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 Executive summary 

The southern pine resource includes slash pine (Pinus elliottii var. elliottii) [PEE], Caribbean 
pine (P. caribaea var. hondurensis) [PCH] and a locally-developed hybrid [PEE × PCH] 
(hybrid pine). These pines as well as smaller areas of loblolly pine (P. taeda) have been the 
main taxa planted in the coastal areas of southern Queensland and subcoastal areas of 
northern New South Wales for the last 25 years.  

The standard structural grade ranking of the southern pine resource is limited by its stiffness 
as characterised by the measurement of the Modulus of Elasticity (MOE). The MOE dictates 
the mechanical grade of the board (or other structural products, extracted from the log). A 
board’s market value is directly linked to its stress grade based on individual grading 
performance (e.g. MGP10). For example, 1 m³ of structural board (i.e. MGP10 and above) is 
worth about $350 whereas non-structural board (i.e. <MGP10) is worth about $80. Based on 
the importance of MOE, this report focusses on it as the key attribute for the southern pine.  

Non-destructive tools that accurately measure board MOE will allow enhanced genetic 
selection, site matching, harvest planning schedules, improved allocation of the resource to 
different processors and facilitate improved processor settings and product performance. 

Key findings from the study were: 

• Sigmoid curves (S shaped curves) capture the variation in wood properties from the 
pith to the bark.  

o The cambial age versus ultrasound MOE (USMOE) sigmoids, referred to here 
as ‘fingerprint curves’, measured along sampled cores, are independent of the 
silviculture, size and growth of the trees. These curves vary depending on 
genetics and environment. They allow the grower and processor to determine 
the performance potential of genetic material in a given environment. 

o The radial growth versus USMOE curves, referred to as ‘radial sigmoids’, are 
influenced by silviculture as well as genetics and environment. These curves 
estimate the quantity of wood of a given performance (e.g. >10,000 MPa). 

o Both of these curves provide useful information to manage plantation growth 
and processing, improving the growers’ and processors’ abilities to value 
stands of trees. 

• Of the three technologies tested the USMOE provided the most accurate measure of 
sawlog MOE (R2 = 0.78) and the least biased (9% bias). The Resistograph was the 
second most accurate tool at predicting log MOE (R2 = 0.68) and a 9% bias. The 
ST300 was the least accurate tool to predict log MOE (R2 = 0.42) and had a large bias 
of 41%. The large bias on the ST300 resulted in this tool over-predicting the MOE of 
the trees in the stands. 

• The USMOE using a 2D integration approach can reconstruct an estimate of MOE for 
individual boards that can be sawn from trees with moderate accuracy (R2 = 0.53) and 
very little bias (2%). Similar results were achieved using 3D approaches. These 
correlations are robust, since they are based on a deterministic approach that directly 
connects products to the trees from which they were derived. This has potential to 
improve the growers’ and processors’ abilities to value stands of trees and the trees 
within these stands. 

• The ST300 (time of flight of stress waves) and Resistograph (resistance to drilling) 
technologies only give a single measurement or prediction of sawlog MOE, and this 



 

 

number is based on calibrations and approximations. Hence, they cannot be used to 
accurately predict the value of different parts of the plantation estate, but they may be 
useful for a general ranking of stands. They are useful at segregating the extreme high 
or low MOE range. 

• Changing the sawing pattern used on a log can have a dramatic impact on the recovery 
of MGP10 or better boards. This could improve product value with flow-on effects 
across the whole value chain. 

Key recommendations 

• The sawlog and board MOE estimated by the USMOE should be further validated by 
destructively sampling a broad range of the plots. 

• Southern pine growers should use the fingerprint curves obtained from USMOE 
measured on cores at age 17, along with LiDAR information to better manage their 
plantation estates to maximise sales of high value products. 

• Processors should use the USMOE to optimise their setting to maximise recovery of 
high value products improving returns across the whole value chain. 
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 Glossary 
 
5PL  Five parameter logistic function. 
Accuracy Accuracy describes the difference between the measurement and the 

part's actual value. 
Allometric Describes change in characteristics with change in size. 
Asymptote A value that you get closer and closer to, but never quite reach. In 

mathematics, an asymptote is a line that a graph approaches but never 
touches.  

Bias A measure of the distance between the value of the measurements and 
the true value of the sample. 

BING Beam Identification by Non-destructive Grading; a resonance acoustic 
method for estimating MOE. 

Box plot Also known as a box and whiskers graph. A box plot, is a simple way 
of representing statistical data in which a box is drawn to represent the 
second and third quartiles, usually with a horizontal line inside to 
indicate the median value. The lower and upper quartiles are shown as 
vertical lines either side of the box. Values outside the vertical line are 
considered anomalous. 

CA (cambial 
age) 

The age of the cambium when the wood was formed. On a seasonal 
basis it corresponds to the ring number when counting outwards from 
the pith. 

Cambial sigmoid 
or CA sigmoid 

A 5PL sigmoid curve fitted between MOE vs weighted average cambial 
age for each segments 

Clone Vegetatively produced copies of an organism (in this case pine hybrid 
trees). 

Fingerprint curve The 5PL curve fitted between MOE as a function of cambial age 
Fingerprint 
function   

The 5PL function fitted between MOE as a function of cambial age. 

Genotype Genetically similar organisms (trees) 
Integral or 
Integration 

The general meaning is "to put together parts or elements and combine 
them into a whole". Integration is the process of finding the “area under 
the curve” in the one-dimensional context, i.e. integrating a single-
variable function over an interval. 

Integral average The average of a function calculated by integration. In this report, a 
‘shell integration’ was performed to calculate the integral average 
MOE.   

Metrology The science of measurement to manufacturing and other processes and 
their use, ensuring the suitability of measurement instruments, their 
accuracy, calibration and quality control. 

MPa Megapascal, is equal to 106  Pascal, a unit of measure for Modulus of 
Elasticity (MOE) (mega = 106) 

MGP  Machine-graded pine 
MGP10+ Wood or boards having MOE of 10,000 MPa or greater 
MOE (modulus 
of elasticity) 

Modulus of elasticity infers about material's important property against 
any external stress. It is the resistance given by material against 
deformation. 

NDE Non-destructive evaluation (testing) 
NLE Non-lethal evaluation (testing). 
NIR Near infrared spectroscopy. 
PCT Pre-commercial thin. 
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Plot fingerprint The characteristics of a plot given by its cambial sigmoid. 
Precision Precision describes the variation you see when you measure the same 

part repeatedly with the same device. 
Qualitative 
assessment 

Assessment of wood quality that focuses on USMOE without 
accounting for the quantity of wood. The qualitative assessments in this 
report were performed using a cambial sigmoid. 

Quantitative 
assessment 

Assessment of wood quality that focuses on the quantity of wood with a 
particular USMOE. The quantitative assessments in this report were 
performed using a radial sigmoid. 

Radial sigmoid A sigmoid curve fitted between MOE and radial position for each 
segment from a core.  

Regularisation Creating models that generalise performance of a plot by fitting the 
segments’ MOE data in a plot against cambial age. 

ResiMOE The MOE predicted by the IML Resistograph when the default (P. 
radiata) calibration was used. 

Sigmoid ‘S’ shape curve defined by five parameter logistic function (5PL). 
Static bending 
MOE  

Board MOE obtained by a static bending test. 

Static bending 
test 

A four-point bending test also known as flexural test that provides 
values for MOE in according to the Australian standard. 

ST300MOE 
 

The MOE predicted from the squaring the acoustic velocity measured 
by the ST300 and a nominal green density of 1,000 kg/m³. 

Stiffness A measure of a board’s/beam’s resistance to deflection; see MOE. 
  
Stress Grade Structural grading is the process by which timber is sorted into groups - 

or stress grades - with ideally, similar structural properties in each 
group. Inevitably there is a very substantial range of properties within a 
group and significant overlap in properties between the groups. 
Structural grading can be performed in a number of ways including the 
following: 

• visual stress-grading  
• machine stress-grading  
• machine proof-grading 

The two most commonly used methods in Australia are visual stress-
grading and machine stress-grading, with use of machine proof-grading 
being limited. 

Stocking rate 
Taxon (plural 
taxa) 

The approximate number of stems per hectare (spha). 
Species, varieties or hybrids of trees 

US Ultrasound 
USMOE The MOE predicted from the core by integration of the core segments 

predicted from ultrasound measurement of MOE at 8% moisture 
content. 

Virtual board   A board that was reconstructed mathematically by mimicking the actual 
sawing pattern.   

Violin plot Violin plots are similar to box plots, except that they also show the 
kernel probability density of the data at different values. Typically, 
violin plots will include a marker for the median of the data. 

Weighted 
average cambial 
age 

The average cambial age resulting from the multiplication of each 
cambial rings age in a core segment by the relative corresponding area 
in the segment. 
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 Rationale for the project approach 

5.1 Forest value chain 
The Australian forest sector’s prosperity is becoming less and less dependent on the 
traditional volume production target. As in many countries, the economic viability of fibre 
sources increasingly depends on end-product value, performance and diversity. The value of 
the products in the market are dictated by the products’ performance. This project aims to 
improve the assessment and prediction of the performance of the final products such as boards 
or veneer from measurements taken on standing trees. Making this link will improve returns 
across the forest value chain.  
 
Currently the main product manufactured from the southern pine resource in Australia is sawn 
timber in the form of standard board sizes (Figure 1). The value of this product depends on its 
mechanical performances assessed using Australian Standard procedures. They specify non-
structural and structural grades based on product stiffness quantified by the Modulus of 
Elasticity (MOE) and its strength quantified by the Modulus of Rupture (MOR). The standard 
structural grade rating of the southern pine resource is limited by its stiffness. The MOE 
dictates the mechanical grade of the board. A board’s market value is directly linked to its 
grade based on individual grading performance (e.g. MGP10). For example, 1m³ of structural 
board (i.e. MGP10 and above) is worth about ≥$350 whereas non-structural board (i.e. 
<MGP10) is worth about $80. 
 
In order to extract the best value from the wood fibre, it is essential that the performance of 
the forest resource be assessed as soon as possible along the wood value chain. Consequently, 
in the case of the southern pine resource, the structural performance assessment of the board 
MOE from in-field tree measurements is the key element to estimate resource value and 
optimise value extraction. 



 

11 
 

 
Figure 1. Schematic showing the process to obtain final product (board) from forest and the profit 
associated with the final product. 
 
Many factors contribute to the variability in the quality of the final product cut from a 
plantation. The variability of the southern pine plantation estate in space and time is complex. 
The variability is expressed in different ways: 

• at the stand, compartment, or plot level; 
• within and between tree in terms of size and properties; 
• within a log, where the greatest variation occurs from the pith to the bark (along the 

radius) 
• within and between boards sawn from a log 

 
Here is an example of the variability in southern pine at the tree and forest level: in southern 
pine plantations, the variability of MOE at the end of the rotation ranges from 8,700 to 14,400 
MPa. Within a single tree the MOE of clear wood can range from 3,000 MPa to 26,000 MPa. 
This MOE gradient is observed across the radius of the tree with the MOE increasing from the 
pith to the bark. The variation up the tree is much lower. The MOE variation around the 
circumference of the tree is even lower. The latter is essentially due to the presence of 
reaction wood (compression wood) caused by competition, wind or mechanical stress. 

5.2 From log to board 
Bearing in mind the variation of MOE within a tree, when a board is sawn across the log 
MOE gradient, the prediction of a single board’s MOE requires information about the position 
of the board within the log which gives the MOE distribution within the board (Figure 2).  



 

12 
 

 
Figure 2. Within log MOE variability from low (red) to high (green) MOE and the consequence of this on 
the board MOE gradient. 

It is not possible to predict the MOE of a board from the log level information such as average 
log MOE. The position of the board and the description of MOE gradients within the log are 
essential for predicting the MOE of an individual board. To further illustrate the importance 
of gaining access to MOE gradients, the individual board MOE, based on static bending, 
obtained from each log is plotted against log stiffness that has been accurately measured 
through a resonance acoustic method (Figure 3). It is clear that log stiffness is poorly 
correlated (R²= 0.14) with stiffness of individual boards cut from the log. 
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Figure 3. Relationship between the whole log MOE (n=30) and individual board MOE (n=294; static 
bending). Each vertical array depicts static MOE for a sub-sample from each board from a single log. 

However, using the same dataset, the correlation between the average stiffness of all the 
boards obtained from a log and the log stiffness (Figure 4) is quite high (R²=0.75). This latter 
correlation however is useless to predict the performances of individual boards, as it does not 
represent the actual value i.e. the individual board performance to the log. The only time this 
correlation can help growers and processors select logs are those instances of logs with very 
low or very high MOE. These logs should provide a high proportion of either very low or 
very high MOE boards. Unfortunately, these extreme cases represent a small proportion of the 
resource. Since the variability between logs is lower than the variability between boards, each 
log would provide a different distribution of board MOE. For the processor, the value of the 
board is based on a ranking system (with boards being graded into various MOE stress grades 
or classes). A single MOE prediction for a whole log will not provide useful information 
about the MOE of boards that could be cut from that log and therefore the value of the boards 
and consequently the value of production. 

 

 
Figure 4. Relationship between the whole log MOE and mean board MOE/sawlog from 30 southern pine 
logs. 
 
The example above highlights the importance of developing a reliable method to assess the 
individual board stiffness for resource value assessment purposes, as the money the processor 
makes from selling boards (or other products e.g. veneer), can be linked to the grower’s 
potential profit from the sale of the logs. Since we observe the largest variation in MOE 
across the tree radius, the knowledge of this variation is the key element of any value 
analysis as MOE variation is by far the main factor defining value. This is the focus of 
this study. 
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 Material and methods 
The southern pine resource characterisation study included a comprehensive stratified 
sampling process to select representative plots for the test material and data collection.  
Figure 5 provides a simplified depiction of the material flows. 

 
 

Figure 5. Southern Pine Resource Characterisation project materials flow chart. 
 

An overview of the project showing the three non-destructive evaluation tools and how each 
component of the wood value platform is interlinked is shown in Figure 6 and Figure 12. 
Details of these phases of work are included in section 6.1 (Wood Value Platform), 6.5.1 
(Measurement of field plots), and 6.5.2 (Destructive sampling).  
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Figure 6. Project methods flow chart and outputs. Note: the acoustic sensor used on standing trees in the 
plots to provide TOF readings was an ST300; the microdrill was an IML Resistograph PD400. 

The project has been designed around the accurate measurement of the ultrasound MOE of 
cores at 8% moisture (hereafter called USMOE). In a core, the ultrasound (US) actually 
measures the local longitudinal MOE (along the fibres) of small clear wood specimens, based 
on a measurement of the time of flight of US stress waves. This USMOE was measured on 20 
mm segments taken along a radius of cores extracted from a standing tree or on discs from 
logs. The measurement of USMOE has been found to be unbiased when modelled and 
compared with the longitudinal MOE measured through conventional resonance methods (see 
for example American standard ASTM E1875).   

Using a measure of local longitudinal MOE measured by ultrasound, which is much smaller 
than standard boards, allows the reconstruction (not prediction based on calibration) of the log 
and board MOE. This is important, as the value of the resource is primarily based on this 
board MOE. For example, when valuing the structural products manufactured from southern 
pine, the reference method used by processors is the static bending MOE of kiln-dried boards 
or veneer. These boards are cut from ‘localised’ positions within a log and this is measured 
and valued as a ‘local longitudinal MOE’ of that part of the log. The local longitudinal MOE 
is determined by the origin (e.g. genetics, location and growth history) of the tree, the location 
within the tree or log where the board was cut from and the size of the board. 

A system that is based on a measurement of local longitudinal MOE should therefore be the 
reference method for all other types of measurements using indirect and/or non-local 
measurements (e.g. on a log or a tree) of MOE. Ultimately, the usefulness of each method 
must be evaluated through its capacity to accurately predict the MOE of boards from trees and 
stands. Other key properties or characteristics have been measured locally in the log/tree 
because they can impact the value of the southern pine resource were: density, shrinkage, 
resin content and liquid permeability.  

6.1 Wood value platform 
One of the objectives of the project was to develop and test a high throughput, relatively low-
cost platform for accurate and direct measurement of wood properties and characteristics from 
radially sampled, small, clear wood specimens. Traditional wood quality laboratories and 
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equipment such as Silviscan have the disadvantages of high capital costs or long waiting 
periods for results. Moreover, they often rely on indirect measurements of the fundamental 
properties through calibration procedures and/or unstable physical relationships. The wood 
value platform includes a patented tree corer bit used with a rechargeable hammer drill to 
extract cores from standing trees and a suite of plug-in laboratory modules that provide 
predictions of extractives content and direct measures of wood density, stiffness (Modulus of 
Elasticity MOE), shrinkage and permeability. Tests for stiffness, density, resin content and 
shrinkage were conducted on 20 mm (radial length) segments derived from cores and discs 
extracted from selected trees across the southern pine plantation estates of Queensland and 
New South Wales. Permeability test samples were cut from discs from destructively sampled 
trees representing a range of taxa, ages and sites across sub-tropical southern Queensland and 
northern New South Wales. The details about each component of the wood value platform are 
presented in Appendix 2.  This Appendix includes information about the tree coring, wood 
discs collected, cambial age referencing of the cores; measurement of the MOE of the cores 
using ultrasound and measurement of wood density, shrinkage and extractives.  

6.2 Static bending – the reference method for board MOE  
Board static bending tests were performed using a testing method in accordance with AS/NZS 
4063.1:2010. The position of the board to be tested was randomly selected. From this MOE 
was calculated.  
 
The load for the reference testing was applied and measured with a Shimadzu universal 
testing machine. In the middle of the span the deflection was digitally imaged. The bending 
test span was 1,620 mm with load applied at four points and the span-to-depth ratio was 18:1. 
The load deflection curve was measured up to 1.6 kN for all specimens. The Modulus of 
Elasticity was determined from the slope of the linear relationship between the applied load 
and the resulting deflection. 

6.3 Stiffness evaluation technologies  
This component of the study compared several technologies: time of flight (ToF) acoustics 
using the Director ST300 (Fibre-gen, Christchurch, New Zealand), resonance acoustics with 
the HM200 (Fibre-gen, Christchurch, New Zealand) and BING (CIRAD, France), micro-drill 
torque resistance using the IML Resistograph PD-400 (IML, United States of America) and 
transverse increment cores with the aim of developing cost-effective wood performance 
screening systems to allow the characterisation of the southern pine resource for wood 
properties and value. As discussed earlier, the key wood property that determines southern 
pine timber value is stiffness or Modulus of Elasticity (MOE).  Southern pines typically have 
higher MOE values than radiata pine, which gives southern pine timber a higher structural 
grade for the same dimensions.  Understanding the MOE variation using simple tools will 
allow growers to better manage their plantation estate and allow processors to optimise 
settings in the mill to maximise recovery of the highest quality product. 
 
