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Abstract  Accurate and low-impact monitoring of 
scallop abundance is critical for stock assessment, 
especially in sensitive habitats. The possibility of 
using low-impact hyperspectral imaging (HSI) for 
differentiating scallop species in the marine environ-
ment was investigated. Live saucer (Ylistrum balloti) 
and mud (Ylistrum pleuronectes) scallops (N =  31) 
were scanned inside a sea simulator using a visible to 
near infrared (400–1000 nm) line-scanner HSI cam-
era. Partial least square discriminant analysis (PLS-
DA) was trained to distinguish between the species 
using their spectral signatures. Important wavelengths 
were identified and new models were developed using 
these wavelengths to reduce the model complex-
ity and potentially increase the imaging speed when 
applied under at-sea conditions. The PLS-DA model 
distinguished between saucer and mud scallops using 

any area of the left valve that was exposed above the 
sediments, with 90.73% accuracy when all 462 avail-
able wavelengths were used. Using the subset of 
important wavelengths (N = 13) reduced the classifi-
cation accuracy to 84%. Overall, our results showed 
that HSI has potential for detecting, distinguishing 
and counting commercially important saucer scallops 
for low-impact monitoring and resource management, 
and to complement RGB imaging that relies solely on 
morphological properties.
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Introduction

Scallops are economically valuable marine bivalves 
with approximately 400 known species, inhabiting 
coastal marine environments worldwide (Brand 2016; 
Delargy et al. 2023; Stewart and Howarth 2016). The 
combined factors of rising demand for wild-captured 
scallops and the impacts of climate change have 
added pressure on scallop stocks (Cheung et al. 2013; 
FAO 2020; Zang et al. 2023). Due to their commer-
cial significance and ecological importance, accurate 
assessment and monitoring of scallop populations are 
crucial for their sustainable management.

Trawling and dredging are the most used methods 
for surveying scallop populations. However, these 
methods can impose habitat impacts and incidental 
mortality on bycatch species (Delargy et  al. 2023; 
Freese et al. 1999; Kaiser and Spencer 1996; Probert 
et al. 1997; Thrush and Dayton 2002). Visual survey 
alternatives, such as towed camera systems, remotely 
operated vehicles and autonomous underwater vehi-
cles (Courtney et al. 2021; Miller et al. 2019; Taylor 
et  al. 2008) impose fewer impacts, but the resulting 
census estimates are heavily reliant upon accurately 
interpreting the collected images. This includes the 
ability to differentiate between morphologically simi-
lar species. Additionally, imaging methods can be 
problematic for species that partially bury in sedi-
ments, such as scallops. Therefore, there is a need 
to explore alternative approaches that can effectively 
overcome the constraints associated with the existing 
methods.

Hyperspectral imaging (HSI) is a low-impact 
technology that combines conventional imaging and 
near infrared spectroscopy (NIRS), providing both 
spatial and spectral information (Grahn and Geladi 
2007; Manley 2014). HSI utilises the reflection of 
light across hundreds of narrow wavelengths, encom-
passing both visible and non-visible ranges, to iden-
tify and measure materials based on their interaction 
with light (Park and Lu 2015). When light interacts 
with materials, it generates a characteristic pattern 
within the measured reflected spectrum, known as 
a spectral signature. Spectral signatures are specific 
to each material and can be leveraged, in combina-
tion with multivariate analysis and machine learn-
ing techniques, to identify and distinguish between 
various materials (Manley 2014). The spectral sig-
nature obtained through HSI offers an advantage by 

minimising reliance on morphology-based classi-
fication methods. As a result, it provides enhanced 
capability to differentiate between species that share 
similar morphological characteristics. In addition, uti-
lising the spectral signature enables identifying spe-
cies that may be partially buried in sediment, such as 
scallops, through analysing the signature of parts that 
remain exposed.

Hyperspectral imaging has been applied in aquatic 
environments, including determining the distribution 
of microphytobenthos, mapping of benthic habitats 
and monitoring the health of sea corals (Chennu et al. 
2013, 2017; Letnes et al. 2019; Montes-Herrera et al. 
2021). Applications of HSI for analysing harvested 
shellfish in dry laboratory conditions include differ-
entiating between the oyster valves grown in four dif-
ferent environments (Mehrübeoglu et  al. 2013) and 
two relatively similar species of oysters grown in the 
same environment (Tahmasbian et  al. 2022). While 
these studies provide valuable information on the 
possibility of using HSI in aquatic environments and 
for differentiating between harvested oysters, there is 
no evidence that HSI can differentiate between living 
scallops that are partly buried in sediments in aquatic 
environments.

