each step,
we took into account the degree of statistical improvement, the distribution and pat-
terns of the partial graphs, and any macadamia physiological interpretations. Only
those models with better than 60% of the variation explained (R2) were used in
the forecasting process. To guard against overfitting and to ensure adequate degrees
of freedom for the residual, a maximum of five model terms was set.

In the initial years of the project, monthly climate data were used in model selec-
tion. This did cause some problems regarding the number of potential predictors,
correlations amongst these, and some selection of adjacent months in different mod-
els which were probably accounting for the same climatic effect. To somewhat alle-
viate these problems, we investigated and then adopted a move to integrate the data
into ‘macadamia-physiology’ periods, namely ‘floral initiation’ (April and May),
‘winter’ (June to August; note that this industry is in the Southern Hemisphere),
‘flowering and nut set’ (September and October), ‘premature nut fall and nut growth’
(November and December), and ‘oil accumulation’ (January and February). The
month of March is now not included under this approach, as whenever monthly data
were considered it rarely appeared in any of the selected models.

In 2003, it was further proposed that the Bundaberg region may behave differently
to the rest of the Australian production regions, due to its drier and hotter climate
and its heavy reliance on irrigation. Principal components analysis of the climate
data confirmed this, with Bundaberg appearing as a relative outlier compared to a
cluster containing the other regions. Fortunately, we could obtain accurate regional
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production data over time for the Bundaberg region, and these records confirmed
this different behaviour. Hence, from 2004 the Bundaberg region was divided off
and suites of climate-adjustment models were developed separately for it and for
the rest of the industry. Given this region’s reliance on irrigation, two extra variables
were derived for the Bundaberg models, namely the percentage surface-water and
ground-water irrigation allocations.

As a complementary exercise to the statistical climate-adjustment models, we also
instigated a survey of key industry growers and pest scouts. They are asked to pro-
gressively supply estimates of how each year’s crop compares with that of the previ-
ous year. Their replies are averaged regionally and applied to our estimated regional
production breakdown, with these being summed to provide an overall industry
total. The annual forecast from these sources is taken as at March, which is the same
time as our climate-adjustment model forecasts are made.

2.3. Multivariate analyses of annual climate patterns

To assist with the interpretation of the forecasts from the climate adjustment
model suites, the meteorological data (by macadamia-physiology periods) were sub-
jected to principal components analysis. The dominant vectors were used to deter-
mine which historical years were ‘closest’ (climatically) to each year to be forecast.
For the 2004 and 2005 forecasts, these alignments of annual climate patterns were
also used to investigate nearest-neighbour methods, using two to eight-dimensional
representation of the Euclidean distances, and a range of different weighting schemes
and numbers of neighbours. These exploratory nearest-neighbour forecasts were
used more as confirmation of the climate-adjustment models, rather than being
taken as alternate forecasts.
3. Results

3.1. Long-term forecasting model

Plotted against age, the yield per tree data displayed quite a deal of scatter, as
shown in Mayer and Stephenson (2000). Initial exploratory general linear model
analyses found that much of this scatter was attributable to known effects. We have
subsequently fitted a 13-parameter multiplicative bent-stick model to these data.
This incorporated an interaction between age and planting density, which is multi-
plied by regional and varietal main effects. This model explained 65% of the total
variation, and produced interpretable fitted constants. The production regions of
northern New South Wales (NSW) and Bundaberg gave the highest yields per tree.
The regions of Glasshouse, Gympie and other NSW areas averaged 90% of these
yields, for any given age, variety and density. The other production regions (predom-
inantly the Atherton Tablelands and the more tropical areas of Queensland) aver-
aged 81%. Similarly, against the top-rated commercial varieties, those nominated
as ‘medium varieties’ averaged 95%, and the ‘poor varieties’ 90%.
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Additional to these multiplicative main effects was the key interaction between
tree age and planting density, as illustrated in Fig. 2. This shows a logical pattern
– for these well-managed orchards, production begins on average in the fourth year.
This production increases linearly until tree crowding occurs, when adjacent trees
start growing into each other, competing for light. Naturally, this happens earlier
with the higher-density plantings. There is a range of pruning and canopy manage-
ment options available after this, but the individual trees have effectively ‘filled’ the
available area and only increase their yields by smaller amounts. Some contention
remains regarding the fitted asymptotic phase, with some industry personnel suggest-
ing that yields decline slightly in aging orchards. Limited research on these patterns
(McFadyen et al., 2004, 2005) show mixed results, so a flat asymptote appears
appropriate.