The different technologies used to measure MOE have to be analysed from a metrological 
(the science of measurement) point of view. Metrology is used across many industries to 
determine the accuracy, precision and bias of measurement. We are aware that we did not 
have the time and resources to perform a full metrological analysis on all of the equipment, 
however we have enough data to correctly assess each method (e.g. we did repeatability and 
operator effect studies and within log variation assessment on the ST300, see Appendix 2). 
 
The key attributes and outputs for each technology are summarised in Table 1. 
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Table 1 Key attributes and outputs for stiffness evaluation technologies. 
 
Tools Technology Output/s 
ST300 stress wave 

velocity  
stress wave velocity of outer wood of trees, MOE 
can be predicted if density is known or estimated  

IML 
Resistograph 

resistance of 
drilling (torque) 
along a radius 

resistance to drilling along a radius which can be 
used to predict MOE and density following a 
calibration process based on HM200 
measurements on logs as the reference 
measurement 

BING resonance 
frequency 

provides a dynamic MOE based on frequency 
and density measurements (if density is known, 
measured separately or estimated) – 
measurement can be performed on logs, boards 
and veneer 

HM200 resonance 
frequency 

provides a velocity (different from the velocity 
obtained with ST300) from the fundamental 
longitudinal resonance frequency – measurement 
can only be performed on logs 

Wood quality 
platform 
-  ultrasound 

ultrasound time of 
flight 
density 
position on the 
radius and cambial 
age 
resin content 
shrinkage 

the key measurement is the ultrasound (US) 
MOE based on us time of flight and density 
measurements on 20 mm segments taken along 
the radius (core) used to re-construct MOE for 
logs and boards 

 
Additional information including a brief review of the literature and background information 
describing how each technology works is provided in Appendices 2-6 (section 14) and in 
Figure 6.  

6.4 Accuracy and precision 
This whole study is about the accuracy and precision of the tools used to measure or predict 
wood quality. Accuracy refers to the closeness of a measured value to a standard or known 
value. For example, if you obtain a weight measurement of 3.2 kg for a given substance, but 
the actual or known weight is 10.0 kg, then your measurement is not accurate. In this case, 
your measurement is not close to the known value. 
 
Precision refers to the closeness of two or more measurements to each other. Using the 
example above, if you weigh a given substance five times, and get 3.2 kg each time, then your 
measurement is very precise. Precision is independent of accuracy. You can be very precise 
but inaccurate, as described above. You can also be accurate but imprecise. 
 
In other words, accuracy describes the difference between the measurement and the part's 
actual value, while precision describes the variation you see when you measure the same part 
repeatedly with the same device (see Figure 7). 
 
A measurement system is considered valid if it is both accurate and precise. 
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Figure 7:  Definition of precision and accuracy 

6.5 Sampling strategy 
Sampling was undertaken across plots of the southern pine estate to give an initial 
characterisation of the resource. Destructive sampling was undertaken in three plots allowing 
accurate reporting of the MOE variation in trees. 

6.5.1 Measurements of field plots 
Field measures, assessments and coring were undertaken from three sources: existing growth 
plots stratifying the southern pine resources in Queensland, new growth plots established by 
project staff in New South Wales and two genotype × spacing trials (also called plots for 
convenience in this report).  Five plantation nodes across Queensland and New South Wales 
were sampled (Figure 8). Within each plot the range of size classes were also stratified to 
capture information about the full range of logs available within the plots. We focussed the 
project to the three major southern pine taxa (PCH = P. caribaea var. hondurensis, PEE = 
Pinus elliottii var. elliottii and hybrid pine (PEE × PCH, both F1 and F2 hybrids) across age 
ranges: thinning age (15 to 20 years old) and harvest age (25-36 years). One plot of loblolly 
pine (LBP = P. taeda) was included to allow assessment and comparison with previous 
studies. Full details about what was measured and sampled in each plot is presented in 
Appendix 1. 
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Figure 8. The five southern pine plantation nodes (outlined in red) included in the resource 
characterisation project. 

6.5.2 Destructive sampling 
Several of the project objectives required intensive data collection from destructive sample 
trees. For example, the aims of the project included predicting whole log value from 
assessments on breast height increment cores and developing 3-dimensional (3D) 
visualisation models for virtual processing; and to evaluate the value of the data collected by 
the ST300 and IML Resistograph. These activities required collection of data from a wide 
range of locations within the stem and from batches of logs from three different sites (detailed 
in Appendix 1). In addition to the standard breast height increment core from the standing 
stem, each destructively sampled tree provided four transverse discs from different heights in 
the tree, a sawlog and two peeler billets (Figure 9).  
 

Wongi 

Tuan - Toolara 

Beerburrum 
 

Yabbra 

Whiporie 

Southern pine 
nodes sampled 
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Figure 9. Sacrificial tree merchandising template. The butt of the log is towards the left in the diagram. 
Note: the discs were sub-sampled to provide ‘square’ cores and radial Resistograph traces as depicted in Figure 10. 

 
The four transverse discs were sub-sampled to provide diametrical planks for wood value 
platform processing providing pseudo core samples for dynamic stiffness, density and 
shrinkage tests from four heights up the tree. These specimens underwent identical 
measurement processing to the increment cores described in Appendix 2. In addition, a radial 
Resistograph trace was captured from below the core position along the same axis, but only 
for one radius, as depicted in Figure 10. 
 

 
Figure 10. Disc treatment: diametrical strip for wood value platform processing (top) and Resistograph 
trace (below). 
 
The 3.9 m sawlogs were weighed, measured and green stiffness properties were determined 
using BING and HM200 (both resonance acoustic tools). Details of these technologies are 
provided in Appendices 4 and 5. 
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The 3.9 m logs were sawn and dried in accordance with industry recommendations for 
nominal structural framing dimensions. Full length boards were also tested using the BING 
equipment to provide stiffness data (MOE) and measured for distortion (twist, spring and 
bow), then sub-sampled for static bending (Modulus of Elasticity MOE; Figure 11) as briefly 
described in section 6.2 and more fully described in Appendix 7.  
 

 
Figure 11. Static bending testing for MOE from a sub-sample cut from a 3.9 m board. 
 
The 1.2 m peeler billets were also weighed, measured and tested with BING equipment, then 
processed using a spindle-less lathe to produce 3 mm veneer ribbons. The entire veneer sheet 
was photographed over a light table to provide data for the log visualisation components of 
the project (see section 8.1), then clipped to provide 100 mm test strips at approximately 1.0 
m intervals for dynamic stiffness, density and shrinkage measurements.  
 
Measurements of the veneer strip wood properties and characteristics were undertaken using 
similar methods to those used on the core segments. The 100 × 1,200 mm veneer strips were 
weighed and measured then tested using the BING module for wood stiffness (see Figure 128 
14.5). They were then docked to 100 × 100 mm for the shrinkage testing, using the digital 
scanning and image analysis methods described section 14.2.7. 
 
The overall project sample and measurement flow is shown in Figure 12. The performance of 
the southern pine resource is affected by factors such as soil, rainfall, temperature, genetics 
that are listed in the top row of Figure 12. Sampling was based on site, taxa and age class with 
the resource being sampled non-destructively (Standing tree measurements) and destructively 
(Sacrificial tree measurements). Ninety three plots were assessed with ST300, 83 plots were 
assessed by Resistograph and 54 plots were assessed through coring and wood value platform. 
For sacrificial tree measurement, the full stems were cut to obtain 2 peeler billets, 1 sawlog 
and 4 discs, as highlighted in Figure 12.  
 
 

 



 

22 
 

 

Figure 12. Overview of the project samples and measurements flow. The yellow filled boxes are the 
measurements. 
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6.6 Spatial and time referencing of wood  
Each cell of wood can be referenced according to its spatial (location within a tree) and time 
locus (age). 
 
The wood cells can be referenced by the age of the tree from germination, whereby each year 
the apical meristem produces a new shoot which regularly increases the height of the tree. 
Adjacent to the apical meristem, which produces the pith, the vascular cambium is formed. At 
this point of time it starts to produce new cells of wood which leads to the radial expansion of 
the tree. The new wood cells can therefore be referenced by the age of the apical meristem 
that has produced the new pith (apical age) and the age of the vascular cambium that has 
produced the observed wood cells (cambial age). When annual growth rings are formed, each 
ring encompasses a year of growth of vascular cambium, which is one year of cambial age 
growth. Figure 13 provides a schematic representation of the different ages of an element of 
wood. 
 

 
Figure 13. The different wood ‘ages’ for any location within a stem. 

Once a cell has been produced by the cambium, this cell is situated at a certain distance from 
the ground (height) and from the pith (radius). Height and radius characterize a spatial 
reference of that wood cell. The third spatial reference of given wood cells is from either its 
circumferential position or its cardinal position relative to the pith. In this project we assume 
that the wood formed at a given cambial age has the same properties whatever its 
position around the circumference or cardinal position. 

To further illustrate the difference between radial position and cambial age, Figure 14 
displays two cores sampled in the same plot from a small and a larger tree. The cambial age 
scale is the same for these two trees since they were planted at the same time and they have 
grown during the same period. Noticeably, the radial position of a portion of wood of the 
same cambial age is significantly different between these two trees.  
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Figure 14. Comparison of cambial and radial position scales from two trees sampled in the the same plot. 
 
Indeed, the reference scales described above are used to describe the internal pattern of 
variation. They provide useful approaches to analyse the performance of a stand from 
different points of view or with distinctive objectives. 
 
On one hand apical and cambial age provide regular scales with fixed intervals (e.g. one 
year) for counting and ordering the growth. All the trees planted at the same time follow the 
same time scale independently of the geometric (height and diameter) growth. As this scale is 
not directly related to the quantity of wood formed, it represents a qualitative metric of a 
given element of wood. 
 
On the other hand, height and radial positions provide the actual spatial location of an 
element of wood in each individual tree. It relates to the actual geometry of the stem which 
will be processed. As such it links the geometry of any products to the quantity of wood 
taken from the stem. The relationship between age and geometry is embodied in growth 
curves. 

6.7 Analysis strategy and data reconstruction approach 
In this section, we explain the basic principles and the techniques used to model and 
reconstruct the performances of wood within and between trees. 

6.7.1 Weighted average of cambial age 
Our data is directly measured on the segment data as this provides the most fine-grained 
information on the variation of wood properties within the tree. We have utilised the ring 
markings recorded for each of these cores to account for the different contributions of cambial 
age to the 20 mm segments. Figure 15 shows an example of a square core segment with ring 
markings. 
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Figure 15. Square core segment diagram showing different proportions of each ring.  

To calculate a more accurate average cambial age for each segment, we have used a volume 
averaging approach where the proportion of each growth ring cambial age comprising the 20 
mm segment is calculated. Let the volume corresponding to cambial age 𝑖𝑖  be 𝑉𝑉𝑖𝑖 and the total 
volume of the segment be 𝑉𝑉𝑇𝑇. The proportion by volume for ring 𝑖𝑖 is then 𝜀𝜀𝑖𝑖 = 𝑉𝑉𝑖𝑖

𝑉𝑉𝑇𝑇
. Then, the 

average cambial age for the segment is given by:  

� ca𝑖𝑖𝜀𝜀𝑖𝑖

𝑛𝑛

𝑖𝑖=1

, 
(1) 

where ca𝑖𝑖  is the cambial age of ring 𝑖𝑖. This gives a new average cambial age for the segment, 
and these new data were used to model the variation in wood properties with cambial age. 
Through the study we use this weighted average cambial age. 

6.7.2 Sigmoidal shape fitting 

As indicated earlier, within each tree, the most significant variation of properties, such as 
MOE and density, are found along the radial axis compared to lesser variations in the 
longitudinal direction and assumed negligible variation in tangential direction (around the 
circumference of the tree). In this section, we present the method to compress the dataset and 
model the radial variation of MOE within a tree and between trees. 

Within-tree radial variation (pith to bark) of wood characteristics was described by Larson 
(1967, cited by Zobel and van Buijtenen 1989), as being very large and more variable than 
between trees growing on the same or on different sites. Several equations have been reported 
in previous studies to describe ontogenetic variation for tree characteristics (developmental 
history of a tree), largely based on the best fit rather than on clear biological mechanisms 
(e.g., Koch 1972; Downes et al., 1997; Zobel and Sprague 1998). On the other hand, West et 
al. (2001) derived a general quantitative model based on fundamental principles for the 
allocation of metabolic energy between the maintenance of existing tissue and the production 
of new biomass. They predicted the parameters governing growth curves from basic cellular 
properties and derived a universal family of curves that describes the growth of many species. 
These curves represent a classical S shape curve or sigmoidal shape. The model provides the 
basis for deriving allometric relationships for growth rates and time. Specific properties 
related to biomass increase, such as tree density or stiffness, follow the same patterns. Indeed, 
the specific wood density is a simple measure of the total dry mass per unit volume of wood. 
It is also related to basic wood mechanical properties such as MOE (Kollmann and Côté, 
1968; Koch, 1972). While not necessarily recognised, in most experimental studies, wood 
mechanical property trajectories have the characteristic sigmoidal shape that is observed 
empirically (e.g., Zobel and Van Buijtenen 1989; Zobel and Sprague 1998). Bailleres et al. 
(2005) reported the use of sigmoidal profiles as an effective method to describe some select 
key wood properties in planted Eucalyptus species. 
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To model this variation, we accept that wood properties vary with cambial age or radial 
position according to a five-parameter logistic (5PL) model which represents a family of 
sigmoidal curves. This type of model is widely used in biological literature, and exhibits rapid 
initial growth (increase) before approaching a plateau. It is commonly shown that wood 
properties such as density and MOE follow this type of pattern, due to normal plant 
physiology and wood formation processes. The five-parameter logistic model used in this 
study for MOE is given by 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) = 𝐴𝐴 +  
𝐵𝐵 − 𝐴𝐴

�1 + �𝑥𝑥𝐶𝐶�
𝐷𝐷
�
𝐸𝐸 .  

(2) 

 
Here, 𝑥𝑥 is weighted average cambial age (discussed in 6.7.1) or radial position for the 
segment, A is the asymptotic maximum, B is the asymptotic minimum, C is the transition 
point midway between A and B (when E=1), D is the slope factor which refers to the 
steepness of the curve, and E is the asymmetry factor. 
 
We have utilised an orthogonal distance regression (ODR) algorithm (Boggs and Rogers, 
1990) to obtain the best fit of the 5PL function to the measured data. ODR is preferred over 
standard regression techniques when there may be error in both the measured property and 
error in the independent variable (cambial age in this case) (Boggs and Rogers, 1990). Figure 
16 demonstrates ODR, where 𝛿𝛿𝑖𝑖 and 𝜖𝜖𝑖𝑖 are the errors in the independent and dependent 
variables respectively, and 𝑟𝑟𝑖𝑖 is the orthogonal distance between data point 𝑖𝑖 and the fitted 
curve. 
 

 
Figure 16. Representation of orthogonal distance regression, where the orthogonal distance, 𝒓𝒓𝒊𝒊, between 
the data point and the curve is minimised. 
 
An example of the fitted 5PL for MOE is given in Figure 17, where the orthogonal distance 
between the curve and the data points is minimised. A bounded minimisation scheme was 
used, allowing us to apply bounds on the values of the function parameters. Each curve 
represents the fitted MOE at a single apical age of the tree. Note that this function gives a 
value of the MOE for a given cambial age only, at the given apical age. The sigmoid fitted 
between MOE and cambial age is defined as ‘cambial age sigmoid’ in this report. 
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Figure 17. Fitted five-parameter logistic functions to the four square core’s segment data for Tree 3.  

The five parameter logistic function (sigmoid) in equation (2) can also be fitted between MOE 
and segment radial position for a single core. The sigmoid fitted between MOE and radius is 
defined as ‘radial sigmoid’ in this report. Figure 18 shows examples of such radial sigmoids 
for two cores. As discussed earlier, the MOE increases from pith towards bark and the 
sigmoid function we used here can accurately describe this variation. 

 

 
 

Figure 18. Example of radial sigmoids for two cores. 

6.7.3 Intrinsic performance through time scale fitting 

The radii of trees in a plot/coupe/compartment vary depending on inter-tree competition, 
variation in genetic origin and microsite variation. Therefore, the representation of MOE 
variation with the radius is not practical, as the change in MOE, i.e. trajectory of the curves 
will follow a different pattern depending on the size of the tree. In other words a given MOE 
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will be observed at a different radial position for different size trees (see section 6.6 and 
Figure 14). 

Since all the trees in a stand have the same age span, a characteristic curve of the stand can 
be obtained by fitting the weighted average cambial age calculated for each segment and the 
MOE of the segments. An example of the fitted five parameter logistic function (5PL) for a 
plot (15 trees) is shown in Figure 19. The MOE increases with cambial age through the 
juvenile phase of growth, with wood of higher cambial age towards the bark generally 
having higher MOE, though an asymptote is often reached and the gradient flattens at higher 
cambial ages (the mature phase), in the case of plot 8 (Figure 19) at approximately 18 years 
old. Given that factors such as genetics, soil and environment can be considered the same in a 
homogeneous plot, we assume that this 5PL curve fitting obtained from sampled trees in a 
single plot represents all the trees on the stand of the same genetic material growing in similar 
environmental conditions. Under these conditions, this type of cambial age sigmoid is thus 
representative of all the trees in a plot or a coupe and is independent of silvicultural regime. 
It can be then considered as a “fingerprint” of the performance of the stand. 

 
Figure 19.  Example of a 5PL sigmoid fitting for a plot, the ‘fingerprint’ graph (15 trees × 2 cores, 453 
MOE radial measurements on 20 mm segments).  

The validation (spacing) trial with five stockings rates from 200 to 1,000 stem/ha illustrates 
and consolidates this postulate. Figure 20 shows the MOE variation with cambial age (a) and 
radius or distance from pith (b) in the validation plot with same genetic material but with 
different stocking rates. The solid lines represent the 5PL sigmoid curves fitted for a specific 
stocking rate. 

The MOE variation with radius shows that the trees in the higher stocking rates (666 and 
1,000 spha) have smaller diameters at breast height (DBH) with maximum diameters around 
100 mm (Figure 20b). The maximum MOE of these trees occurs at this diameter. The trees in 
the lower stocking rates of 200 and 333 spha have diameters over 200 mm and maximum 
MOE occurs at the maximum diameter (Figure 20b). Therefore, the MOE of all the trees at 
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the site cannot be characterised as a function of radius. Conversely, each tree from the same 
genetic material planted in the same environment, displays a performance (here MOE) at each 
cambial age (CA) (Figure 20a). 