In this paper we evaluated HSI as a potential alter-
native towed camera methodology for identifying 
saucer scallops (Ylistrum balloti) in their marine envi-
ronments. Saucer scallops have been the main target 
species of a trawl fishery on the central Queensland 
coast, Australia, for several decades (Dredge et  al. 
2016). We specifically compared the spectral signa-
tures of live saucer scallops with those of mud scallop 
(Ylistrum pleuronectes), a similar co-occurring but 
smaller and less valuable species. We hypothesised 
that these two scallop species have distinct spectral 
signatures that can be used to differentiate between 
them independent of their morphological similarities, 
using any area of their left valve that is exposed above 
the sediment.

Materials and methods

Sampling procedure

Samples of saucer and mud scallops were obtained 
from a commercial trawl vessel off the Townsville 
region of Queensland, Australia, in June 2020 on 
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two occasions to increase the variability among the 
scallops. Immediately after capture, the samples 
were transferred to 60 L holding tanks on board the 
vessel and kept oxygenated by maintaining pumped 
seawater to the tanks. The tanks were covered to 
reduce animal stress during transport to land which 
lasted approximately 12  h. Onshore, samples were 
transferred to 32  L containers filled with aerated 
seawater of ambient temperature for transport to 
the Australian Institute for Marine Science (AIMS) 
National Sea Simulator (SeaSim) facility at Towns-
ville. At the AIMS SeaSim facility, the scallops 
were transferred to aerated holding tanks (Fig.  1a) 
filled with pumped flow-through seawater main-
tained at 20  °C and acclimated overnight prior to 
obtaining the in-situ hyperspectral images.

Hyperspectral imaging system and image acquisition 
procedure

The AIMS Live Aquarium HSI data collection 
setup was comprised of an imaging tank filled with 
5 cm of sediment containing medium to coarse sand 
derived from the same habitat as the scallops. The 
tank was supplied with flow-through seawater at 
20  °C and was equipped with a rail-mounted HSI 
system fitted above the tank (Fig. 1b).

The HSI system consisted of various compo-
nents, including a 12-bit line scanner visible-near 
infrared (VNIR, 400–1000 nm) camera (Pika XC2, 
Resonon, USA) with a quartz lens. The camera had 
a sampling resolution of approximately 1.3  nm, 
generating 461 wavelengths. It was securely housed 
in a waterproof enclosure. Additionally, the system 
included two direct current (DC) DeepSea Mul-
tiLite underwater halogen lights (100  W), a com-
puter numerical control router, and a Spectralon® 
reflectance target (Labsphere Inc., USA) capable of 
reflecting 99% of the incident light.

Four to eight live saucer and mud scallops were 
randomly transferred into the imaging tank (Fig. 1b) 
and spaced out in the middle of the tank within the 
field of view of the camera. The left brown pig-
mented valves of the scallops were faced up while 
the white or right-side valves were faced down, 
reflecting their natural orientation in the wild. The 
scallops were scanned immediately at 50 frames per 
second and exposure time of 17.82  ms. To ensure 
precise imaging and to maintain a stable lighting 
environment, the room’s alternating current (AC) 
fluorescent lights were switched off during the 
imaging process. This prevented stray light inter-
fering with the camera’s observations and potential 
degradation of image quality due to the high-fre-
quency flickering fluorescence. Instead, DC halogen 
lights, were utilised to maintain a steady and reli-
able lighting environment during the imaging pro-
cess. After imaging, the samples were returned to 
the holding tank. This process was repeated with 
new individuals until all individuals were scanned.

The HSI system was controlled using a MAT-
LAB program.

The spectral corrections were performed using 
Eq. 1 (Farrar et al. 2023).

Fig. 1   Australian Institute of Marine Science (AIMS) Live 
Aquarium holding tanks (a) and hyperspectral imaging (HSI) 
data collection setup (b)
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where R is the corrected/relative reflectance of the 
samples, R0 is the raw reflectance, D is the dark cur-
rent of the camera captured with the lights off and 
the lens cap on, and W is the reflectance of the white 
Spectralon® calibration target.