The next step is the integration of the yield patterns in Fig. 2 with the planting
densities, to estimate overall yields per hectare, as illustrated in Fig. 3. The areas
under each curve represent cumulative yields over time. These patterns are used to
form the long-term forecasts, which are then fine-tuned each year to account for
the climatic effects.

3.2. Annual adjustment for climate

In the first year of forecasting (for the 2001 crop), the ‘best’ model was selected
from the climate data by considering both the degree of fit and the physiological
importance of the fitted independent terms. Similarly, a best-fit model was selected
for the climatic indices. These two models were subjected to jack-knife cross-valida-
tion. Here each historical year is deleted in turn, and these models re-fitted to the
remaining data and then used to predict the missing year. This exercise indicated that
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Fig. 2. Average yield patterns (kg nut-in-shell per tree) by age and planting density, for commercial
varieties in regions with the highest yields.



Orchard age (years)

0 5 10 15 20 25 30

Y
ie

ld
 (

to
n

n
es

 N
IS

/h
a)

0

1

2

3

4

5

200 trees/ha
313 trees/ha
417 trees/ha
556 trees/ha
667 trees/ha

Fig. 3. Average yield patterns (tonnes nut-in-shell per ha) by age and planting density, for commercial
varieties in regions with the highest yields.

166 D.G. Mayer et al. / Agricultural Systems 91 (2006) 159–170
a good degree of predictability could be expected (Fig. 4). The cross-validation R2

values were both greater than 96%. Note in particular the very good agreement of
the extreme 1990 percentage deviance – the models’ predictions were effectively
extrapolations, with both being beyond the values observed in their underlying data.

However, the respective forecasts of the 2001 macadamia crop from these two
models diverged markedly, at +7.0% for the climate-adjustment model, and
�10.6% for the climatic indices model. This is not uncommon in the field of
Fig. 4. Cross-validation hind-casts of annual percent deviance for the initial climatic indices model
(squares), and climate data model (dots), against observed values (line).
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time-series forecasting (Chatfield, 2005). To investigate possible reasons, we devel-
oped suites of step-forward models for each data type, with different initial terms
and numbers of variates. Those using the climate data tended to be more consistent,
mostly giving positive deviance percentages (indicating a ‘good’ production year),
whereas the models using climatic indices varied quite widely, in both the positive
and negative directions. The climatic indices models were thus discarded from fur-
ther consideration. In each subsequent year, these suites of prediction models (usu-
ally 50 or more) were used to investigate the likely stability of the forecasts (in terms
of common direction), the overall average, and the empirical 90% confidence inter-
vals (namely, the 5th to 95th percentiles).

3.3. Multivariate analyses of annual climate patterns

The first two dimensions of the principal components analysis, which totalled a
reasonable 42% of the total variation, are shown in Fig. 5. It is interesting to note
that the first year of forecasting, namely 2001, appears amid a cluster of positive
years. The model suites of that time predicted an average deviance of +5%, and
actual production in this year came in at +3%. The next two years of 2002 and
2003 were somewhat remote from any other years. Hence, this representation does
not appear to offer much assistance for these years, as their annual climates had
not been experienced in our historical time-series. The model suite deviances for
these two years both averaged �7%, against the observed values of �13% and
�18%, respectively. Despite largely being extrapolations, these forecasts were still
Fig. 5. Principal components representation of meteorological data for 1987–2004, with percentage
deviance for each year’s macadamia crop in brackets.
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in the right direction. All indications for 2004 were for a negative percentage devi-
ance – whilst being in a ‘sparse’ area of Fig. 5, this year is surrounded by negative
years. The climate-adjustment models averaged �7.8%, and 32 out of the 36 explor-
atory nearest-neighbour models gave a negative forecast of the percentage deviance.
However, actual production proved to be the highest on record, which in deviance
terms was +15%. In 2005, the climate-adjustment models were almost all negative,
in agreement with the nearest-neighbour results. The suite of these climate adjust-
ment models averaged �15.3%, and the actual production for that year came in at
�19.4%.