The sigmoid fitted for the MOE vs radius data shows greater spread (Figure 20b), i.e. the 
vertical distance between the sigmoids is higher. For example, the grey and red sigmoids 
expressed in radius versus MOE (graph b) are wide apart whereas, remarkably, the same 
stocking rates represented through MOE vs cambial age display similar sigmoidal trajectories 
and are closely aligned irrespective of spacing (graph a). Consequently, the MOE vs CA 
sigmoids can be considered as analogous for all trees in this trial. Spacing and microsite 
variation do not impact significantly the overall shape of the sigmoids. This observation 
provides a solid ground for considering the cambial age sigmoid at the plot/coupe or trial 
level as a ‘fingerprint’ since it accurately represents all the trees in a plot/coupe or trial 
planted independently of the growing pattern.  
 
 

 
Figure 20. MOE variation with (a) cambial age and (b) radial distance from pith.  
 
The fitted 5PL between MOE vs CA (fingerprint curve) can be used to extract some useful 
information about the intrinsic quality of a stand. For example, the MOE of the wood 
produced at different ages of the tree (e.g. the MOE at 5 years, 10 years), age at which the 
trees start producing quality wood (e.g. 10,000 MPa), independently of the dimensional 
growth pattern for given genetic material and environment. The results obtained using this 
fingerprint curve are discussed in section 7.1.3.1. 
 



 

30 
 

6.7.4 Characteristic performance values through sigmoid integration 
6.7.4.1 Radial sigmoid method 

This section describes the methods applied to extract quantitative characteristics values such 
as the quantity of wood for a given level of performance (e.g. above 10,000 MPa) or the 
average MOE for a given age interval. 

The average MOE of a log section can be assessed by double integration of the sigmoid curve 
on the full radius of the log and its circumference (shell integration) as shown in Figure 21 
and through the following equation: 

𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
1
𝜋𝜋𝑅𝑅2

 � 𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟) 𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑
2𝜋𝜋  𝑅𝑅

0  0

 (3) 

 

 

Figure 21. Shell integration from radial sigmoid over log section (2D) 

The value obtained by this method, defined in this report as the integral average MOE on 
the radius, is directly compared to the MOE measured by resonance method (BING in section 
14.5). 

In order to extract an average MOE of a given area of wood a similar approach was used by 
applying a definite integration. The average MOE for the ring area between ring 𝑖𝑖 and 𝑖𝑖 + 1 
position was obtained by using the following equation: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  
1

𝜋𝜋𝑟𝑟𝑖𝑖+12 − 𝜋𝜋𝑟𝑟𝑖𝑖2
 � 𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟) 𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑

2𝜋𝜋  𝑟𝑟𝑖𝑖+1

0  𝑟𝑟𝑖𝑖

 
(4) 
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6.7.4.2 Cambial sigmoid method 

The fingerprint function at the plot level (5PL function MOE vs cambial age) provides the 
ability to extract useful qualitative characteristics independently of the growth of the 
individual trees. The integration of this function does not provide a structural capacity 
according to a quantity of wood but instead provides an average MOE over time as the 
cambium ages (ontogenetic effect). It expresses the average MOE related to a given period 
of growth, arising from the cambial activity, independent of the quantity of wood 
formed. As such it is an indicator of the potential performance irrespective of growth 
patterns in diameter and height. 

6.7.5 Product performance reconstruction methods 

The processors convert logs (larger volumes of wood) into boards (smaller volumes of wood) 
in a sawmill. The method to extract the MOE from these smaller volumes is to reconstruct 
them from the radial sigmoid curves (1D) by revolving these curves around the pith for a 2D 
approach (see section 6.7.4.1 above), and “extruding” or interpolating on height for 3D 
approach (see Figure 22). 

 

Figure 22. Shell integration from radial sigmoid over entire log (3D) 

From these spatial distributions of MOE (maps) on the cross section of log or the entire log 
volume, a mesh (grid) is generated with each node having spatial coordinates and a MOE. 
The next step is to isolate a board sections or volume from these maps (virtual board) using a 
conventional sawing pattern and calculate 2D (Figure 23) or 3D (Figure 24) average MOE. 
The 3D reconstruction approach is further explained in section 7.3.2.2. 
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Figure 23. Left picture: actual sawing pattern from a sacrificial plot log. Right picture: virtual sawing 
pattern and MOE map in 2D from the actual log on the right. 

 

Figure 24. Virtual sawing pattern and MOE map in 3D 

A simulation of the standard static bending test can be simulated on the 3D virtual boards 
(Figure 25). 
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Figure 25. Standard 4 points static bending test 

Finally, these MOE based on a reconstruction approach can be compared to actual board 
static bending tests and used to assess the value of the resource through a grading process. 
This is shown and discussed in section 7.3. 

The methods for board MOE prediction from log section (2D) or entire log (3D) is described 
in Figure 26. 

 

Figure 26. Methods for board MOE prediction from log section (2D) or entire log (3D) 
 
When converting a round log into sawn boards from the sawing patterns only a fraction of the 
wood is recovered from the log since the sawing operation converts a conical shape (log) into 
parallelepiped (boards). Figure 27 shows a violin plot the of actual board area percentage 
recovered including a 10 mm saw cut width (kerf). The sawn board area covers approximately 
70% of the area of whole log which corresponds to 84% of the radius of the tree (based on the 
area of a circle = πr2). Therefore, we assume that the percentage of area within 84% radius of 
the log represents the wood available for sawn boards.  
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Figure 27. Actual board area recovered from destructive samples of 68 trees (note: the area includes 
sawcut width). Red dot in the centre is the median.  

 Stiffness or Modulus of Elasticity (MOE) 

MOE is the key factor driving forest value for the southern pine plantations in Australia, 
hence it is the focus of this report. This section reports on the variability within trees, between 
trees and between plots and compares MOE measured or predicted by three technologies 
(ultrasound, ST300 and Resistograph). 

7.1 Variability analysis of MOE  
The measurement of ultrasound MOE (USMOE) from 20 mm segments provided spatial 
distributions of properties along the radius and, in the case of destructive sampling, up the 
tree. First, the variation within a tree (radial and longitudinal) is discussed in section 7.1.1 for 
the destructively sampled trees. Subsequently the variability between trees is explored 
(section 7.1.2) then the variability between plots (section 7.1.3). For comparing plots two new 
approaches have been developed using the cambial age as a reference (a qualitative approach, 
explained in section 6.7.4.2) and based on radial position as the reference (a quantitative 
assessment, explained in section 6.7.4.1). Finally, the USMOE is compared to MOE predicted 
by the ST300 and Resistograph (section 7.1.4). 

7.1.1 Intra-tree variation  
Figure 28 shows that the MOE varies significantly with a steep rise as the distance from the 
pith increases for a single tree at four heights. For this tree, MOE in radial direction varies 
from 3,300 MPa near the pith to almost 12,000 MPa near the bark (range=8,700 MPa).  
 
The slope of the sigmoid also increases with increasing height of the tree. The maximum 
MOE (maximum asymptote of the sigmoid) at each height is however almost the same for all 
heights even though diameter of the tree decreases with height. Therefore, the MOE increases 
sharply with radius at higher positions in the tree, reaching the same plateau or maximum 
with the smaller diameter as we go up the tree. 
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Figure 28. Radial and longitudinal variation of USMOE within a tree (destructively harvested tree 
number 3). 

In addition, the MOE increases slightly at the same radius from the pith of the tree. For 
example, in tree 3 (above), MOE varies from 10,140 MPa to 11,200 MPa at 100 mm radius 
(range = 1,060 MPa) for each core height as we go up the tree.  

Figure 29 shows the variation of MOE at given cambial ages extracted from the sigmoids of 
each core at four different heights of 30 trees from the destructively harvested F2 hybrid 
commercial plantation at Tuan at fixed cambial ages of 5, 10 and 20 years. This highlights 
that the variation up the tree is greater near the pith. For example, at cambial age 5, the 
median MOE of 30 logs varies from 6,000 MPa to 8,000 MPa from height 0.92 m to 2.34 m. 
However, the variation above 2.34 m at cambial age 5 is negligible. The variation up the log 
away from pith (nearer to the bark) of the tree is insignificant, for example, at cambial age 10 
and 20 years, all the trees have MOE of approximately 10,000 MPa and 12,000 MPa 
respectively as shown by the median values in the boxplots.   
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Figure 29. Longitudinal variation of USMOE of 30 destructively sampled trees from a 29 year old 
commercial F2 hybrid plot from Tuan. The centre horizontal line of box is the median. 
 

7.1.2 Variation between trees 
The properties of individual trees from a given plot, planted with the same genetic material 
and a set spacing can vary significantly. Figure 30 shows the variation of measured log MOE 
of 30 trees in a commercial plot. The MOE of logs measured by resonance method (BING) 
varied from 9,000 MPa to 16,000 MPa (range = 7,000 MPa).  
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Figure 30. Variation of log MOE measured by a resonance method (BING) for 30 trees from a 29 year old 
commercial F2 hybrid plot from Tuan planted with the same genetic material. 

The range of USMOE measured on the core segments of these 30 trees is shown in Figure 31. 
The boxplots in Figure 31 are sorted by mean USMOE and the centreline of each box 
represents the median of segment USMOE for the tree.  The maximum MOE of the segments 
varies from 11,000 MPa (for tree 15) to approximately 17,000 MPa (for tree 23) and the 
minimum segment MOE varies from approximately 2,500 MPa (tree 23) to 5,500 MPa (tree 
15). For some trees the variation in segment MOE (i.e. intra tree variation) is large, for 
example in tree 18, USMOE of segments varies from 3,000 to over 16,000 MPa 
(range=13,000 MPa). In contrast, the variation in some trees is small, for example in tree 11, 
USMOE varies from 4,000 to 12,000 MPa (range=8,000 MPa).  

 

 
Figure 31. Variation of segments’ USMOE within for 30 trees from a 29 year old commercial F2 hybrid 
plot at Tuan. The centre horizontal line of box is the median. 
 



 

38 
 

Figure 32 shows the variation of segment MOE of some trees obtained from two different 
plots based on the average USMOE (plot 32 and 210) having similar genetic material (F2) and 
at same age (18 years old). In these plots individual trees display a wide range of segment 
USMOE values despite the performance of the plot based on mean results.   
 

 
Figure 32. Intra-tree variation of segments’ USMOE for plot 32 and 210, planted with F2 hybrids. The 
segment MOE are restricted to below 18 yrs for comparison purposes. The centre horizontal line of each 
box is the median. 
 

7.1.3 Variation between plots 
This section examines the variation of USMOE at the plot level and assessment of the 
potential performance of the plots independently of the growth pattern. The fitted 5PL 
function between USMOE vs cambial age for a plot graph was used for qualitative assessment 
and the fitted 5PL function between MOE vs radius for individual trees was used for 
quantitative assessment.   
 

7.1.3.1 Qualitative assessment of plots (2D approach) 
In this study qualitative assessment indicates that volume or size is not considered in the 
analysis. The focus is on wood intrinsic performance. The approach involved simplification 
and regularisation methods (section 6.7) to model the average wood properties at the plot 
level using individual tree information. 
 
This section discusses the usefulness of the fingerprint curve through some examples. Figure 
33 shows fingerprint sigmoids for plots 1, 209 and 59, showing the variation of MOE with 
cambial age of the sampled trees. These three sigmoids (fingerprint curves) display the overall 
performance of the plots. Plot 1 (CA 29) shows a typical radial pattern of a gradual increase 
of MOE with age, levelling out at approximately age 30. Plot 209 (CA 20) has a lower slope 
and the MOE never attains 10,000 MPa, which implies these trees will not provide any 
structural boards having MOE 10,000 MPa or more. On the other hand, in plot 59, which is 
three years younger (CA 17) than Plot 209, the sigmoid curve has sharply increased from 
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cambial age 5 to 10 and the MOE exceeds 10,000 MPa during this time. Wood produced by 
these trees beyond age 10 should be structural grade, as it achieves 10,000 MPa or better.   
 

 
 
Figure 33. MOE vs CA sigmoid of plots to provide ‘fingerprint’ of the quality of the plots. 

One of the tangible benefits of the plot fingerprint curves are that they can be used to calculate 
the average intrinsic MOE of the plots at any age independently of the growth patterns of the 
trees. The bar graph Figure 34 shows the average plot MOE at 17 years of age for all 54 plots 
measured for USMOE. The graph clearly displays considerable variation between the plots, 
the MOE varying from 6,200 MPa to over 13,000 MPa (range=6,800 MPa). This approach 
offers an assessment of the intrinsic plot quality or performance allowing comparison or 
ranking of plots, coupes and stands. 

 

 
Figure 34. Average plot MOE at 17 years age calculated from cambial sigmoid (i.e. ‘fingerprint’ curve) 
per plot. Plot number is sorted by its USMOE value (low to high).  

The same fingerprint curve can also be used to find the age at which the plots start producing 
any specified wood quality. Figure 35 shows the cambial age of the plots when the plot 
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reaches a threshold of 10,000 MPa. Some plots, e.g. plot 61, 288, 27 and 72, achieve an 
average MOE of 10,000 MPa in 6-8 years, whereas two plots only reach 10,000 MPa between 
ages 35-40 years (plot 3 and 67). The six plots highlighted by the yellow bar with dashed lines 
do not attain a MOE of 10,000 MPa. 

 

 
Figure 35. Cambial age of plot when the plot on average reached an average MOE of 10,000 MPa.  
Note: average MOE was calculated by fitting a sigmoid curve through the data for all segments in a plot.  
 
In conclusion, the plot fingerprint (sigmoid of MOE vs CA) can be used to calculate: 

• MOE at any age 
• average MOE of any age range such as average MOE between 0-5 years, 17-28 years 
• average MOE at any given age, and 
• the age trees in a plot will reach any given MOE.   

 
7.1.3.2 Quantitative assessment of plots (2D approach) 

Unlike the qualitative assessment in the previous section, the quantitative assessment 
approach calculates the actual average MOE of an individual log since the size of the log is 
considered for the MOE calculation. Thus, the variation of individual logs MOE in a plot can 
be analysed. Figure 36 shows the variation of log MOE calculated from radial sigmoids from 
individual trees for 54 plots considering the full diameter of the logs. 
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Figure 36.  Average plot MOE variation from radial sigmoids of each log. Centre horizontal line of box is 
the median.  
 
The radial sigmoid first shown (Figure 18) can also be used to calculate the cross-sectional 
area of wood having a given range of MOE values. For example, Figure 37 shows the 
quantity (percentage area) of wood having MOE of 10,000 MPa or more for each plot 
obtained from the individual tree radial sigmoids. The box plots are presented in ascending 
order of plot for the mean area percentage of MOE of 10,000 or more MPa. Plots 209 and 210 
did not produce any wood having a MOE value of 10,000 MPa or more. Therefore, these 
plots are unlikely to produce any structural boards of 10,000 MPa. We note some 
considerable variations of this percentage between trees within each plot. For example, plot 
63 and plot 16 display a variation from 0 to nearly 100%, indicating some trees will produce 
no 10,000 MPa boards and others will produce a lot of 10,000 MPa boards. 
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Figure 37. Quantity (% area) of wood having an MOE value of 10,000 MPa or more. Boxplots sorted by 
mean; middle line of the box = median value of cores per plot. 

The boards’ cross sections are rectangular whereas the logs’ section shape is almost circular. 
This difference in shape generates off-cuts close to the circumference of the log, consequently 
some high MOE wood is discarded near the periphery. Depending on the diameter and the 
overlaying sawing pattern of the log, the quantity of off-cuts can vary significantly.  

As a rule, the boards are sawn within 84% of the maximum radius of the log (see section 
6.7.5). This approach can be used to approximate the percentage of boards having a MOE of 
10,000 MPa or more. Figure 38 shows the percentage area of wood having MOE above 
10,000 MPa within 84% of the radius of the log. Comparatively with the calculation 
performed on the full log, the restriction of the surface to 84% has a dramatic effect on the 
recovery, showing a decrease of about 30 to 40% in recovery of 10,000 MPa and above. 
Interestingly, the rank of some of the plots is affected as well indicating that some plots are 
more affected than other plots by the radius restriction. This is mainly due to the size of the 
log and the radial sigmoid pattern. 
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Figure 38. Percentage area of wood having an MOE value of 10,000 MPa, within 84% of inner radius of 
log. Box plots sorted by mean: The centre horizontal blue line of each box is the median. 
  

7.1.4 Comparison of USMOE, ST300MOE and ResiMOE  

When the data from all plots are combined, it is possible to assess if the various technologies 
are measuring or predicting similar levels of information. In the violin plots in Figure 39, 
where the width (along the x-axis of each violin plot indicates the frequency and the y-axis 
indicates the range of MOE values from each technology), the USMOE (integral average) has 
a median just above 10,000 MPa and a range from 5,000 to 16,613 MPa.  The ST300 has a 
much wider range of predicted MOE values from 7,535 to 27,573 MPa and a median 19,000 
MPa. The ResiMOE has a range from 5,300 to 21,500 MPa and a median MOE of 
approximately 12,000 MPa. The different shapes and MOE ranges of the technologies 
indicate they are not capturing the same information. To calculate the MOE in each of these 
instances density is either measure (e.g. USMOE), assumed (e.g. ST300MOE where green 
density is assumed to be 1000kg/m3) or predicted (ResiMOE). 
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Figure 39. Variation in MOE across all plots sampled by the three technologies. Red dot = the median. 
 
This is further explored using individual plots sorted by increasing USMOE (Figure 40). All 
three technologies USMOE, ST300MOE and ResiMOE have similar overall trends, but there 
are clear differences. 
The ST300 method is based on measurement of the outer and stiffer log wood, therefore the 
ST300 MOE over-predicts the actual average MOE of the logs. All plots sampled with the 
ST300 are shown in Appendix 9 (see Figure 131). Hence most of the predicted ST300MOE 
plot values are above 10,000 MPa. This over-prediction of MOE by the ST300 is well known. 
Each plot sampled with the ST300 also has a wider range of ST300MOE values as indicated 
by the longer violin plot. The shape of the ST300MOE boxplot differs notably from the shape 
of the MOE provided by the two other technologies. 
 