Image pre‑processing and background removal

Low quality/noisy images were removed from 
the dataset. The images from a total of 31 scal-
lops, including 8 saucer and 23 mud scallops, were 
used for further analysis. The original images that 
contained multiple scallops were cut into smaller 
images, each containing one scallop. The images 
were then imported into Evince software (Version 
2.7.11, Prediktera, Sweden) for image pre-processing 
and data analysis. The images were subjected to size 
reduction, in Evince, by cropping the labels and sedi-
ments, leaving only the scallops and their immediate 
surrounding sediments. The last step of size reduc-
tion was conducted by using every tenth wavelength, 
retaining 47 wavelengths (spectral dimension), and 
every second column and row (spatial dimension). 
The above-mentioned size reduction procedures were 
performed to reduce data size for computation. This 
process reduced the data size from 80.1 to 1.4 GB.

A principal component analysis (PCA) model with 
three components was used to remove shading errors, 
saturated pixels, edge effects and the remaining back-
ground sediments (Tahmasbian et  al. 2021a; Wil-
liams et al. 2009). PCA is a statistical technique used 
for simplifying and exploring complex datasets by 
extracting the important information and represent-
ing it as a set of new orthogonal variables called prin-
cipal components (Wold et  al. 1987). In addition to 
traditional applications in data dimension reduction, 
PCA is utilised for visualising and overviewing vari-
ations in datasets through clustering the related sam-
ples (Wold et  al. 1987). In this study, we employed 
PCA to project samples (pixels in the images) onto 
vectors t. Plotting the first few t vectors displayed the 
pixel patterns in the images that were clustered based 
on their spectral similarities. The clusters were then 
used to identify and remove unwanted pixels from the 
images.

(1)R =
R0 − D

W − D

Training and evaluating classification algorithm

The scallops were divided into calibration and test 
datasets (Fig. 2). Five saucer and fifteen mud scallops 
were assigned to the calibration set and the remaining 
three and eight were assigned to the test set (63–65% 
calibration vs. 35–37% test). The test samples were 
mainly selected from the scallops that were partly 
buried for more stringent evaluation of the trained 
models (Fig. 2).

A partial least square discriminant analysis (PLS-
DA) model was trained using the calibration dataset 
to discriminate saucer scallops from mud scallops 
using their spectral signatures. PLS-DA combines 
dimensionality reduction and discriminant analysis 
into one algorithm and is especially applicable to 
modelling high dimensional intercorrelated datasets, 
such as HSI data (Lee et al. 2018). PLS-DA is based 
on the prtial least square regression (PLSR) algorithm 
that searches for latent variables (LVs) with a maxi-
mum covariance with the Y-variables, which in this 
case were categorical (Ballabio and Consonni 2013; 
Wold 1966; Wold et al. 1984).

Data transformation algorithms such as, mean-
centring, standard normal variation (SNV), multiple 
scatter correction (MSC) and Svitsky–Golay deriva-
tive (SG) were used and compared against un-trans-
formed data (Chen et  al. 2021; Farrar et  al. 2021; 
Rinnan et al. 2009). The PLS-DA model was initially 
trained with all pixels of both saucer and mud scal-
lops in the calibration sets and then compared with 
another PLS-DA model that was developed using a 
balanced class-size. Using the balanced class-size 
data gives data from both species an equal chance to 
influence the model and prevent a biased calibration 
towards the larger class (Brereton and Lloyd 2014; 
Chicco and Jurman 2020). In this study, there were 
more data points for the mud scallops and, therefore, 
the Equal-Size Class function in Evince was used to 
remove some pixels from the mud scallops until the 
number of pixels were comparable with those of sau-
cer scallops. Since the performance of the balanced 
class-size model was significantly better, only the bal-
anced class-size model is reported and discussed.

A random k-fold (k = 10) cross-validation was 
used for selecting the optimal number of LVs for 
the PLS-DA model to avoid over/under fitting (Tah-
masbian et al. 2021b). The 10-fold cross-validation 
divided the image pixels into 10 random groups, 
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trained the model with nine groups and tested it 
with the tenth group. This process was repeated 
until each of the 10 groups was left out of the mod-
els once. The number of LVs was selected where 
the coefficient of determination (R2) of the cross 
validation reached its maximum.

A confusion matrix (Table  1) of the test data 
set classified using the PLS-DA model was used 
to evaluate the performance of the model using 
Eqs. 2–7 (Da Conceição et al. 2021; Sokolova et al. 
2006):

(2)Classification accuracy (%) =
TP + TN

Total
× 100

(3)False Positive Error (%) =
FP

Total
× 100

(4)False Negative Error (%) =
FN

Total
× 100

Fig. 2   The RGB image of saucer and mud scallops after removing background pixels. The samples in the boxes were the test sam-
ples and the remaining were calibration samples
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where TP is true positive, TN is true negative, FP is 
false positive and FN is false negative.