3.4. Overall

Fig. 6 shows the relative performance of all the forecasts made thus far. In 2001
the growers gave a conservative forecast, almost right on the long-term expectation.
Actual production was higher, but not as high as the forecast from the climate-
adjustment models. For the next two years both forecasts were very similar – in
the right direction (i.e., less than the long-term expectation), but overly-optimistic.
Given these two years of disappointing yields, the growers and pest scouts forecasts
for 2004 (these are now estimated separately) were down again, and the climate fore-
cast was somewhat above these – but none of these were realistically close to the
actual record production. In 2005 the growers and the pest scouts forecasts were clo-
ser to the long-term expectation, but over-estimated actual production by 15.4% and
Fig. 6. Recent Australian macadamia production (dots joined by solid line), long-term model expectations
(dash–dot line), climate-adjustment model forecasts (squares, with empirical 90% confidence intervals),
growers’ forecasts (diamonds), and pest scouts’ forecasts (triangles; 2004 and 2005 only).
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20.4%, respectively. The forecast from the climate-adjustment model suite was 5.1%
above the actual value.

Considering the five years of forecasting (2001–2005), the absolute deviance of
actual production averaged 15.7% from the long-term model forecasts. Hence, whilst
this underlying increasing trend may be useful for future planning, it is not suffi-
ciently accurate for market allocation on an annual basis. The growers’ forecasts
averaged 12.1% from actual, so this is not a great improvement. In 2004 and
2005, we estimated the pest scouts’ forecasts separately, as it was expected that their
regular close inspections of the orchards might produce more accurate forecasts.
However, thus far these have actually proved to be worse than the growers’ esti-
mates. Overall, the climate-adjustment models have been the most accurate, with a
five-year average absolute deviance of 10.1% – just outside the project’s objective
of 10%.
4. Discussion

Time-series forecasting from statistical models ‘is fraught with problems and is
not for the faint-hearted’ (Chatfield, 2005, p. 133). These exercises often produce dis-
appointing results (Chatfield, 2005). Macadamias are recognised as a difficult crop
for research – a number of industry workshops and forums have struggled to define
the key influences on production. As exemplified in McFadyen et al. (2004, 2005),
even mature and well-managed orchards display varying yield patterns. Our statisti-
cal models provide evidence of the more important influences, but these have varied
somewhat over the years. Obviously, as each year of this project goes by, a very valu-
able extra observation and degree of freedom for the models is generated – so the
models should be getting more accurate. For future years, we can hope that the suite
of climate adjustment models will tend to perform more similarly – certainly more
confidence could be placed on these predictions if the range is smaller. In particular,
this is likely to occur if the observed year aligns (climatically) with one or more of the
historical years.

The growers and pest scouts forecasts have thus far been disappointing. Faced
with these results, the surveyed personnel are very keen to do better. As this exercise
involves comparatively little time commitment, and does keep the growers involved,
it will continue into the foreseeable future.

In predicting the macadamia crop each year, we have an underlying trend which
gives an overall expectation of an increase in crop size, and then a climate-adjustment
to this value. In 2001–2003, the forecast direction (from the long-term expectation)
was correct, but the actual forecast amounts were always optimistic. In 2004, which
proved to be a year of record production, our forecast was well short. Perhaps the first
three years of overestimates guided us to make more conservative assumptions at
each step in the modelling process, such as minimal scale-ups for the non-AMS pro-
portion of the industry, and the adoption of a ‘positive-only’ signal for bienniality of
bearing. In 2005 the climate-adjustment models were the most accurate. However, it
should be recognised that this was an ‘easier’ year to forecast – the record crop of 2004
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re-set the benchmark of the potential of these trees, and we were fairly confident that
the 2005 crop would be lower due to the strong influence of biennial bearing. The
forecast for the 2006 crop will prove to be more challenging.
Acknowledgements