Despite the calibration applied on the Resistograph traces being developed from radiata pine 
populations, the overall shape and level of ResiMOE predicted is relatively close to the 
USMOE violin plot. However variation in ResiMOE, particularly the plots that have low 
ResiMOE predictions (e.g. Plots 622, 26 and 35) when compared to USMOE (Figure 40) 
appears to be random. They are not associated with taxon, age or locational effects. This 
could be due to trees in these plots being outside the calibration population set for the 
Resistograph. This would mean that the training set needs to be extended to include trees with 
new Resistograph trace characteristics to improve the calibration prediction. Moreover, the 
development of the calibration could be reviewed to take into account specific characteristics 
observed in the traces. This implies new reference measurements (HM200) will need to be 
completed for these trees (they must be destructively sampled). All plots sampled with the 
Resistograph are shown in Appendix 9 (see Figure 132).  
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Figure 40. Comparison of the plot MOE predicted by the three technologies. In each chart, plots are 
ordered by USMOE ranking from low to high (top chart). Dashed line indicates 10,000 MPa. 
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7.1.5 Key points from the quantitative assessment and comparison of tools 
The cambial age sigmoid or fingerprint curve allows the grower and processor to determine 
when or if plots, compartments or stands will produce high quality wood independently of the 
size growth of the trees. 
The radial sigmoid curve can be used to determine how much of a specific wood MOE grade 
has been produced from a given location inside a tree. As the ST300 and Resistograph 
currently only give a single measurement or prediction per log, and this number is based on 
calibrations and approximations, they cannot be used to accurately predict the value of 
different parts of the plantation estate, but they may be useful for general ranking of stands, 
especially at the extremes. 
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7.2 Log MOE 
In this section, the log MOE obtained from three different techniques (i.e. USMOE, ST300, 
and ResiMOE) are compared with reference log MOE obtained by the resonance method 
(BING). The log MOE (log dynamic MOE) from 68 destructively sampled trees were used 
for the comparison. (Note Bing and HM200 resonance acoustic methods were well correlated 
R2 = 0.91). 
 
We have evaluated linear regression models by regressing the predicted values with observed 
values to compare the slope and intercept against a 1:1 (i.e. y=x) line.  The slope of regression 
line with zero intercept (y=mx), means the change in actual MOE is directly proportional to 
the predicted MOE. For ideal prediction, the slope of regression line, m, with intercept zero is 
one (1, i.e. y=x). The slope closer to one (1) means the bias in the prediction is minimal. This 
evaluation method is used throughout the report. 

7.2.1 Ultrasound MOE (USMOE) 
Calculated MOEs obtained from ultrasound (US) measurement from cores taken at breast 
height were correlated with the reference log MOE (BING). Predicted USMOE values of the 
logs were calculated using two methods (i) simple arithmetic average of segments’ USMOE 
for each core and (ii) integral (weighted) average of the radial sigmoid from the segments’ 
USMOE for each core. 

7.2.1.1 Arithmetic average of core segment’s MOE 
The simplest method to obtain the average MOE of the log is to calculate the arithmetic 
average of the core segments’ MOE data. This method provides a simple estimate of dynamic 
log MOE (Figure 41). With 𝑅𝑅2 = 0.76  the regression explains 76% of the variation observed 
in the dynamic log MOE (obtained by BING). It under predicts the dynamic log MOE by 
24% (y=1.24x). The relative proportion of the area or volume of the wood represented by 
each segment explains this discrepancy. Indeed, with the arithmetic average, the wood from 
the periphery of the log, with the highest MOE, has the same weight as the wood near the 
pith. In fact, the proportion of wood in a log changes according to the square of the radius. 
Thus, the arithmetic average has the effect of under representing the wood having high MOE. 
In contrast, the next section discusses the integral average method, which considers the 
proportional area of the wood.  
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Figure 41. Regression of measured log MOE and segment arithmetic average of USMOE from the second 
core of the 68 destructively sampled trees.  
 

7.2.1.2 Integral average of segments’ MOE 
In this method, the average log MOE was calculated using the fitted radial sigmoidal curve 
(i.e. MOE vs radius 5PL fitted curve). This radial sigmoid was integrated over the whole 
cross-sectional surface area to take into account the relative proportion of the wood at a given 
value of MOE. In other words, this method of calculation of the MOE of the log considers the 
proportion of wood relative to the log surface or volume corresponding to a given MOE since 
the annular quantity of wood increases with the square of the radius.  
 
Figure 42 shows the correlation of the predicted log MOE using the integral average of 
segments’ MOE and the measured log MOE. The 𝑅𝑅2 = 0.77 for the integral average is 
marginally higher than the prediction made by arithmetic average (𝑅𝑅2 = 0.76).  However, the 
integral average approach significantly improves the prediction capacity since the slope of the 
regression line with an intercept zero is 1.09 (Figure 42). The integral average underestimates 
the actual MOE by 9%.  In contrast, the slope of the correlation using the arithmetic average 
MOE was 1.24 (Figure 41).  
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Figure 42. Regression of measured log MOE against integral average of USMOE radial sigmoid from the 
second core of the 68 destructively sampled trees. 

The graphs above show the trees from both commercial stand and spacing trials. Separate 
correlations for commercial and spacing trials are shown in Figure 43. It shows marginally 
improved correlation between prediction (integral average) and actual values (BING) with R2 
= 0.76 for the commercial stand and R2 = 0.80 for the spacing trial. We note that the variation 
of log MOE in the spacing trial is much higher than in the plot from the commercial stand 
which explains partly the lower coefficient of determination of the latter. The slope for the 
spacing trial is close to 1 (1.04) whereas the slope for the commercial stand is1.15 implying 
that for this plot the integral average MOE under predicts the log dynamic MOE by 15%. 
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Figure 43. Separate correlations of log MOE prediction for commercial stand and the two spacing trials.  

7.2.1.3 Genetics and spacing effects on log MOE 

Figure 44 shows the effect of germplasm and stocking on log MOE. The effect of stocking is 
not very prominent as can be seen from the 68 destructively sampled trees. Instead the trees 
are generally clustering based on their genotypes. The exception to this may be the F2 
seedlings from the thinned commercial stand.  

 
Figure 44. Effect of germplasm and stocking on log MOE for the sacrificial trials. 
 



 

51 
 

Interestingly, we observe that integral average USMOE tends to overestimate log MOE for 
the higher stocking (i.e. small diameter trees). The segment sampling methodology that starts 
to cut the segments sequentially from the bark to the pith may explain this tendency. Often the 
segment close to the pith could not be measured because of defects or undersize (<20 mm). 
Therefore, the segments having lower MOE segment were less represented when the 
reconstruction method was applied on small logs. Consequently, the higher MOE segments 
(outer segments) have higher weight and could explain the overestimation on the smaller log.  

However, a clear effect of germplasm on log MOE was observed. The clone C887 and F2 
hybrid seedlings exhibit the highest quality, C625 has the lowest quality, and the F1 seedlings 
germplasm is intermediate in Figure 44. The effect of germplasm can be established by 
observing the trajectories of the cambial sigmoid curves. In Figure 45, three different 
genotypes grown in the same plot exhibit distinctive MOE patterns relative to cambial age. 
This explains the performance of this material. The longer juvenile phase of clone C625 
clearly undermines its performance. The usefulness of the fingerprint curve approach 
(discussed in section 7.1.3.1) is further confirmed here.  

 
Figure 45. The sigmoid curve of three different genotypes obtained from a spacing trial (plot 622).  

7.2.2 ST300 predicted MOE (ST300MOE) 
ST300MOE was calculated from stress wave velocity and an arbitrarily established density 
through the formula velocity2 ×1,000 kg/m3. When forced through the origin (red line, Figure 
46), the regression line for the 68 destructively sampled trees shows that ST300MOE over-
predicts the dynamic log MOE by 41% (y=59x). The regression explains only 19% of the 
variance of the log MOE measured by resonance acoustics. When the regression is not forced 
through the origin, the level of explained variance increases significantly to 42% however the 
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prediction bias from the regression equation slope increases to 65%. This over prediction is to 
be expected since the ST300 only samples the stiffer outer wood of the trees. 
 

 
Figure 46. The relationship between the ST300MOE and the log MOE measured using a resonance 
acoustic tool for the second core of the 68 destructively sampled trees. The red line is the regression line 
forced through the origin; dotted line is the normal regression line. 
 

7.2.3 Resistograph predicted MOE (ResiMOE) 
As there is no calibration equation for southern pine, the regression line for the ResiMOE was 
predicted using the current settings for the Resistograph which were based on resonance 
method data (from HM200) from over 2,000 radiata pine logs (Downes and Lausberg 2016). 
When forced through the origin (red line) for the 68 destructively sampled trees the slope is 
slightly biased (Figure 47). The regression explains 56% of the variance of the log dynamic 
MOE, the ResiMOE under predicts the log MOE by 9% (y=1.09x). When not forced through 
the origin, the level of variance explained increases to 68% however the bias due to the slope 
also increases inducing an over prediction of ResiMOE by 22%. In the Resistograph study, all 
of clone 625 (one of four genotypes sampled) results fall below the 8,000 MPa log MOE 
value (see blue circle Figure 47). Downes et al. (2017) attributed this to abnormal behaviour 
of this particular clone. In fact the observed discrepancy is due to the calibration process since 
there is nothing atypical with this clone – it simply has low MOE (see section 7.2.1.3). 
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Figure 47. The relationship between the ResiMOE and the log MOE measured using a resonance acoustic 
tool. 

7.2.4 MOE comparison between tools  
Figure 48 provides a comparison of the regressions between predicted and measured MOE 
obtained from three methods: USMOE, ST300MOE and ResiMOE. Overall, the USMOE, 
ResiMOE and ST300MOE explain 78%, 68% and 42% of the variance in dynamic log MOE 
data respectively. This indicates that USMOE is the most precise method. Another important 
observation from this graph is that the slope of the regression lines with intercept zero (the 
solid line, equation format y=mx) are 1.09, 1.09 and 0.59 for USMOE, ResiMOE and 
ST300MOE, respectively. Therefore, the bias in USMOE and ResiMOE is relatively small 
(9%), whereas bias in ST300 is approximately 41% indicating a poor accuracy of this method. 
Although the slopes for USMOE and ResiMOE are similar, ResiMOE explains less of the 
dynamic MOE variation (68%) compared to USMOE (78%).  
 
 
 
 



 
Figure 48. Comparison of log MOE between integral average, ST300 and Resistograph. 
 
 
 
 



7.3 Board MOE 
The boards are the marketable products that are directly linked to the value of the southern 
pine resource. 
 
Boards from the sacrificial plots were sawn according to standard sawing patterns provided 
by Hyne and tested according to the Australian standard four point static bending test. This 
section compares the predicted board MOE reconstructed from USMOE data with static 
bending MOE. The ST300MOE and ResiMOE are not designed to access the local (i.e. 
within tree) MOE variation. As such they are not able to predict the actual board MOE. 
Consequently they are not part of this section. All the boards sawn from the 68 destructively 
sampled trees obtained from the commercial stand and two spacing trials were used for this 
part of the study.  
 
In the first part of this section (Section 7.3.1), the average static bending MOE of the boards 
was calculated for each log. It was then compared with the log MOE calculated from the 
radial sigmoid curves. 
 
In the second part of this section (section 7.3.2), the static bending MOE for each board was 
compared with predicted boards from the local measurement of USMOE using two 
approaches: 
 
1) 2D (2-dimensional) approach using board projections from a disc (explained in section 

6.7.5), and 
2) 3D (3-dimensional) approach which provides the full volumetric reconstruction of the 

board (explained in section 6.7.5). 

7.3.1 Average MOE of the boards per log 

The average static bending MOE of boards obtained from each log from the commercial and 
spacing trials were plotted against i) the log dynamic MOE obtained from BING as a 
reference prediction and ii) USMOE calculated from two different methods. 

Figure 49 shows the regression between measured log dynamic MOE (BING) and average 
boards’ static bending MOE. Although the 𝑅𝑅2 of the correlation is relatively high (0.80), it is 
13% biased as the slope is 0.87. The over prediction is partly due to the sawing patterns 
which discards the outer high stiffness wood of the log, whereas the resonance method 
measured dynamic MOE of the full log. Moreover, this over prediction of the dynamic MOE 
over the static MOE is a well-known phenomenon in solid mechanics. Since wood is a 
viscoelastic material part of the mechanical energy is dissipated in the viscous components of 
wood. The higher the loading speed or the displacement frequency the higher the energy 
dissipated and the higher the measured MOE. The experimental data indicates 45 of the 68 
logs had MOE values over 10,000 MPa, which equates to 66%, whereas only 33% of boards 
obtained from these trees had MOE 10,000 and more MPa. 
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Figure 49. Average board MOE (static bending) vs log BING MOE from the second core of the 68 
destructively sampled trees. 
 

Figure 50 shows the correlation between the average static bending MOE of the boards of 
each log and the integral average USMOE (radial sigmoid) of the same log. Although the 
slope of the regression line with intercept at zero is 1.03, the 𝑅𝑅2 is only 0.44. In the same way 
as above, this observation is due to the difference between the cross section surface of wood 
measured by each method. The integral average calculation considers the whole diameter of 
the logs, however, wood near the bark is discarded during the sawing process. Conversely in 
the lower part of the graph, a group of logs displays a higher average static bending MOE 
than the integral average USMOE this may be due to loss of outer wood from heavy log 
debarking resulted in damage or loss of the outer section of some cores. 

In Figure 51 we examine what occurs when only the inner 84% of the radius is used for the 
calculation of the integral average MOE as explained in section 6.7.5. When the area directly 
associated to the sawing pattern is considered, the correlation improved to 𝑅𝑅2 = 0.77. 
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Figure 50. Weighted average (integral average 100% of radius) with average static bending MOE. 
 
 
 
 

 
 
Figure 51. Weighted average (integral average 84% of radius) with average static bending MOE  
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7.3.2 Individual board MOE prediction  
The prediction of individual board MOE is discussed in this section. The results from three 
different approaches, namely, area average (2D), volume average (3D) and four point 
bending simulation (3D) are presented and discussed. The principles of these three 
approaches were presented in section 6.7.5. 

7.3.2.1 Area average (2D) with sawing pattern approach  
A 5PL sigmoid function between MOE and radius (i.e. “radial 5PL”) was used to calculate 
the board MOE for individual boards (e.g. Figure 18). The shell integration of the radial 5PL 
function followed by surface mapping allowed us to calculate the MOE at any location in the 
log for any section shape. In this 2D approach, first the actual board locations were calculated 
from the actual sawing pattern. Afterward discrete nodes from the map (a node is a point in a 
spatial location) were created on the cross-sectional surface of the board. The 5PL function 
was then used to calculate the MOE at each node. The node MOE is then assigned to a finite 
area created around each node. Finally the average MOE of each board was calculated using 
the calculated MOE of each finite area. The flowchart of predicting 2D area average MOE is 
shown in Figure 26. 
 
Comparisons between predicted MOE and static bending MOE for individual board sawn 
from six selected trees are shown in Figure 52. Two of these trees were from a commercial 
plantations and four from the spacing trials. 
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Figure 52. Comparisons between predicted MOE and static bending MOE for individual boards sawn 
from six trees.  Figures a and b show two trees from commercial stand (tree 8 and 29 respectively), and c, 
d, e and f show four trees from the spacing trials (tree 32, 52, 62 and 69 respectively). 
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Figure 53 shows the correlation between the reconstructed board MOE using the 2D 
approach and static bending MOE for 625 individual boards obtained from the 68 
destructively sampled trees. A good correlation was obtained with 𝑅𝑅2 = 0.53  considering: 

1. The reconstruction was based on USMOE measured on defect free samples. The static 
bending MOE can be significantly affected by the knots and defects present in the 
board. 

2. The relative errors on the measurements of static bending MOE (for example the 11% 
relative error of measurement, see Appendix 7. 

3. The potential errors due to the inaccurate location mapping of sawing pattern of the 
boards. 

Remarkably, the correlation displays only marginal bias i.e. the predicted MOE is 
directly proportional to static bending MOE as the slope of the regression line is 1.02. 
As a consequence this method provides a simple and accurate approach to predict the 
range of board MOE values obtainable from each log. The precision can still be 
improved by introducing a model for knots. 

 
Figure 53. Correlation between measured and predicted MOE for all boards sawn from commercial and 
spacing trial combined. N= 625. 

The efficiency of this method can be further demonstrated by displaying the linear regression 
charts for the commercial plot and spacing trials in Figure 54 and Figure 55. The 2D 
reconstruction is able to explain 50% and 52% variation in board MOE for calibration and 
validation plots respectively, and slopes of 1.06 and 0.99 respectively. The validation plot 
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includes trees from low stocking to very high stockings. The model still predicts the board 
MOE with the same level of accuracy. This stability proves the robustness of the model.  

 
Figure 54. Correlation between measured and predicted MOE for boards sawn from the commercial F2 
hybrid plot 
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Figure 55.Correlation between measured and predicted MOE for boards sawn from the spacing trials. 

Correlations of predicted and static bending MOE for selected trees are shown in Figure 56. 
They further confirm the robustness of the 2D approach. The 𝑅𝑅2 of the correlation is often 
greater than 0.80 and the slope within 10% of the y=x line. However, on some trees the 2D 
reconstruction method displays lower precision and accuracy. The errors are most likely due 
to lower MOE values in the actual bending test due to the presence of knots, error in the 
location mapping of the board or high eccentricity of the pith. 



 

63 
 

  
Figure 56. Correlation between predicted and actual MOE for selected individual trees. 
 
This approach can be applied to investigate the impact of the shape of the radial sigmoid 
curve, sawing patterns and MOE cut-off as shown in Table 2. It exhibits the high impact on 
structural grade recovery of the interactions between these parameters. As an example, for a 
given radial sigmoid curve and cut-off of desired MOE class, the recovery can change by 
40% depending on the sawing pattern. When all the other parameters remain constant, the 
radial sigmoid curve can have a dramatic effect on the recovery. 
 
Table 2. Percentage recovery of wood above 10,000 or 9,000 MPa for three sawing patterns (P1-P3) and 5 
radial sigmoid trajectories taken from sampled trees. Small end log diameter = 290 mm. 
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7.3.2.2 3D sawing pattern approach 
In this section, we outline the development of the mathematical model used to predict the 
wood properties at a board level based entirely on measurements taken from the cores. The 
model of wood properties is based on the segment data collected from the cores (‘square’ 
cores cut from the discs see Figure 9) obtained at four different heights within each 
destructively sampled tree.  
 
A key component of the model development was being able to relate cambial age with radial 
position. To do this, we utilised the core maps recorded for each square core taken from the 
trees in the destructive sampling trials. These core maps show the ring positions on both the 
left and right side of the pith. By developing an algorithm in MATLAB, we were able to read 
the ring locations from the scanned images of the core maps. This gave us direct information 
on the growth of the tree at four different heights, and allowed us to transform between 
cambial age and radius.  
 