We also used Mathews Correlation Coefficient 
(MCC, Eq. 8) to investigate the quality of the predic-
tions. MCC is a more reliable statistical index com-
pared to the classification accuracy (Eq. 2), because 
it involves multiple statistical measures represented in 
Eqs. 2–7 (Chicco and Jurman 2020; Park et al. 2021). 
MCC values vary between –1 and + 1 with the com-
pletely accurate classification equal to + 1 (Chicco 
and Jurman 2020).

Important wavelength selection

The β-coefficient generated by the PLS-DA model 
and the variable importance in projection (VIP) val-
ues (Eq.  9) were used individually and combined, 

(5)Sensitivity (%) =
TP

TP + FN
× 100

(6)Specificity (%) =
TN

TN + FP
× 100

(7)Precision (%) =
TP

TP + FP
× 100

(8)

MCC =
(TP.TN) − (FP.FN)

√

(TP + FP).(TP + FN).(TN + FP).(TN + FN)

to identify the wavelengths that were important for 
the classification (Chong and Jun 2005; Hohrenk-
Danzouma et  al. 2022). The β-coefficient important 
wavelengths were selected where the wavelength’s 
coefficient (absolute value) was larger than the stand-
ard deviation of the coefficients (β/β-standard devia-
tion > 1). The VIP wavelengths larger than 1 were 
selected (Li et al. 2006; Tahmasbian et al. 2018; Wold 
1995).

where, VIPj was the value of jth wavelength in the 
model with F number of components, Wjf was the 
loading weight of the corresponding wavelength in 
the fth component, SSYf was the explained sum of 
squares of the target variable in the fth component, 
SSYt was the total sum of squares of the target vari-
able and J was the total number of wavelengths.

Results and discussion

Spectral features

The average relative reflectance (spectral signatures) 
of saucer and mud scallops overlapped between 400 
and 550 nm, and between 800 and 1000 nm (Fig. 3). 

(9)VIPj =

�

�

�

�

∑F

f=1
w2
jf
.SSYf .J

SSYt.F

Table 1   Confusion matrix representing the number of pixels 
classified using the PLS-DA model (LV = 7) versus their actual 
classes, and metrics used for evaluating the performance of 

PLS-DA for classifying saucer from mud scallop in the test 
data set using 7 LVs and 14 LVs

LV Latent variable

Predicted (pixels)

Mud Saucer Unclassified
Classes Mud 95,751 4724 495

Saucer 12,194 76,393 178

LV = 7 LV = 14
False positive error (%) 2.49 1.63
False negative error (%) 6.43 5.19
Sensitivity (%) 86.24 88.90
Specificity (%) 95.30 96.94
Precision (%) 94.18 96.23
Mathews Correlation Coefficient (MCC) 0.82 0.86
Classification accuracy (%) 90.73 92.90
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The spectral signatures of both saucer and mud 
scallops showed relatively similar pattern, increas-
ing from 400 to 695 nm (major peak) followed by a 
sharp decline from 695 to 749 nm. There was a minor 
valley-plateau between 749 and 817 nm followed by 
another sharp decline to 857 nm. The relative reflec-
tance of both species gradually declined from 857 to 
1000  nm (Fig.  3). The magnitude of saucer scal-
lops’ reflectance was higher than that of mud scal-
lops between 575 and 709  nm. This spectral region 
can be used to differentiate saucer and mud scallops 
(see “Classification properties and important wave-
lengths” section).

The spectral signature of sediments, however, 
exhibited notable dissimilarities, both in pattern and 
magnitude, when compared to those of saucer and 
mud scallops. These differences were prominently 
observed in the range of 400–709 nm (Fig. 3). Beyond 
this range, a relatively similar pattern was observed. 
The discernible spectral signature of sediments can 
be used to distinguish between the sediment and any 
part of the scallop valve exposed above the sediment.

Removing background using PCA

The PCA model used the mean-centred data for three 
components to distinguish and separate scallops from 
their background pixels (i.e., shade and sediments). 
The PCA explained 99.1% of the variation with the 
first component explaining 90.1%, the second com-
ponent explaining 8.3% and the third component 
explaining 0.7%. The projection of principal compo-
nent score vectors t1 vs. t3 was used to identify and 

remove the background pixels, enabling the separa-
tion of shady areas, which was not possible using the 
projection of t1 vs. t2 (Fig. 4). This high (99.1%) value 
of the variance explained in three components was 
expected due to the distinctive spectral signatures of 
the scallops and their background.