We are grateful to the Australian Macadamia Society Limited and Horticulture
Australia Limited for funding, to the macadamia growers for access to their data,
to J. Owens and G. Fraser for parameterisation of the soil water balance model,
and to R. Evans for conducting the surveys of the growers and pest scouts.
References

Allan, P., De Jagar, J., 1979. Net photosynthesis in macadamia and papaw and the possible alleviation of
heat stress. Californian Macadamia Society Yearbook 25, 150.

Chatfield, C., 2005. Time-series forecasting. Significance 2, 131–133.
Deng, X., Luo, Y., Dong, S., Yang, X., 2005. Impact of resources and technology on farm production in

northwest China. Agricultural Systems 84, 155–169.
Garcia-Paredes, J.D., Olsen, K.R., Lang, J.M., 2000. Predicting corn and soybean productivity for Illinois

soils. Agricultural Systems 64, 151–170.
GenStat, 2000. GenStat for Windows, Release 6.1, Sixth ed. VSN International Ltd., Oxford.
Jeffrey, S.J., Carter, J.O., Moodie, K.M., Beswick, A.R., 2001. Using spatial interpolation to construct a

comprehensive archive of Australian climate data. Environmental Modelling and Software 16, 309–
330.

Liang, T., Wong, W.P.H., Uehara, G., 1983. Simulating and mapping agricultural land productivity: an
application to macadamia nut. Agricultural Systems 11, 225–253.

Mayer, D.G., Stephenson, R.A., 2000. Macadamia crop forecasting. In: Proceedings Annual Conference,
Australian Macadamia Society Ltd., 26–28 October 2000, Gold Coast, pp. 27–30.

McFadyen, L.M., Morris, S.G., Oldham, M.A., Huett, D.O., Meyers, N.M., Wood, J., McConchie, C.A.,
2004. The relationship between orchard crowding, light interception, and productivity in macadamia.
Australian Journal of Agricultural Research 55, 1029–1038.

McFadyen, L.M., Morris, S.G., McConchie, C.A., Oldham, M.A., 2005. Effect of hedging and tree
removal on productivity of crowding macadamia orchards. Australian Journal of Experimental
Agriculture 45, 725–730.

McKeon, G.M., Day, K.A., Howden, S.M., Mott, J.J., Orr, D.M., Scattini, W.J., Weston, E.J., 1990.
Northern Australian savannas: management for pastoral production. Journal of Biogeography 17,
355–372.

Scott., F.S., Jr., 1992. Methodology for projecting orchard crop production: A case study of macadamias.
In: Bittenbender, H.C. (Ed.), Proceedings First International Macadamia Research Conference,
Kaiua-Kona, Hawaii, 28–30 July 1992, pp. 30–37..

Stephenson, R.A., Cull, B.W., Mayer, D.G., 1986. Effects of site, climate, cultivar, flushing, and soil and
leaf nutrient status on yields of macadamia in south-east Queensland. Scientia Horticulturae 30, 227–
235.

Stone, R., Auliciems, A., 1992. SOI phase relationships with rainfall in eastern Australia. International
Journal of Climatology 12, 625–636.

Stone, R.C., Hammer, G.L., Marcussen, T., 1996. Prediction of global rainfall probabilities using phases
of the Southern Oscillation Index. Nature 384, 252–255.


	Annual forecasting of the Australian macadamia crop - integrating tree census data with statistical climate-adjustment models
	Introduction
	Materials and methods
	Long-term forecasting model
	Annual adjustment for climate
	Multivariate analyses of annual climate patterns

	Results
	Long-term forecasting model
	Annual adjustment for climate
	Multivariate analyses of annual climate patterns
	Overall

	Discussion
	Acknowledgements
	References