Utilising information from the tree ring markings, we were then able to map cambial age and 
apical age back to a radial and height position within each individual tree. This allowed us to 
build a profile of the tree structure, and use as an approximation, piece-wise linear functions 
to connect the rings at each height within the tree. Note that not all rings were present 
throughout the tree, and we assumed a radius of zero for the rings that were no longer 
present. Figure 57 shows an example of the tree profile obtained from tree ring markings. 
Note that the inner-most ring is only present in the bottom core, so we set a value of zero for 
the radius at each subsequent core position. 

 

 
Figure 57. Tree ring profiles based on core measurements (cores from four heights along the stem). The 
first core was taken at approximately 0.7 m. 

The next step was to connect the property between points of measurement up the height of 
the tree. To do this, we used an approach based on radial basis functions (RBFs) (Carr et al., 
2001). RBFs have been used in a wide range of fields, from computer graphics to medical 
imaging (Carr et al., 2001; Carr, et al., 1997). RBFs provide a functional description of the 
data, and hence the surface can be evaluated at any location. They do not require that data 
points be located on a regular grid, allowing for increased flexibility. We used a thin-plate 
spline radial basis function, given by: 



 

65 
 

 
 𝜙𝜙(𝑟𝑟) = 𝑟𝑟2 log(𝑟𝑟), (5) 

 
where 𝑟𝑟 is the distance between a data point and a point on the surface. The surface is then 
given by a linear combination of these RBFs, together with a polynomial term. We 
interpolated between the fitted 5PL functions to obtain a surface describing the variation in 
MOE with cambial age and apical age. Figure 58 shows the measured data points, fitted 
sigmoid curves and the resulting interpolating surface for tree one. Note that we added an 
additional sigmoid between curves two and three (shown in red). This was the average of the 
sigmoids at either end of the sawlog, and included to reduce the overshooting that was 
observed initially when fitting the surface. This allowed us to smoothly connect the sigmoids 
obtained at different heights in the tree, to get an estimate of the property at any cambial age 
and apical age. 

 
Figure 58. MOE surface showing variation with cambial age and apical age.  
 
Using the tree ring profiles, we built a three-dimensional representation of the log. This is 
shown in Figure 59 where the colours represent the calculated MOE from our model. Near 
the centre of the tree we have wood with low MOE values, which increase towards the outer 
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edge. We can also see that there is a gradient of MOE longitudinally along the height of the 
tree, however this variation is much less than the radial variation. 

 
Figure 59. Three-dimensional representation of log based on tree ring profiles. The colour gradient 
indicates low MOE in blue to higher MOE in yellow. 
This three-dimensional representation of the log allows us to perform virtual sawing to 
extract the timber boards, calculate their MOE, and compare this value to the MOE obtained 
from static bending. 
 
To virtually saw boards from the log, we must digitise each individual sawing pattern 
provided for the trees in the calibration and validation trials. To do this, we have 
implemented an image processing algorithm to identify the locations of the board centres 
from the scanned template images. These board centres are loaded into a MATLAB script 
that generates a mesh for each individual board. This script requires information on what 
boards are aligned with each other, their dimensions and orientation. The alignment can be 
seen in Figure 60, where we have two rows of aligned boards (board A1 to A5 and board B1 
to B5), with board A6 being unaligned. The code then optimises their positions by 
minimising the shift of centres, change in dimensions and the difference between the board 
spacing and spacing given the true saw kerf width. The board spacing has been weighted 
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more heavily to ensure an appropriate saw kerf width is obtained. Figure 60 shows the sawing 
pattern and the corresponding digitised board layout for tree one. 
 

 
 
Figure 60. Example of actual sawing pattern and corresponding digitised sawing pattern obtained from 
tree 1. 
 
This layout is then extruded through the length of the sawlog to obtain the digital 
representation of each board, described by discrete (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) coordinates. At each coordinate 
in the board, a value of MOE is obtained through interpolation of the MOE distribution in the 
log. To compare the measured MOE values with those predicted from the virtual boards, we 
use the MOE obtained from static bending. The static bending was performed on a shorter 
test sample, with the length of this test sample being determined by the cross-section 
dimensions of the board. For 96 × 40 mm boards, the test sample is 2 m long, while for the 72 
× 40 mm boards it is 1.5 m. Each of these test samples is taken from the butt or top end, as 
determined by a coin toss.  The virtual boards obtained from tree 1 are shown in Figure 61, 
indicating their geometry and MOE gradient from low (blue) to high (yellow). 
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Figure 61. Virtual boards sawn from the log model. We have accounted for the end that the board was 
taken from for static bending testing. MOE gradient from low (blue) to high (yellow). 

7.3.2.2.1 3D volume average 

To evaluate our reconstructed MOE base on the volume average in comparison to the 
measured MOE, we plotted the measured MOE vs reconstructed MOE (Figure 62) and 
performed a linear regression analysis. Interestingly the correlation between the measured 
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and reconstructed MOE (R2 = 0.53, slope = 1.01) is quite close to the same regression 
obtained from 2D reconstruction display in Figure 53.  

 
 
Figure 62. Correlation between measured and predicted MOE for calibration and validation trials 
combined - 3D volume average 
 
The same observation arises when a linear regressions were applied to the 30 trees in the 
commercial plot and 38 trees in the spacing trials with R2 = 0.50 and 0.51 respectively and 
slopes of 1.05 and 0.97 (figures not shown). This again is very similar to that of the 2D 
approach shown in Figure 54 and Figure 55. The straightness of the tree and the low variation 
of MOE with height partially explains this observation.  
 

7.3.2.2.2 3D four-point static bending simulation 

In this approach, we utilise the distribution of MOE to calculate reconstructed board MOE 
values to compare with the measured values. The MOE of the sawn boards was measured 
through a four-point static bending test according to the AS/NZS 4063.1:2010 standard 
method (see Figure 130). 
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Using this standard method, whereby the apparent modulus of elasticity in bending, 𝐸𝐸, is 
determined from the measurement of the vertical displacement, 𝑒𝑒, at mid-span (point B) using 
the equation: 

 𝐸𝐸 =
23
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(6) 

 

where 𝐹𝐹 is the applied load. If the board is sufficiently slender it allows us to neglect the 
effect of the shear deformation (Euler-Bernoulli beam theory), we are able to simulate the 
four-point bending test to predict the sawn board MOE. This configuration has been used to 
develop a mechanical model to calculate the MOE of the boards. A MATLAB function was 
developed to perform the static bending test using the middle portion of the board to obtain a 
value of the board MOE that we can compare to the measured values. 

The regressions between the simulated MOE from the radial sigmoid and the actual static 
bending MOE are displayed in Figure 63.  

The accuracy or the prediction of this 3D reconstruction method hasn’t significantly 
improved compared to the 3D volume-based or 2D surface-based methods (sections 7.3.2.1 
and 7.3.2.2.1). 

The same observation arises when a linear regressions were applied separately to the 30 trees 
in the commercial plot and 38 trees in the spacing trials with R2 = 0.48  and the slope was 
1.03 (for both commercial and spacing trials; figures not shown). Again, this is very similar 
to that of the 2D approach shown in Figure 54 and Figure 55. 
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Figure 63. Correlation between measured and predicted MOE for the calibration and validation trials - 
3D four-point bending simulation. 
 

7.3.2.3 Board MOE comparison – key points 

The regressions based on three levels of complexity of board MOE reconstruction have 
similar R2 of 0.53 (for the 68 trees destructively sampled), therefore they can explain 53% of 
the variation observed on individual static bending MOE (Table 3). This metric is associated 
with the precision of the prediction. When the differences are considered from the 
metrological point of view, the influence of knots and wood defects on static bending 
measurement and the fact that USMOE is directly measured on small clear samples (core), 
this result is an excellent prediction. The key result is the high level of accuracy revealed in 
this study associated with the small bias of the linear regression measured by the slope of 
regression line with intercept at zero. Both 3D methods have only 1% bias which is 
marginally better than 2D model where bias is 2%.   

Table 3. Number of MGP10+ boards obtained by experiment and model.  
Coefficient of determination and slope 

of the linear regression without 
constant 

2D area 
average 

3D volume 
average 

3D static 
bending 

simulation 
R2 0.53 0.53 0.53 

Slope 1.02 1.01 0.99 

The number of boards having a MOE of 10,000 MPa or greater (designated here MGP10+) 
calculated from the three approaches discussed above were compared with static bending test 
in Table 4. A total 625 actual boards (from the destructively harvested trees) were measured 
by standard static bending.  They were also reconstructed using the three models described 
above (1 × 2D and 2 × 3D). There was a total of 232 MGP10+ boards observed in the static 
bending test. The 2D area average, 3D volume average and 3D static bending simulation 
methods estimated 192, 190 and 205 MGP10+ boards, respectively. The 2D area average and 
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3D volume average provided similar predictions for both commercial and spacing trials. The 
3D static bending simulation had a better prediction capacity when it comes to rating the 
boards. From the comparative observation of Figure 53, Figure 62 and Figure 63, it emerges 
that the static bending simulation tends to under predict static bending MOE in the lower 
MOE range of the distribution. 

It is noticeable that the error in the prediction of number of boards rated is considerable. It is 
important to note that the prediction cut-off for the rating calculation was exactly 10,000 MPa 
which means the board with predicted MOE of 9,999 MPa or below were not included. The 
adjustment of this parameter may result in the ability to find a value that will perfectly align 
the prediction with the actual rating. However, this type of adjustment could be risky, since 
lowering the cut-off will increase the number of boards which are predicted to be MGP10+ 
when legitimately they are not. 
 
Table 4. Number of boards having a MOE of 10,000 MPa or greater from three reconstruction methods 
and standard static bending test. 
 

 
Total 

number of 
boards 

Number of boards having a MOE of 10,000 MPa 
or greater 

Static 
bending 

test 

Predicted 
2D area 
average 

3D volume 
average 

3D static 
bending 

All destructive 
samples 625 232 192 190 205 

Commercial trial 
 291 146 116 116 123 

Spacing trial and 
Nelder wheel 334 86 76 74 82 

 
In conclusion, both 2D and 3D approaches based on USMOE can be used to estimate the 
individual board MOE. For the three approaches evaluated, there was little bias (the slope of 
the regression lines being approximately 1) and correlations between the estimated board 
MOE and static bending MOE were moderate (R2=0.53). The 3D static bending simulation 
had a better prediction capacity for rating the boards. 

7.4 MOE prediction of full stands from sample trees  
This section deals with the potential of the reconstruction approaches to predict a full stand 
from the information gathered on a sample of a few trees which have the same growing 
environment as the stand. The method is based on cambial age fitting (“fingerprint curve”, 
see section 6.7.3) from sampled trees and the use of growth curves on other trees to assess 
individual tree MOE radial variations. This can be done with either the 2D or 3D approaches. 
These two approaches were designed to predict the value of full stands or compartment from 
sample trees. 

7.4.1 2D approach without sawing pattern 
The ‘fingerprint’ curve allows the calculation of MOE at any given cambial age. This curve 
can then be combined with the growth curves (radius vs cambial age) to provide the MOE at 
any given radius. Foresters routinely measure the growth curves in stands. The MOE vs 
radius data can be used to calculate MOE vs ring area of each tree in a plot. 
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The principle of this reconstruction lies on combining the fingerprint curve with individual 
growth curves of new trees as shown in Figure 64. The growth curves can be built from 
growth curves and diameter histogram of the stands.  
 

 
Figure 64. Extraction of individual radial MOE curve from fingerprint and growth curves. 
 
The radial MOE curve is then used to extract the average MOE corresponding to the surface 
of a growth unit (e.g. growth ring) as shown in Figure 65. 
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Figure 65. Extraction of average MOE corresponding to the surface of a growth ring for each tree. 
 
For each tree a table can be extracted as shown in Figure 66. 

 
Figure 66. Surface and corresponding average MOE of each ring for a tree section. 
 
Finally, the area or volume of wood having any specified range of MOE can be calculated for 
each tree and then for each stand. An example is given in Figure 67. 
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Figure 67. Histogram of MOE at the stand level from sampled trees and the rest of the stand growth 
curves. 

From this method the percentage of area of wood in each plot having USMOE of 10,000 MPa 
or greater can be displayed (Figure 68). Since we do not have the growth curve for all trees, 
we predicted the plot/coupe from the ‘fingerprint’ curve combined with the growth curve 
from all sampled trees. 

 
Figure 68. Percentage of wood area having MOE of 10,000(+) MPa (in the full log radius) across 54 plots 
(age range 16 – 35 years old). 
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In Figure 69 we compared the area of boards having a MOE of 10,000 MPa and above 
(designated MGP10+) obtained from 2D prediction with the actual static bending MOE. The 
percentage area of MGP10+ boards obtained from the destructive samples from three 
different plots shows good agreement between actual and predicted % area of MGP10+ 
boards. However, there are discrepancies in predicting the spacing trials. This is because the 
spacing trial contains three genotypes (i.e. clone 887 (C887), clone 625 (C625) and F1 hybrid 
seedlings). The performance of these genotypes is different (dissimilar fingerprint curves), 
with C887 the best and C625 the worst, as we have shown in Figure 45. Mixing the sigmoids 
resulted in lower predicted values when fitted. If the genotypes are detached, meaning using a 
fingerprint curve associated with each clone, the prediction capability is improved. Figure 70 
shows the percentage area of MGP10+ boards in spacing trials when the genotypes are 
separated. 

 
 

Figure 69. Percentage area of boards having a MOE of 10,000 MPa and above (within 84% of the radius) 
from destructive samples (30 trees from commercial trial, 30 trees from spacing trial and 8 trees from 
Nelder wheel trial; ‘+’ indicates the mean). Each horizontal color line represents a tree. 
 



 

77 
 

 
 

Figure 70. Percentage area of MGP10(+) boards  (within 84% of the radius) for three genotypes from a 
spacing trial (10 trees from C887, 10 trees from F1 seedling, and 10 trees from C625; ‘+’ sign indicates the 
mean). 
 

The accuracy and precision of the method needs to be assessed on a larger population of tree 
as only these 30 trees were available for this component of the study. Further investigation 
and validation is recommended. 

As an example of potential application, this method was applied on the 54 southern pine plots 
sampled for USMOE. The result is displayed in Figure 71. It is worthwhile noting that only 
the sampled trees were included in this analysis. However, as discussed earlier, the 
reconstruction could be done for trees outside of the plots if the growth curves were available 
(e.g. from LiDAR and field measurements combined). 

The simulation displayed in Figure 71 shows that 16 plots don’t effectively provide any 
MGP10+ boards (plots 16 to 7 along the x-axis). Of these 16 plots with no operational 
MGP10+ board recovery the following applies: 

• Five of these plots are in the age range of 16-21 year old.  In this group plots 209 and 
210 are predicted to never start producing any MGP10+ board (see Figure 35). The 
other three 16-21 year old plots (622, 89 and 26) began producing wood with MOE of 
10,000 MPa or better between the ages of 10 to 15 years old so they should produce 
MGP10+ boards in the future. 

• The other 11 plots are at or near harvest age (24 to 36 years old).  This information 
can be useful to better allocate this resource in order to maximise value across the 
supply chain.   
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The top sixteen plots in Figure 71 (plots 205 to plot 1 on the right hand side of the x-axis) 
should produce around 30% to 40% of MGP10+ boards. The top plot (plot 1) is a 29 year old 
F2 hybrid.  In this group there are three 16-21 year old plots (205 [F1], 27 [PCH], 61 [F1]) 
that could potentially be harvested earlier while producing high value products. This could 
increase returns for both the growers (shorter rotations) and processors higher value 
(MGP10+) timber produced. 

The ability to directly link USMOE (combined cambial age and growth parameters) to final 
product value is the real benefit of this technology. 

 
Figure 71. MGP10 area with 84% radius of log– (for plots) across 54 plots (age range 16 – 35 years old). 
Note this is ranked by increasing area of MGP10+ board recovery. 
 

7.4.2 3D approach 
In this section, we present a proof-of-concept for a 3D approach to predict board performance 
from a single breast-height core. We emphasise here that we have not conducted a 
comprehensive study on this approach, nor its robustness.  
 
It is not feasible for multiple cores at different heights to be taken from standing trees to 
obtain the level of data collected from the destructive sampling. We propose an initial method 
that may provide an avenue from which timber properties of additional trees can be modelled 
based on the extensive data collection effort undertaken in the project. We will refer to the 
tree that we are attempting to predict the board performance from as the ‘target’ tree. We 
emphasise here that we have not performed this process using the cores taken from the 
standing trees, we are using cores from the destructively sampled trees as an initial 
demonstration. 
 
To predict board performance, in addition to property information from a breast-height core 
we require information regarding the growth of the target and an intended sawing pattern for 
the tree. In this study, the target tree was one of the destructively sampled trees and the 
remaining destructively sampled trees were used to develop the prediction. From the sigmoid 
fitting outlined previously, we have mathematical descriptions of the MOE for each tree in 
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the destructive sampling, at discrete apical ages. We also know information about the tree 
rings within the target tree, allowing us to build a profile of the tree’s structure. Note that we 
believe this information could be approximated through measured growth curves, and from 
tree rings measured on the breast-height core. This is the same process in 2D or 3D 
reconstruction approaches. 
 
We assume that for our target tree we have only a single sigmoid that has been fitted to data 
obtained from a breast-height core. Using this sigmoid, we identify the trees from the 
destructive sampling that have fitted sigmoids that most closely match to the target tree. To 
calculate this, we take the definite integral of the squared difference between the target tree’s 
sigmoid and the tree being compared as a match. This gives a measure of how similar the two 
curves are. We also assume that these are the trees that most closely resemble the target tree. 
We then take an average of the fitted sigmoid parameters for the remaining cores up the tree, 
to obtain new sigmoids for the target tree. This then gives us an approximation for the 
variation of MOE for the target tree with apical age, and we are able to utilise our existing 
algorithm to obtain the MOE distribution throughout the tree. Given that the target tree is one 
from the existing destructive sampling trials, we have information on the sawing pattern and 
measured board MOE, allowing us to perform a comparison of initial results.  
 
Figure 72 shows results from the initial predictions using a single core and the models 
developed for the destructive samples. We see that in most cases the new prediction quite 
closely follows the original prediction, indicating that the closely-matched trees are a good 
representation of the target tree. However, we note for Tree 3 there is a significant difference 
between the new and original predictions, indicating that this target tree is not well 
represented by the closely-matched trees. The new predictions appear to significantly under-
predict the MOE towards the outer diameter of the tree. The reason for this can be seen in 
Figure 73, where the sigmoids for the subsequent cores in the apical direction of the tree are 
significantly different than the original sigmoids for the target tree. Note that core one is quite 
accurately represented by the closely-matched trees. 
 