Classification properties and important wavelengths

The data were only mean-centred for training the 
PLS-DA model. Using the balanced number of pix-
els improved the accuracy of the classification. The 
highest R2 of the PLS-DA model was achieved at 14 
LVs (Table  1). However, increasing the classifica-
tion accuracy beyond 7 LVs had negligible benefit 
(Table  1). For example, the classification accuracy 
increased from 90.73 to 92.9% (2.17%) and Mat-
thews correlation coefficient increased from 0.82 to 
0.86 (0.04) when the number of LVs increased from 
7 to 14 (Table  1). Therefore, 7 LVs was chosen for 
the final classification model, to maintain simplicity 
of the calculations, and used to classify the test scal-
lop species using their HSI data (Fig. 5).

The PLS-DA model identified individual pixels 
and distinguished between them using their spectral 
signatures (Fig. 5). This enabled using HSI data from 
any part of the left valve (i.e., the upper facing valve), 
facilitating classifying scallop species with high accu-
racy even when most of the scallop was buried. This 
overcomes some of the limitations associated with 
RGB imaging and morphological sorting. Based on 
aquarium observations, both saucer and mud scallops 
spend most of their time on the substrate with their 

Fig. 3   Average rela-
tive reflectance (spectral 
signature) of the saucer 
scallops, mud scallops and 
sediments. The highlighted 
area represents the spectral 
region where significant dif-
ferences between the saucer 
and mud scallops were 
observed
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feeding tentacles protruded and extended beyond the 
periphery of the valve. The tentacles have ability, 
although limited, to clear sediments from around the 
scallop as they filter the water for food. As a results, 
the peripheral edges of the valve tend to be less 
obscured by sediment and are therefore particularly 
useful for providing clear spectral images.

Reducing the dimensionality of the model and 
simplifying the calculations is critical to expedite 
the analysis for practical application under at-sea 
condition. If the technology is applied to detect, dis-
tinguish, measure and count very large numbers of 
scallops distributed over thousands of hectares of 
the seafloor, the model needs to process massive HSI 
datasets. To improve the analysis speed, complex data 
pre-processing algorithms were avoided during the 
training of the PLS-DA model in this study. In addi-
tion, the number of LVs was reduced to the minimum 
functional value (LV = 7) for a negligible decrease 
in the classification accuracy. Another possible limi-
tation, should the technology be applied to assess-
ing scallop populations, is the speed at which the 
HSI system measures light reflectance for hundreds 

of wavelengths. The maximum achievable imag-
ing speed of the camera used herein was 17 mm/sec 
(0.06 km/hour) which is not practical for a large-scale 
field operation at sea. Reducing the number of wave-
lengths used in the PLS-DA model, by recognising 
and excluding the uninformative wavelengths, allows 
a faster image acquisition process. This optimisation 
enables programming the camera to capture only the 
final selected wavelengths when operated under at-
sea conditions, leading to faster camera movement. 
Furthermore, the resulting images are smaller in size 
(smaller dataset), reducing the duration of analyses 
and the required storage capacity.

In this study, we implemented a two-step process 
to minimise the number of wavelengths required for 
the PLS-DA model. Initially, we reduced the wave-
lengths to 47 by using every tenth wavelength during 
the image import into Evince software. Subsequently, 
we conducted a more refined analysis to pinpoint and 
select the important wavelengths from these 47, uti-
lising the β coefficient and VIP (Fig. 6).

The classification accuracy of the PLS-DA model, 
in the test dataset, decreased to 84% where the model 

Fig. 4   Scatter plot of the 
first and third principal 
components score vectors, 
t1 and t3, used for identi-
fying and removing the 
background pixels. The plot 
was generated by cluster-
ing pixels according to 
their spectral similarities. 
Clusters were formed in 
regions where the density 
of spectrally related pixels 
in the PCA scatter plot was 
high. These high-density 
areas are represented in red, 
while low-density regions 
appear in blue
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was only trained with wavelengths associated with 
large β-coefficients (β/β-coefficient standard devia-
tion ratio > 1). The classification accuracy reduced to 
74% where the PLS-DA model was only trained with 
wavelengths with a large VIP (VIP > 1). The accuracy 
of the model further reduced to 66% when the model 
was trained with wavelengths that had both large 
β-coefficient and VIP. The β-coefficient was the most 
efficient wavelength selection method, using only 
13 wavelengths (versus 16 VIP wavelengths) of the 
original 462 wavelengths. We were unable to test the 

imaging speed when measuring only these 13 wave-
lengths, due to equipment constraints. Given that only 
13 of the 462 wavelengths were required to achieve 
84% classification accuracy, a significant increase in 
the imaging speed (necessary for field-scale analysis) 
is expected.