Recall that to determine the trees that most closely match the target tree we are only using the 
cores near breast height. There may be additional information that needs to be taken into 
account in the 3D approach to predict board performance when identifying the closely-
matched trees, such as location, species, physical dimensions, and silvicultural treatment. 
Nevertheless, we feel this approach shows promise in being able to predict board 
performance from breast height cores by utilising the information collected from the 
destructive sampling. Further analysis needs to be undertaken on this approach to justify its 
predictive capability, and this scope of work is recommended for further research. 
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a) Tree 3 

 
b) Tree 4 

 
c) Tree 10 

 
d) Tree 11 

Figure 72. Example board predictions based on a single core, compared with original predictions using 
four cores and measured data. 

 
Figure 73 Tree 3 sigmoid comparison, showing the original fitted sigmoid (target) compared to the 
sigmoids obtained from averaging the sigmoid parameters from the closely-matched trees. 
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7.5 Factors involved in the performance variability 
From a wood performance point of view, the value of the resource is essentially based on 
MOE. Density is not a criterion taken into account for product grading in any standard 
performance requirements by the southern pine processing industry and is therefore not 
discussed here. 

7.5.1 Ultrasound MOE (USMOE) 
At the taxon level, the USMOE cambial age integral average of the cores (i.e. the trees) 
ranged from a minimum of 5000 to 16,613 (MPa) with a mean of 10,442 MPa and median of 
10,468 MPa, (Figure 74). The median USMOE of the PEE is slightly higher than the other 
taxon and there are more trees at this median range. However there is a large overlap in the 
values indicating all species have potential to produce wood with similar stiffness. It appears 
that the F1 and F2 hybrids may actually have more trees (indicated by the long tail above the 
median) in the higher MOE ranges than PEE. However PEE has more trees above 10,000 
MPa. 
 

 
Figure 74. Violin plot showing the variation in USMOE from cambial age integral average of southern 
pine taxon sampled across multiple plots. The red dot is the median for that taxon. Width of the violin 
plot indicates the frequency of trees in a particular MOE class. 

7.5.2 Investigating factors involved in the performance of USMOE 
The wood quality data collected in the field and laboratory are known as variates (e.g. 
USMOE, ResiMOE). We also collected growth (e.g. height) and collated environmental and 
site information to investigate which of these factors could be associated with southern pine 
wood performance.  Details of the growth, site and environmental factors investigated are 
provided in section 14.8 (Appendix 8). As a first look at this we have displayed the variation 
in USMOE (ordered by increasing mean plot integral USMOE) of three overarching factors 
(taxon, state forest and age range).  As shown in Figure 75 none of these appeared to be 
strongly associated with USMOE when ordered by increasing plot mean USMOE.  The 
exception to this may be the F2 hybrids from Yabbra State Forest (plots 209 and 210) that 
have low MOE. As indicated earlier in the report, trees in these plots never produce wood 
with an MOE above 10,000 MPa.  Of interest, these plots display the ‘S’ curve or sigmoid 
curves typical of biological systems (particularly for the lower and upper USMOE plots).  
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Figure 75. Variation in whole core USMOE cambial age integral mean sorted by median USMOE across 
54 plots coloured by Taxon (top), State Forest (middle) and Age range (bottom).  
 



 

83 
 

7.5.3 Descriptive statistics 
Following the above overview, we used descriptive statistics, to explore how the wood 
quality traits correlate to each other, growth and age factors and climate factors.  Here we 
used linear correlations (Pearson’s correlation coefficient). Positive correlations are displayed 
in blue and negative correlations in red. The colour intensity and the size of the circle are 
proportional to the correlation coefficients. If the correlations are not significant at the 0.05 
level then no correlation is shown. 
 
Correlation between the three technology platforms, site index, age and growth factors 
Correlations between wood quality traits collected using the three technology platforms 
(wood quality platform - cores, ST300 and Resistograph) are presented (Figure 76). All of the 
Resistograph predictions: basic density (PRDens), log MOE (PRHM200) and MOE 
(ResiMOE) were moderately to strongly correlated1 with each other. The correlation between 
PRHM200 and ResiMOE (r = 0.95) indicated that they are effectively the same trait. These 
correlations between the Resistograph predictions should be expected, since the parameters 
from the Resistograph trace were calibrated against PRHM200. The model used to predict 
PRHM200 and ResiMOE includes age in the calibration equation (Downes and Lausberg 
2016). The moderate positive correlation between these traits and age therefore was expected. 
This may also partially explain why the Resistograph seems to under predict the MOE 
(ResiMOE) relative to USMOE of some plots in Figure 27 (e.g. plots 26, 35 and 622 which 
have median ResiMOEs well below the 10,000 MPa line). These three plots are all under 20 
years old. The USMOE is moderately and significantly correlated with the three variables 
predicted by the Resistograph. USMOE is also moderately correlated with the MOE 
predicted by the ST300 (ST300MOE).  USMOE is not correlated with any of the growth 
factors (site index (SI), Age, diameter at breast height (DBH) or height (Ht)). This means this 
measure of MOE is independent of these factors since the USMOE is a reconstructed 
performance characteristic from local measurement on the cambial age. This is one of the 
advantages of this technology. ST300MOE is not correlated with the Resistograph predicted 
variables.  

Resin (ResinPercent) is moderately and significantly correlated with age and DBH of the 
trees. This may indicate older plots are more likely to have higher levels of resin. 
 
 

                                                 
1 A correlation does not equal causality (also known as cause and effect relationship) (Esbensen et 
al., 2004). 
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Figure 76. Correlation matrix for the wood quality variables measured or predicted in this study. Only 
correlations significant at the P = 0.05 level are dispalyed. Positive correlations are displayed in blue and 
negative correlations in red. 
 
Many of the climatic variables are strongly and significantly correlated to each other (Figure 
77). For example the following climatic factors are highly positively correlated (e.g. rainfall 
(Rain) and wetness index (Wetindex); mean daily maximum temperature (Tmax) and 
Evapotranspiration (Evapotrans) and some are highly negatively correlated (e.g. Average 
yearly number of raindays (RainDays) and average annual number of dry months with <= 30 
mm of rain (DryMonths) and the relative humidity of the mean daily maximum temperature 
(RHmaxT) and Average annual number of dry months with <= 30mm of rain (DryMonths).  
USMOE is correlated with nine climate factors, being moderately positively correlated with 
mean daily minimum temperature (Tmin), mean relative humidity at the mean daily 
maximum temperature (RHmaxT) and extreme minimum temperature for the growing period 
(minT).  
 
Resin (ResinPercent) correlated with six climate factors. For example, it is moderately 
positively correlated with the total number of months with less ≤ 30 mm of rain 
(NoDroughts) and moderately negatively correlated with Raindays. 
 
The high level of collinearity shown in these collation matrices (in which one variable 
predicts another with a substantial degree of accuracy) limits the type of regression analysis 
that can be undertaken to investigate what factors are causing or effecting the wood 
properties of the southern pine. 
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Figure 77. Correlation matrix showing USMOE and resin along with the climatic variables available.  
Only correlations significant at the P = 0.05 level are dispalyed. Positive correlations are displayed in blue 
and negative correlations in red. 

7.5.4 Factor analysis of the commercial plots 
In order to limit the impact of collinearity, Principal Component Analysis was applied to 
extract the important variables from the large number of numerical based (quantitative) 
variables available that could impact on USMOE. 

7.5.4.1 Description of the quantitative variables 
Number of observations (plots) = 50 (Note plots 209 and 210 were discarded as outliers) 
Number of quantitative variables = 20 (numerical variables). Quantitative variables represent 
a measurable quantity. Note, that growth related variables (e.g. height and diameter) were 
excluded from the analysis when investigating average USMOE at 17 years based on MOE 
Vs cambial age integral.  
 
Description of the quantitative variables: 

• Plot characteristics (Slope_prc, Soil_moist, Lidar_elev, SI, Stocking) 
• Climatic variables for each plot location (Tmax, Tmin, Q, RHmaxT, RHminT, Rain, 

Evap, Wetindex, Evapotrans, Raindays, MaxT, MinT, DryMonths, MaxDrought, 
NoDroughts).  Note these variables are explained in (section 14.8, Appendix 8). 

7.5.4.2 Principal components analysis with Varimax rotation 
The quantitative variables were linked together. Linear models cannot deal with collinear 
variables, and a variable selection needed to be undertaken. The problem with variable 
selection, is that it is impossible to have a global overview of the importance of all the 
variables in a single model. To deal with this, a principal components analysis with Varimax 
rotation was used. This technique allowed us to build a new set of variables by grouping the 
collinear variables into Principal Components (PC), where the PCs are unlinked from each 
other. Five independent components were extracted from the original set of 20 variables. 
Three components explain 70% of the total variance of the original variables as shown in the 
table below. 
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PC Eigen 
value 

Variance 
% 

Cumulative 
% 

1 7.1 35.6 35.6 
2 4.1 20.7 56.4 
3 2.5 12.7 69.1 
4 1.5 7.4 76.5 
5 1.3 6.7 83.2 

 
 

7.5.4.3 Multivariate Linear model with the principal components 
The dependent variable was the plot integral average MOE at 17 years using 5PL sigmoid on 
cambial age. When analysed by the five principal components, only PC1 and PC4 are 
significant (shown below). 
 

Coefficients Estimate Std. Error t value Pr(>|t|) 
(Intercept) 9276.15 139.48 66.507 < 2e-16 

PC1 167.03 78.77 2.121 0.040 
PC2 -86.63 68.56 -1.264 0.213 
PC3 23.31 91.84 0.254 0.801 
PC4 -319.66 102.41 -3.121 0.003 
PC5 -44.6 117.59 -0.379 0.706 

 
The characteristics of the final model with PC1 and PC4 are shown below (R²=0.21). The 
interaction term in the model was not found to be significant. Note that PC4 (-278.32) has 
more influence on the MOE than PC1 (146.95) see below. 
 

Coefficients Estimate Std. Error t value Pr(>|t|) 
(Intercept) 9276.15 138.15 67.148 < 2e-16 

PC1 146.95 67.58 2.174 0.035 
PC4 -278.32 93.04 -2.991 0.004 

     

 
Figure 78 shows the importance of each original variable within the 1st and 4th principal 
components. For PC1 the collinear moisture related variables: RHmaxT (r=+0.9), Rain 
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(+0.8), Evap (-0.7), Wetindex (+0.8), Raindays (+0.8), and DryMonths (-0.9). The main 
component of PC4 is formed by: Stocking (r=-0.7), MaxDrought (+0.7) and NoDroughts 
(+0.9) with these later two variables being collinear. 

 
Figure 78. Bilateral correlations with the two significant Principal Components (PC) 

 
7.5.4.4 Analysis of variance of the categorical factors 

Number of factors = 6 (Taxon, Aspect, PriorUse, Pruned, PCT, Thinned) 
Modalities (Categorical or qualitative variables within a factor that may explain USMOE 
performance).  

• Taxon (modalities: F1, F2, PCH, PEE) 
• Aspect (modalities:1=nil, 2=N, 3=E, 4=S, 5=W) 
• PriorUse (modalities: 1R=prior softwood rotation, N=native forest, P=pasture, 

U=unknown) 
• Pruned (modalities: yes/no) 
• PCT (modalities: yes/no) 
• Thinned (modalities: yes/no) 

The analysis (factor by factor) shows that “Taxon”, “PriorUse” and “PCT” have significant 
variations of means between the modalities. 

Factor F-statistic 
residuals 

DF p-value 
Taxon 5.001 46 0.004 
Aspect 2.013 45 0.109 
PriorUse 3.161 46 0.033 
Pruned 0.051 48 0.822 
PCT 9.008 48 0.004 
Thinned 1.275 48 0.265 

 
A Tukey's HSD test was applied to identify the differences between means for the factors 
“Taxon” and “PriorUse”. The figures below (Figure 79a) highlight these differences: Taxon 
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(F1-PCH) differ; PriorUse (1R-P) differ; PCT(Yes-No) differ. The associated groups, 
obtained by a Duncan test, are also included in Figure 79. 
 
Taxon diff p adj 
F2-PCH 741.2 0.106 
PEE-PCH 840.5 0.309 
F1-PCH 1507.0 0.004 
PEE-F2 99.3 0.997 
F1-F2 765.7 0.313 
F1-PEE 666.4 0.645 

 
 

 
PriorUse diff p adj 
U-P 208.4 0.970 
N-P 328.5 0.848 
1R-P 1156.9 0.041 
N-U 120.2 0.992 
1R-U 948.5 0.142 
1R-N 828.3 0.122 

 
 

 
Mean plot with 95% CI 

 

 

 
(a)  

Interaction plot 

 

 

 
(b)  

Figure 79. (a) Significant categorical factors. (b) Significant interaction of categorical factors. In these 
figures the red circles indicate significant differences between modalities.  
 
Interactions 
The Tukey’s HSD test was also used to test the interactions between factors. The associated 
bivariate interactions plots are shown above (b). 

•  “Taxon” with “PriorUse”, the only difference was for the pair F1:1R - PCH:P. 
•  “Taxon” with “PCT”, differences are found in the cases F1:0 (no PCT) - PCH:1 

(PCTed)  and PCH:0 (no PCT) - PCH:1 (PCTed). 

PriorUse 

PCT 

PCT 

a 

ab ab 
b 

a 

ab b b 

a 

b 
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• “PriorUse” with “PCT”, differences for 1R:0 (no PCT) - U:1 (PCTed) and 1R:0 (no 
PCT) - P:1 (PCTed). 

If the complete interaction is tested in the same way, no combination of modalities were 
found to be significantly different (the lowest probability p=0.11 was for F1:1R:0-PCH:P:1). 
Investigating how the current whole of growing period climate factors and the monthly and 
yearly climate factors impact on the annual growth of trees in the plots is recommended. 

7.5.5 Key Points from the factor analysis  
The factorial analysis of genetic and environmental relationships with wood stiffness 
indicated that the moisture related variables have the biggest impact on MOE, with variates 
associated with making moisture available (e.g. Rain, Raindays and RHmaxT - Mean relative 
humidity at the mean daily maximum temperature) being positive and drought related factors 
(e.g. DryMonths - Average annual number of dry months with <= 30 mm of rain and 
NoDroughts - Total number of dry months) having the largest negative effect on MOE. 
Stocking rate had a positive effect, whereby high stocking rates were correlated with higher 
average MOE of stands. In the single factor analysis, the primary factor was taxon, where the 
F1 hybrid was shown to rank higher on average for MOE, followed by the F2 hybrid and 
slash pine, then Caribbean pine with the lowest MOE on average. The second ranked factor 
was prior land use, with first rotation sites producing higher MOE wood on average 
compared to former pasture sites. The third ranked factor in this analysis was the silvicultural 
practice of early, pre-commercial thinning where stands that had been thinned early in the 
rotation showing lower MOE on average. 
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7.6 Comparison between tools 
The three technologies: the wood value platform, ST300 and IML Resistograph can all 
predict the MOE of the trees (logs) with varying degrees of accuracy. However it is how 
accurately they predict the range of MOE of boards within the trees /logs that is the real 
measure of value for each technology. The reason for this is the value of the products in the 
market are dictated by the products performance.  Here we compare and contrast each of the 
technologies evaluated in terms of: 
 accuracy and precision of predicting trees, plots, boards and related trees not sampled  
 price multiplied by number trees sampled, etc. 
 key data obtained from each of the tools and level of usefulness for the forest grower or 

processor. 
 benefits of the technology for growers and wood processors. 
 the minimum level of data/information needed to predict stiffness (and at what level – 

stand, plot, tree etc.) and link that into pros and cons of each tool. 
 
Note, the wood value platform was developed as an experimental platform and is an output of 
this project. The level of data needed by future users may be considerably lower than the high 
intensity of measurement and data collection undertaken here. Neither ST300 nor Resitool 
are able to predict trees outside the sample trees. The assumption with these tools is that the 
sample trees represent the whole stand, in other words this sub-population has exactly the 
same performance as the whole population of trees of the stand. No information from the rest 
of the stand is combined to predict the trees outside the sample trees’ data. In our approach, 
we use the cambial age information of the sample trees (fingerprint curve) combined with the 
growth information of the rest of the stand to be able to better predict (through 
reconstruction) the whole stand. 
 
Indicative purchase prices of main pieces of equipment used in the study 

• IML Resistograph: $18,000 - $20,000 (with expanded memory and precision drill 
bits).  

• Hitman ST300: $17,000 - $18,500 
• NIR spectrometer: there are a range of options depending on the accuracy needed: 

$6,000 - $100,000 
• Ultrasound kit: $6,000 - $8,000 
• Electronic scales: $500 
• Hilti 36-volt drill: $2,500 
• Coring drill bits: $300 - $400 each (includes cost of extension tubes and adapter for 

the Hilti). 
 
In Table 5, travel times and work associated with plot access due to weeds, etc. are ignored as 
they would be similar for each technology. For brevity USMOE is used as a substitute for the 
wood value platform in this table. 
 
Training industry in the use of the wood value platform 
The team at DAF can demonstrate and train staff from the industry in the collection of cores 
and the capture of data from these cores.  Currently the analysis of this data requires expert 
knowledge but developing a user friendly interface is possible if properly funded. Similarly 
simplifying the technology platform and increasing the speed of data collection can be 
customised to end-user specific requirement.  The current project used the platform to focus 



 

91 
 

on accuracy, but this does not preclude a focus on increasing efficiency of the data collected 
and processed. 
 
Table 5. Evaluation and comparison of each technology investigated 
Comparison 
evaluated 

USMOE (coring) 

(Platform) 

ST300MOE 

(ST300) 

ResiMOE 

(Resistograph) 
Type of MOE 
measurement 
or prediction  

Analytical reconstruction, not 
calibration based 

Calibration 
based (depends 

on training 
samples) 

Calibration based 
(depends on training 

samples) 

Internal rate 
of return 

Positive: high potential to 
increase the amount of 
MPG10 and above boards in 
the value chain 

NA NA 

Field data 
collection 

15 trees/plot 15 trees/plot 15 trees/plot 

Sample rate Slow Moderate Quick 
Samples per 
hour 

4 27 40 

Pre-processing 
of samples to 
collect data 

Slow, but the platform has 
not been optimised for time 
at the moment. Instead it was 
optimised for accuracy: core 
cambial age data collection, 
edged cores and number, data 
collection: 8% density, NIR 
for resin, ultrasound with 
care needed to maintain data 
alignment form different 
modules. Intricate analysis 
but can be simplified and 
automated in the future. 

Quick: 
Download and 

analyse 
immediately. 