The β-coefficient important wavelengths identi-
fied in this study included 403, 416, 482, 535, 602, 
615, 629, 669, 682, 695, 709, 722 and 749  nm. 
Given that the main component of scallop valves 
is calcium carbonate, CaCO3 (Martin et  al. 2021; 

Fig. 5   PLS-DA-classified image of the scallop samples. Blue, green and red represent saucer, mud and unclassified pixels/samples, 
respectively. The grey scallops are the samples used for calibration and excluded from the test set
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Sawai et  al. 2001), it was expected that some of 
wavelengths were related to CaCO3. There is limited 
information about the wavelengths related to CaCO3 
in scallop valves. However, the 400, 500, 555, 575 
and 600  nm wavelengths have been attributed to 
CaCO3 in soil (Gomez and Coulouma 2018; Gomez 
et  al. 2008). These are comparable to the 403 and 
602  nm wavelengths that were found to be impor-
tant for species identification in this study.

Identifying the mechanisms involved in differen-
tiating between the scallop species using HSI was 
beyond the scope of this study. However, we think 
that differences in the valve chemical composition 
may not be the only mechanism through which HSI 
was able to differentiate between species. In another 
study, HSI distinguished between two similar spe-
cies of oysters, namely black lip and Sydney rock, 
aged 19–24 weeks (Tahmasbian et  al. 2022). The 
oyster valves exhibited similar average elemental 
and morphological compositions. Nevertheless, the 
number of layers composing the oyster valves varied 
between species, providing a distinctive character-
istic for differentiating between them (Tahmasbian 
et  al. 2022). Therefore, investigating the structure 
of the saucer and mud scallop valves may provide 

additional information about the mechanisms that 
enabled HSI to differentiate between them.

This study used the spectral signature of the scal-
lop valves, which may result in overestimation of the 
scallop populations due to the detection and inclusion 
of dead scallops. Future HSI analyses may be able to 
discern the condition of a scallop (i.e., live or dead) 
by examining the spectral signatures of scallop man-
tle and feeding tentacles. It is important to note that 
although the detection of feeding tentacle spectra 
can be indicative of a live state, the absence of such 
spectra does not necessarily indicate a deceased state. 
This is because there are instances where scallops 
withdraw their tentacles when they are disturbed or 
threatened.

This study offers valuable insights into the potential 
utilisation of HSI for real-time monitoring of scallop 
populations, as well as presenting solutions for enhanc-
ing imaging and data analysing speed through data 
size reduction and wavelength selection. However, it 
is important to acknowledge that operating HSI under 
at-sea conditions may present additional challenges 
that require thorough investigation in future research 
and development projects. These challenges encompass 
the dynamic nature of the benthos, surface conditions, 
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Fig. 6   The important wavelengths selected for the identifi-
cation and distinguishing saucer scallops from mud scallops 
using PLS-DA models developed herein. The blue dotted bars 
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turbidity and currents, which introduce instability in 
the image acquisition process. Other factors, such as 
suspended sediment, detritus, dissolved organic mat-
ters and chlorophyll may interfere with the reflectance 
measurements, contributing to the complexity of imag-
ing and data analysis. Furthermore, the optical charac-
teristics of wild scallops may be influenced by factors 
such as life stages, health conditions, ocean acidifica-
tion, and parasites on the valves. Conducting a pilot 
study that deploys the technology at sea may uncover 
additional challenges.

Conclusion

This study demonstrated that hyperspectral imaging 
has potential for detecting, distinguishing and count-
ing commercially important saucer scallops for stock 
assessment and resource management. The ability of 
HSI to detect and identify a scallop when it is largely 
buried in sediments is advantageous and has potential 
to complement RGB imaging that relies on morpholog-
ical properties. Application of this method would result 
in reduced impacts to the seabed compared to towed 
trawl nets or dredges that are commonly used to moni-
tor scallop abundance. Moreover, this technology may 
hold promise for assessing other benthic fished species 
and monitoring marine ecosystems.
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