Moderate: Download 
allocate growth rings 
and pith then analyse. 

Estimated time 
to collect and 
prepare 
data/plot 

   

MOE only • Currently 
approximately 8 
hours 

• With additional 
automation and larger 
segments 
approximately 5 
hours, but this could 
be reduced further 
using NIR 
calibrations based on 
the over 13,000 
segments measured 

Approximately 
1 hour 

Approximately 1 hour 
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Comparison 
evaluated 

USMOE (coring) 

(Platform) 

ST300MOE 

(ST300) 

ResiMOE 

(Resistograph) 
and scanned in this 
study. 

Full analysis 
MOE, age 
referencing, 
density, 
extractives, 

Approximately 11.5 hours NA NA 

Ease of data 
analysis 

Expert data analysis currently 
needed but this can be 
simplified and automated in 
the future. 

Simple 
application of a 
single formula 

Expert data analysis 
currently needed. This 
should become easier 
with the new interface 

being developed. 
Accuracy and 
bias for tree 
or log MOE 

   

Logs Accurate measure of MOE, 
78% of variance explained 
with a low bias (9%). 

Over predicts 
MOE, 42% of 

variance 
explained with 

a large bias 
(41%) 

Moderate-high 
prediction of MOE, 

68% of variance 
explained with a low 

bias (9%). 

Plots High (ranks plots) and 
moderate estimation of value 
of boards. 

Moderate 
(ranking of 
plots) low 

estimation of 
value of boards. 

Moderate (ranking of 
plots) low estimation 
of value of boards. 

Some plots appear to 
be poorly estimated. 
Possibly due to the 

wood properties 
falling outside the 

calibration set for the 
equipment. 

Prediction of 
boards  

   

Average of  
boards’ MOE 
vs the logs’ 
MOE 

High: explains 70% of the 
variance of boards’ average 
MOE from that of the log 

Moderate: 
explains 44% of 
the variance of 
boards’ average 
MOE from that 

of the log 

Moderate: explains 
50% of the variance of 
boards’ average MOE 

from that of the log 

Individual 
board MOE vs 
log MOE 

Low: explains 28% of the 
individual board MOE 
variance from the log MOE 

Low: explains 
22% of the 
individual 

board MOE 
variance from 
the log MOE 

Low: explains 23% of 
the individual board 
MOE variance from 

the log MOE 
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Comparison 
evaluated 

USMOE (coring) 

(Platform) 

ST300MOE 

(ST300) 

ResiMOE 

(Resistograph) 
Individual 
boards vs 
individual 
boards 

Moderate: explains 53% 
variance of the individual 
boards’ variance. Given the 
reconstruction is based on 
clear wood samples and the 
inherent relative inaccuracy 
of the standard static MOE 
measurement this is quite 
good. 

NA NA 

Related trees 
outside of the 
sampled trees 
from their 
growth 
characteristics 

Reconstruction of all trees in 
a stand is possible using the 
cambial sigmoid (fingerprint) 
from sampled trees and 
growth curves of the trees not 
sampled. 

Cannot predict 
trees outside the 

sample trees 
without local 
information 

along the radius 
(cambial age 
versus MOE) 

from the sample 
trees. 

Cannot predict trees 
outside the sample 
trees without local 

information along the 
radius (cambial age 

versus MOE) from the 
sample trees. 

Benefits for 
growers 

Rank plots for measured 
MOE and this is directly 
related to value and 
processing parameters. 

Identify when plots/coupes 
will start producing high 
value wood allowing 
silvicultural interventions 
including: 

• Identifying plots that will 
never produce high value 
products so these can be 
felled and replanted with 
improved genetics that 
will produce high value 
products. 

• Identifying plots that start 
producing high value 
products at an early age 
that could be harvested at 
a younger age resulting in 
increased rotations from 
the same piece of land. 

• Allowing better log 
allocation to different 
processors e.g. High MOE 

Rank plots for 
predicted MOE 

(of the outer 
wood) but does 
not link this to 

value. 

Will help 
identify very 
low or very 
high MOE 

plots. 

Rank plots for 
predicted MOE but 
does not link this to 

value. 

Will help identify very 
low or very high MOE 

plots. 

As the calibration is 
based on radiata pine 

some of the plots 
appear to be poorly 

ranked e.g. plots 288 
and 61 which are 
ranked high by 
USMOE and 

ST300MOE but low 
by ResiMOE. 



 

94 
 

Comparison 
evaluated 

USMOE (coring) 

(Platform) 

ST300MOE 

(ST300) 

ResiMOE 

(Resistograph) 
logs to solid wood 
processors and low MOE 
logs to other processors 
that don’t require the same 
stiffness. 

• Can be extended to other 
products without any 
alteration, calibration or 
modification e.g. veneer, 
resin, energy, fibre and 
woodchips. 

• Facilitates 
dendrochronology and 
composition analysis, 
impact of climate change 
and fertilisation studies 

• The wood samples are in a 
collection that can be 
revisited for verification, 
complementary or further 
analysis. 

 
Benefits for 
processors 

Knowledge about the end 
value of logs they are 
receiving will allow them to 
better manage the feedstock 
to maximise value recovered. 

Adjustment of the processing 
parameters to maximise 
value (e.g. sawing patterns). 

Assistance to select plots or 
logs to be sawn for 
improving process efficiency. 

Decrease the risk of sawing 
logs from coupes that will 
not produce profitable 
products. 

The wood samples are in a 
collection that can be 
revisited for verification, 
complementary or further 
analysis. 

Very poor or 
very high MOE 

plots can be 
identified but 
those in the 

middle cannot 
be ranked for 

value. 

Very poor or very 
high MOE plots can 

be identified but those 
in the middle cannot 
be ranked for value. 
As the calibration is 
based on radiata pine 

some of the plots 
appear to be poorly 

ranked e.g. plots 288 
and 61 which are 
ranked high by 
USMOE and 

ST300MOE but low 
by ResiMOE. 
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 Virtual log reconstruction 
In this section we discuss a method for reconstructing a virtual timber billet (see Figure 9) for 
peeling, including internal features such as knots, after it has been peeled into a full veneer 
ribbon. This reconstruction process was the first stage in developing a mathematical model 
for the variation in timber properties within a given tree. The reconstruction of internal timber 
features can be achieved through the use of computed tomography (CT) scanning. However, 
this requires the use of equipment that may be cost-prohibitive. Here we discuss an 
alternative approach that utilises more readily available and accessible equipment for timber 
processors, including a spindleless lathe and digital single-lens reflex (SLR) camera.  
 
In comparison to conventional scanning methods, this reconstruction method based on a 
destructive process has the key advantage of delivering high-resolution colour images. This 
reconstruction serves two purposes. Firstly, we are able to generate three-dimensional 
visualisations of the timber billet, to uncover internal structures such as knots, defects, insect 
or fungi attack, discoloration and resin. Secondly, the reconstruction allows us to map timber 
properties measured for 10 cm strips of the veneer at 1 metre intervals to their original 
location within the billet. This allows us to locally populate the mapping with wood 
properties and subsequently derive their distribution throughout the billet. From this 
information, it is then possible to extract any part of the billet and obtain the appearance and 
extrapolated wood properties of processed products. To validate our reconstruction process, 
we show that we can obtain reasonable agreement between our predicted billet Modulus of 
Elasticity (MOE) and that measured on the original billet. 
 
The internal features of a tree have direct impacts on the physical, mechanical and 
appearance properties of wood products. For example the knots (remnants of the branch 
architecture) detract from strength, creating a site of potential rupture under load (Hanhijärvi, 
et al., 2005). Grain deviations developed during wood formation can result in sloping grain in 
a sawn board which can also have a negative impact on wood properties. The internal core of 
wood in a tree is commonly referred to as juvenile wood, as it forms in the early development 
of the crown. This zone of wood provides important support for the young tree, and for the 
tops of growing trees, for example allowing the tree to bend under wind pressure without 
breakage. Although important for the survival of the tree, this juvenile zone of wood typically 
has low stiffness and low wood density, making it unsuitable for structural wood products 
(Zobel and Sprague, 1998).  The outer cylinder of wood formed during the mature stage of a 
tree's life is typically higher in density and stiffness properties. Again, these are evolutionary 
traits developed to ensure survival of the tree, providing the structure to support the weight of 
the tree's branches and foliage and withstand lateral wind pressure. 
 
The physical, mechanical and visual properties of timber products are of critical importance 
to the forest and timber industry. These properties are directly linked to the value of the 
timber. However, accurately determining these properties prior to cutting the tree is difficult. 
The first stage in developing a mathematical model for the properties within the tree is to 
develop a virtual reconstruction of any given tree. Typically, this is done by either computed 
tomography (CT) scanning (Berglund et al., 2013; Fredriksson, 2015; Fredriksson et al., 
2015; Schmoldt et al., 1996), or the so-called flitch method, where logs are sawn into 
sections (Knapic et al., 2011; Lin et al., 2011; Pinto et al., 2003; Pinto et al., 2005) (flitches) 
and each section is scanned to build up a three-dimensional image of the log. However, these 
approaches may be deemed too expensive, cumbersome or inaccurate, and it therefore 
becomes difficult to create a virtual representation of a log. Here we investigate a method of 
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building a virtual reconstruction of timber billets based on their peeled ribbon, as the first step 
towards a mathematical model of property variation within the southern pines. 
 
For this section, we focus on the 30 trees from a 29-year-old, F2 hybrid pine plantation near 
Maryborough in south-east Queensland.  These 30 trees were cross-cut into two peeler billets 
(approximately 1.2 m each), one sawlog (approximately 4.0 m) and discs from four different 
heights in the tree (Figure 9). Prior to sawing, a reference cut was made along the length of 
the tree. The peeler billets were drilled on the reference cut through the diameter at the butt 
end to facilitate alignment of images for stitching and for reconstruction. The billets were 
peeled on an Omeco spindleless veneer lathe at a thickness of approximately 2.5 mm to 3.0 
mm. An initial rounding-up peel was conducted to remove significant variation from the 
surface of the billet and to obtain a near-cylindrical billet, however we were careful not to 
remove too much timber from the outside of the billet. This is because the highest quality 
timber (i.e. the highest stiffness) is generally found in the outer layers (Lachenbruch et al., 
2011). The rounded-up billet was then peeled until a core of approximately 50 mm diameter 
remained. Following peeling of the billet, the ribbon was placed over a light table to provide 
illumination through the veneer, allowing features to be easily detected. 
 
Figure 80 shows the set-up for the photography of the ribbon. The light table was positioned 
at the end of a conveyor belt to allow for easy handling of the full ribbon. A Perspex sheet 
was placed on top of the light table to diffuse the light evenly across the sections of ribbon. 
An adjustable rig was constructed to position the camera, and this was attached to the steel 
frame of the workshop housing the equipment. This ensured consistent positioning of the 
camera across all images. High resolution images of the ribbon were captured using a Canon 
EOS 600D, ensuring approximately 25% overlap with each subsequent frame. 

 
Figure 80. Diagram showing the camera setup and light table. 
 
An example image of one section of the ribbon is shown in Figure 81. 
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Figure 81. Example of a digital veneer ribbon image captured over the light table. 
Notes: Dark tones show latewood, bright regions show earlywood; white holes along top are drill holes to locate 
the tree’s relationship to the row direction in the stand; dark circles are knots. 
 
Following photographing, strips of the ribbon (100 mm width) were clipped at one metre 
intervals, with every fifth strip being centred over the nearest reference hole. These strips 
were further processed to obtain measurements for density and modulus of elasticity (MOE), 
MOE measurements were obtained using the vibrational technique known as Bing (Beam 
Identification by Non-destructive Grading; Faydi et al., 2017; Paradis et al., 2017). 
 
Before stitching the images to form a full ribbon image, the captured images were corrected 
for lens distortion using RawTherapee (Horváth, 2016) by way of the appropriate lens profile. 
We utilised Microsoft Research's Image Composite Editor (ICE) (Gutierrez et al., 2015) for 
stitching of the images due to the high resolution of each individual image. Our stitched 
ribbon images can exceed 700 megapixels, and ICE is designed to handle gigapixel 
panoramic images and can easily generate our stitched images at full resolution.  
 
Figure 82 shows an example of a full stitched ribbon, where the radial position of the billet 
increases from left to right (i.e. the left-hand edge of the image is located in the centre of the 
log). Note that the stitched image itself is not rectangular, it instead appears that the peeled 
ribbon is curved in nature. 
 
 

 
Figure 82. Complete stitched image of full billet ribbon. The white scale bar represents one metre. 
 
Figure 83 shows a representation of how a truncated cone will trace a circular path if peeled. 
This indicates that the billet may be considered as a truncated cone, where the butt end radius 
is greater than the top end. 



 

98 
 

 

 
Figure 83. Representation of the path traced out by a truncated cone. We assume that the stitched peel is 
formed by peeling a truncated cone (the billet), where the butt end radius is greater than the top end. 
 
Possible explanations for this are that the billet was not a perfect cylinder following the initial 
round-up peel, or due to the initial configuration of the lathe. If the pressure bar that holds the 
billet against the blade is not perfectly parallel to the blade then this would lead to a non-
cylindrical billet. Here we assume that regardless of the cause, the billet can be represented as 
a truncated cone. In a latter part of this section we will discuss how we utilise the shape of the 
billet for our reconstruction process. 

8.1 Image analysis 
We now outline the image processing techniques that have been utilised to analyse the 
stitched ribbon images and to assist us in the billet reconstruction. Image processing in this 
project has been done using the distribution of ImageJ, Fiji (Schindelin et al., 2012), which is 
an open-source platform for analysis of biological images. 

8.1.1 Hole detection 
Recall that prior to peeling the billet into a ribbon, a reference hole was drilled through the 
diameter of the billet. This was carried out to provide a reference for the reconstruction. To 
use this reference hole, we must locate the resulting holes in the peeled ribbon. To do this, we 
developed a custom macro in Fiji that identifies the hole locations in the stitched ribbon 
image. This process relies on the fact that the holes in the ribbon are brightly illuminated due 
to the light table, and are (near) circular in nature. Note that due to damage close to the edges 
of some sections of ribbon (tearing etc.), manual image manipulation was required to ensure 
the holes were closed.  
 
The first stage in detecting the hole locations was to set the correct scale for the image. We 
took reference images with a steel ruler placed on the light table, and from this we were able 
to calculate the conversion from image pixels to mm. The stitched image was then converted 
to an 8-bit grayscale image prior to thresholding the pixel intensities, η. The range for 
thresholding was set to 220≤η≤255, and the pixels with intensities within the range were set 
to be coloured in red. An example of this thresholding process is shown in Figure 84. We can 
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see that the desired hole locations are detected, however in some cases we also pick up other 
regions that we do not wish to consider. Note the larger dark circles below the highlighted 
holes near the top edge, which are due to a core that was taken from the standing tree in the 
field. This core was plugged in the field, however during peeling the plug can become 
dislodged, causing additional holes to become visible and therefore selected during 
thresholding. 
 

 
 

Figure 84. Thresholded image used for hole location identification. The small holes are the reference 
holes. 
Applying the thresholding to the image allowed for Fiji's automatic particle analysis to detect 
the holes. To remove the regions not of interest that were identified during thresholding, we 
specify the size and degree of circularity of the regions we wish to detect. Circularity is 
defined as (4π × area) / perimeter2, with circularity equal to unity for a perfect circle (Ferreira 
and Rasband, 2012). Setting circularity to be greater than or equal to 0.7 and the size of the 
regions to be between 70 and 220 mm2 allowed us to successfully detect the locations of the 
reference holes, as shown in Figure 85. We obtained the x and y coordinates of the centroids 
of these regions to use for our reconstruction. 

 
Figure 85. Identification of holes through analysing particles in the image. The particle size range was set 
to only capture the holes of interest. The numbers indicate the number of each individual hole that was 
detected. Note that adjacent holes are not always numbered consecutively. 
 

8.1.2 Boundary detection 
To detect the boundary of the peel from the full stitched image, we again use image 
processing techniques through Fiji to obtain the coordinates of each pixel on the boundary of 
the peel. However, it is not sufficient to only have the boundary coordinates. We must also 



 

100 
 

determine which of the four boundaries of the ribbon each point lies on. To automate this 
process, we utilise a spectral clustering approach based on the gradient between adjacent 
points. We use a two-pass approach, where the first pass clusters the points based on whether 
they lie on a curved or straight boundary, and the second pass separates each of these clusters 
into the two sub-clusters. This allows us to cluster the points into four distinct sets, each 
corresponding to one of the four boundaries of the ribbon (top, bottom, left, right), as shown 
in Figure 86. 
 

 
Figure 86. Each of the four individual boundaries identified by clustering. Note that the aspect ratio is not 
1:1. 

8.2 Reconstruction 
The work developed in the preceding sections now allows us to consider reconstructing the 
peeled ribbon. Here we describe the process of transforming the full stitched image of the peel 
into a three-dimensional visualisation of the billet. The main steps involved in this process are:  
 

• fitting functions through the hole locations and boundaries of the peel 
• determining the intersections of the fitted boundary functions to define a series of 

circular arcs through the peel 
• transformation of the circular arcs from the peel into a spiral cross-section of the billet. 

 
Figure 87 shows a flowchart of the process required to transform the stitched ribbon images 
into a series of cross sections representing the full billet. 
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Figure 87. Flowchart describing the process of moving from the stitched images of the ribbon to a series 
of cross-sectional images representing the three-dimensional billet. 
 

8.2.1 Boundary function fitting 
We consider the process of peeling the billet similar to that of rolling out a truncated cone, 
where the radii of the cone continue to decrease at an equal rate. This does not affect the 
shape of the path scribed by the cone, merely the rate at which it is laid out. 
 
Using the assumption that the billet can be represented as a truncated cone, the top and butt 
ends of the peel must lie on arcs of two concentric circles, while the left and right-hand ends 
lie on rays that intersect at the centre of these circles. We further assume that all pixels in the 
full stitched image can be represented by a sequence of concentric circular arcs of decreasing 
radii (from the butt end to the top). This idea is shown in Figure 88. 
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Figure 88. Circular arcs passing through the peel are transformed into a spiral cross-section. The dots 
denote the reference holes, and the red line shows the circular arc fitted to the reference holes. 
 

8.2.2 Boundary intersections 
Given the equations for each of the four boundaries, we can then find the intersection points 
of the rays with the circular arcs. This allows us to calculate the limits on the polar angle 
needed to describe the peel, and the length of each circular arc through the peel. This enables 
us to describe every location on the peel in terms of a radius,  𝑟𝑟arc, and angle, 𝜃𝜃arc.  To 
reconstruct the peel into a three-dimensional representation of the billet, we must transform 
each circular arc into a cross-sectional slice of the billet. To do this, we assume that we can 
represent each slice as a spiral, emulating the cutting of the knife during the peeling process. 

8.2.3 Spiral transformation 
To map the coordinates on the peel to a location in the billet, we assume a form for the spiral 
function that allows for the possibility of a varying thickness (distance between arcs of the 
spiral for a given angle, 𝜃𝜃𝑠𝑠). For the spiral corresponding to the circular arc passing through 
the holes, we utilise two constraints to formulate a system of nonlinear equations. The first 
constraint is that the arc length (distance) between each hole for the computed spiral must 
match the measured distance on the peel. The second constraint is that the holes must lie 
along a straight line when mapped onto the spiral. This is because we assume that when the 
reference hole through the billet was drilled, there was no deflection in the drill bit. Note that 
this line does not necessarily pass through the centre of the assumed circular billet cross-
section. 
 
Given the spiral function corresponding to the arc that passes through the holes, we can then 
calculate the appropriate spiral parameters for every arc passing through the peel. We assume 
that the radius of the billet decreases linearly as we move from the butt end to the top. 
Therefore, we can linearly decrease (or increase in the case where we move towards the butt 
end) the radius of the spiral function as we move along the billet. We assume that the range 
of 𝜃𝜃𝑠𝑠 remains constant for every spiral function. This ensures that the start and end points of 
each spiral will be aligned vertically.  
 
Examples of the spiral fitted through the reference holes for billets of varying radius are 
shown in Figure 89. The dot markers represent the locations of the holes when mapped 
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according to the spiral function. We can see that they do not lie perfectly along the line. We 
believe this may be due to the thickness variation in the ribbon, and the non-circular nature of 
the billet cross-section. 
 

  

  Figure 89. Examples of fitted spiral functions (- - -) with hole locations (∙) and strips (—) mapped to 
original position in the billet. The initial estimate for the drill hole line is shown by the straight, 
diametrical line together with the location following fitting. 
Figure 90 shows a comparison of the variation in the ribbon thickness for the example billets 
given in Figure 89, between our fitted spiral function and thickness measured from the veneer 
strips. We can see that near the outside of the billet (at the beginning of the ribbon), our spiral 
function underestimates the veneer thickness. However, we see that after approximately half-
way along the ribbon reasonable agreement is obtained between our estimated thickness and 
the measured thickness. 
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Figure 90. Thickness of ribbon based on fitted spiral functions shown in Figure 84 (—), compared with 
the average thickness of the veneer strips (∙). Increasing distance along the ribbon represents moving 
from the outside of the billet towards the centre. 
 
We now have a function that maps each circular arc through the ribbon into a spiral-shaped 
cross section of the billet. Therefore, we can generate a series of images by mapping the pixel 
intensity values along the arcs onto the spiral, leading to a set of cross-sectional images of the 
billet. The result of reconstruction using the fitted spiral function is a series of cross-sectional 
slices representing different heights within the billet. However, due to the nature of the spiral, 
there are voids between the arcs of the spiral. To overcome this we utilise an algorithm akin 
to ray-marching (Hart et al., 1989) to propagate the RGB values towards the centre of the 
spiral. 
 

8.2.4 Slice generation  
We take a series of rays passing through the centre of the spiral, and traverse these rays from 
the outside towards the centre. Beginning from the outer arm of the spiral, we initialise rgbcurr 
to be the current RGB value of the image corresponding to where the ray intersects with the 
edge of the spiral. We then move along the ray towards the centre of the spiral, copying the 
RGB value into the image pixels that are currently black. When we encounter a non-black 
pixel, we reset the value of rgbcurr to the new RGB value, and continue the process. The result 
of this process is shown in Figure 91.  We can clearly see the existence of knots within the 
billet, however there are also some artefacts introduced due to the discrete nature of the 
pixels. This means that some pixels are processed more than once.   
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Figure 91. Spiral reconstruction with RGB values mapped from the stitched ribbon image. 
 
Figure 92. Filled image generated using our algorithm.Applying our algorithm to each spiral mapped 
from the stitched ribbon image, we obtain approximately 2,500 cross-sectional images describing the full 
billet volume. We can then use these images to generate volumetric visualisations of the reconstructed 
billet. 
 
To visualise the reconstructed billet we utilise the volume rendering package, Drishti 
(Limaye, 2012). Developed by Ajay Limaye at ANU (Australian National University), Drishti 
is a powerful rendering tool that can be used to visualise complex datasets. This allows us to 
obtain a volumetric rendering of the billet as shown in Figure 93. We are able to slice through 
the data to reveal the internal structure of the billet or to cut a board from within it, as shown 
in Figure 94. One of the major advantages of this approach is that we are able to represent the 
three-dimensional billet in full colour. 
 

 
 
Figure 93. Volume visualisation of reconstructed  billet using Drishti. The internal knots are clearly 
visible. 

 
Figure 94. Representative board cut from the reconstructed billet. 
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8.3 Property reconstruction 
Utilising the spiral reconstruction of the timber billet, we can map the properties measured 
from the veneer strips back to their original locations. Here we restrict consideration to only 
the Modulus of Elasticity (MOE) of the timber, as it is the key timber property determining 
value in the case of plantation-grown southern pines. 
 
Figure 95 shows the variation in MOE in the radial direction across the billet, as measured 
from the veneer strips, together with a fitted sigmoid function. We see that generally the 
highest stiffness (high MOE) timber is located towards the outer edge of the billet, whilst the 
timber closest to the pith has low stiffness. 
 

 
Figure 95. Radial distribution of MOE based on measured veneer strips. A sigmoid function (—) has been 
fitted to the data (∙) to obtain a continuous distribution of MOE with radial position. 

To model the variation in the MOE with radial position, we have assumed a five parameter 
logistic function (Gottschalk and Dunn, 2005) of the form: 

 𝑓𝑓(𝑟𝑟)  = 𝛼𝛼0 + 
𝛼𝛼1 − 𝛼𝛼0

�1 + � 𝑟𝑟𝛼𝛼3
�
𝛼𝛼2
�
𝛼𝛼4 . (7) 

 

 

where 𝑟𝑟 is the radial position, 𝛼𝛼0 represents the minimum asymptote, 𝛼𝛼1 is the maximum 
asymptote, 𝛼𝛼2 controls the rate of increase of MOE with 𝑟𝑟, 𝛼𝛼3 governs the inflection point, 
and 𝛼𝛼4 is an asymmetry factor. We have utilised MATLAB's nonlinear least squares fitting 
(MathWorks, 2013) to solve: 

 
min
𝜶𝜶
��𝑓𝑓�𝑟𝑟𝑗𝑗;𝛼𝛼� −  𝑀𝑀�𝑟𝑟𝑗𝑗��

2
𝑚𝑚

𝑗𝑗=1

 , 
(8) 
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where 𝛼𝛼 is the vector of parameters 𝛼𝛼0, … ,𝛼𝛼4, 𝑀𝑀(𝑟𝑟𝑗𝑗) are the data points shown in Figure 96, 
and 𝑚𝑚 is the number of data points. 

Given the least-squares solution to Equation (9), we can utilise Equation (10) to estimate the 
value of MOE throughout the billet, and obtain an average value for the MOE of the entire 
billet. To obtain the average MOE for the billet, we utilise the mean value theorem (Anton et 
al., 2005) and integrate the fitted f(r) across the volume of the billet. Note that we assume that 
MOE is independent of θ and z (height in the billet). It is important to calculate the average in 
this way to correctly account for the radial dependence of MOE and timber volume. 

From the mean value theorem, we form the integral: 

 
MOE𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑉𝑉

 � � � 𝑓𝑓(𝑟𝑟) 𝑟𝑟
𝑔𝑔(𝑧𝑧)

0

ℎ

0

2𝜋𝜋

0
  𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 

(9) 

  

 where 𝑉𝑉 =  1
3
𝜋𝜋�𝑅𝑅butt

2 + 𝑅𝑅butt 𝑅𝑅top + 𝑅𝑅top
2 �ℎ  

is the volume of the truncated cone-shaped billet, 𝑅𝑅butt and 𝑅𝑅top are the radius of the butt and 
top end of the billet respectively, and ℎ is the length of the billet. The function 𝑔𝑔(𝑧𝑧) describes 
how the billet radius varies linearly with height, 𝑧𝑧, and is given by: 

 
𝑔𝑔(𝑧𝑧)  =  𝑅𝑅butt � 1 −

(1 − 𝛾𝛾)
ℎ

 � 
(10) 

  

with 𝛾𝛾 =  𝑅𝑅top/𝑅𝑅butt. allows the average MOE to be calculated for each individual billet, and 
we compare this to the billet MOE measured using acoustic methods (Faydi et al., 2017; 
Paradis et al., 2017). This comparison is shown in Figure 74. We see that overall, we obtain 
good correlation between our predicted billet MOE and the measured values, with an 𝑅𝑅2 
value of approximately 0.63. Out of the 60 billets analysed here, our estimate for MOE is 
within 10% of the measured value for 45 of them, with only one billet showing greater than 
20% difference (26.3%), as shown in Figure 96. 
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Figure 96. Correlation between measured and predicted billet MOE (∙), fitted regression line ( — ) and 
line of perfect correlation ( — ). The red circled data point shows the point with the largest relative error 
(26.3%). 
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 Other traits investigated that influence value 
 
In section 6 we discussed the main driver of value (i.e. MOE). Here we discuss other traits 
that influence value particularly resin and permeability. Shrinkage of the core segments was 
also evaluated during the project, however no significant findings were made. Hence we have 
focussed this section on resin and permeability. 

9.1 Resin and extractives variability 
Data on resin and extractives were captured on the core segments for two reasons: 

• To correct the density data used in the calculation of the USMOE.  This allowed more 
accurate measurement of this trait on the cores and therefore reduce the bias indicating 
that USMOE was a more accurate way to scale up to product value in the southern 
pine estate as measured on the boards than either the ST300 or Resistograph tools. 

• To evaluate the variation of resin and extractives across the southern pine estate to see 
the variation at a taxon, site (state forest) and age level.  

 
This second dot point is the focus of this section of the report.  
 
The sampling strategy was designed to obtain training samples from the full range of site 
indices for the ages and taxa of interest to provide calibration data (based on wet chemistry) 
for NIR analysis. A similar strategy to that used for the ST300 and coring plots (section 14.3) 
was applied. To set up the calibration, 28 locations were identified covering the range and of 
site indices and age classes for each taxon at locations in SEQ and northern NSW. Two trees 
adjacent but not closer than 3 rows to a growth plot were selected for destructive sampling, 
involving the extraction of a single 200 mm disc from each tree, collected at breast height. 
The aim was to select a highly resinous tree (obvious resin exudation) and a non- or low 
resinous tree (no visible resin exudation) from each location.   
 
Details of the sites selected for the resin and extractives NIR calibration study were: 
 

• hybrids: 13 sites × 2 trees. age classes: 15-20 years, 25-31 years.  
• PCH:   7 sites × 2 trees. age classes: 15-20 years, 25-31 years. 
• PEE:    8 sites × 2 trees.  age classes: 15-20 years, 25-31 years.  

 
The wet chemistry wood extractives content method is detailed in section 14.2.8. 

9.1.1 Variability between taxon and plots  

Resin content expressed as a percentage of oven dried mass was scaled up to the tree level 
using the 2D sigmoid curves from the breast height cores (i.e. area / disc basis) discussed in 
Section 6. Overall the tree level resin did not vary much across the 54 plots with resin within 
the tree ranging from a minimum of 2 to 20.3 % of the oven dried mass with a mean of 7.6 % 
and median of 7.2 %.  At the taxon level the median resin content across all taxon was similar 
with PEE having a slightly lower median and slightly less variation (shorter tails) than the 
other taxon. This may be due to the fact that fewer PEE trees were evaluated for resin content 
(only 5 plots) compared to the other taxon (9 F1, 18 F2, and 22 PCH plots). In all trees resin 
was more likely to occur close to the pith and not near the bark (Figure 98). 
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Figure 97. Violin plot showing the variation in percentage of resin (on an oven dried mass basis) in 
southern pine taxon sampled across multiple plots. The red dot is the median for that taxon. Width of the 
violin plot indicates the number of trees in that resin class. 
 

 
Figure 98. Expression of radial resin content % for all increment cores from 54 plots (all taxa combined). 
Each data point corresponds to one 20 mm segment from a core. 
 
At the plot level, the average resin content as a percentage of oven dried mass was similar 
across all the plots sampled with median resin % across all plots being between 5-10% of the 
oven dried mass. Overall, neither taxon nor site (state forest) appeared to impact resin content; 
however age did impact this trait with the older plots generally having higher resin content 
than the younger plots (Figure 99).  
 

9.1.2 Key points from the resin study 
The results indicate that neither taxon nor site appear to have an impact on resin development 
in the trees, however age appears to have an impact on all taxa. Therefore, if resin is a factor 
of importance for either the growers or processors, then stand age should be taken into 
consideration, as a potential indicator of elevated resin content.    
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Figure 99. Variation in resin content using the 2D sigmoid curves from the breast height cores expressed 
as a percentage of oven dried mass of the segments across 54 southern pine plots. 
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9.2 Permeability results and discussion 
Permeability is the property of a material that indicates how freely fluids flow in response to a 
pressure gradient and for liquids, it is determined by measuring the rate of flow of fluid 
through a wood specimen of known length and cross-sectional area when a known pressure 
difference is applied (Booker, 1977). The permeability of wood to liquids influences many 
important processes including treatment with preservatives, wood modification systems, 
drying, chemical pulping, gluing, finishing and durability (Booker, 1977, Zimmer et al., 2014, 
Sandberg and Salin, 2012). 
 
Permeability was measured on two separate sets of samples to assess variability in typical 
southern pine resources. Wood is very permeable in the longitudinal direction and less so in 
the radial and tangential directions, so we focussed on these latter two directions as they are 
the limiting dimensions for treatment of southern pine. One set of samples was prepared for 
radial liquid permeability and the other for tangential liquid permeability. 

9.2.1 Radial permeability 
The radial permeability of the F1 hybrid pine (Pinus elliottii var. elliottii [PEE] × Pinus 
caribaea var. hondurensis [PCH]) was investigated for wood samples (at three radial 
positions: near the pith, mid radius and near the bark of the tree) from 30 trees at age 19, 
representing three F1 genotypes planted at five different stocking rates (Experiment 622NC, 
Beerburrum). Tree mean radial permeability varied within and between F1 hybrid genotypes; 
however, the differences in permeability between three genotypes was not statistically 
significant (Figure 100). For all data combined, the ranking was F1 seedling most permeable, 
followed by clone C625 and then clone C887 (least permeable).  
 

 
Figure 100. Box plot representation of liquid radial permeability by three F1 genotypes (averaged across 5 
stocking rates) 
 
Tree mean radial permeability varied slightly between different stocking rates (Figure 101). 
Again the differences were not statistically significant with a large overlap for all stocking 
rates. 
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Figure 101. Liquid radial permeability for five stocking rates (averaged across three F1 hybrid genotypes). 
 
Figure 102 show the radial gradient of liquid permeability. Permeability was highest in the 
outer wood and lowest (effectively zero) nearer the pith where some samples were 
impermeable. 
 

 

 
Figure 102. Liquid permeability of wood samples across the radial axis. 
 
Overall, mean liquid permeability decreased radially from near the bark moving towards the 
pith and the differences between radial positions were statistically significant at p<0.001. 



 

114 
 

Excluding the near pith results, a significant relationship (p<0.05) was found between 
distance from the pith and liquid radial permeability. 
 
Nineteen percent of liquid radial permeability samples registered zero permeability. These 
results are most likely due to local anatomical characteristics associated with heartwood 
formation, or wood chemistry that restricted fluid flow. For example, in most cases it was the 
resinous samples closest to the pith which registered zero permeability.  

9.2.2 Tangential liquid permeability 
Tangential liquid permeability was tested on a wider range of taxa resulting in a higher 
variability of results. For all data combined, in order from highest to lowest tangential 
permeability, the ranking was loblolly pine (Taeda; however this is represented by only two 
trees), F2, PEE, PCH and F1 (Figure 103).  
 

 
Figure 103. Tangential permeability of each southern pine taxon. 

Mean tangential permeability also varied considerably within and between state forests from 
which the samples were collected (Figure 104). For all data combined, in order from highest 
to lowest tangential permeability the ranking was Yabbra (NSW), Whiporie (NSW), Toolara 
(Qld), Tuan (Qld), Beerburrum (BBM, Qld) and Wongi (Qld). 
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Figure 104. Tangential permeability of wood samples from state forest. 

The differences in tangential permeability within and between taxa, sites and plantation ages 
would most likely be related to wood anatomical differences influenced by many factors 
including genetics and growing conditions. Treatability is closely linked to permeability and 
can vary between stands due to variation in wood anatomical characteristics influenced by 
factors such as geographic origin, climate, position in the stand, growth increments and intra-
tree competition. Apart from wood anatomical variation, differences in wood chemistry (e.g. 
wood extractives or resin content) could also explain some of the variation.  

Figure 105 shows differences in tangential permeability according to radial position from pith 
to bark for all samples combined. As for radial permeability, there was a gradient from pith to 
bark with lower permeability being observed near the pith and highest permeability in the 
outer wood nearer the bark. However the variation was much lower. This can be explained by 
the trend of reducing heartwood content radially from the pith to the bark (or increasing 
transformation of sapwood to heartwood from the bark inwards) although the extent of 
heartwood formation varies with age. The heartwood of most species is less permeable due to 
higher extractives content, greater pit aspiration, pit encrustation and reduced size and 
frequency of pits. 
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Figure 105. Tangential liquid permeability of wood samples along the radial axis. 
 
For all data combined, no significant relationships were found between tangential 
permeability and cambial age (adjusted2 R2 =0.002); tree age (adjusted R2 =0.002); density 
(adjusted R2 =0.008) or DBHOB (adjusted R2 =0.002). 
 
Overall, 7% of the samples registered zero tangential permeability even after a repeat 
measurement. These results could be due to anatomical or chemical features of the wood that 
restricted fluid flow. 

9.2.3 Key points from the permeability study 
There was no significant variability in liquid radial permeability between different genotypes 
of the F1 hybrid, nor different stocking rates as tested in this study. Permeability does 
however display a pattern with higher permeability measured nearer the outer wood, and low 
or no permeability near the pith. 
 
  

                                                 
2 Adjusted R2 is the R2 corrected for the sample size and numbers of coefficients 
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 Key findings and recommendations 

10.1 Key findings from the study were: 

• Sigmoid curves (S-shaped curves) capture the variation in wood properties from the 
pith to the bark.  

o The cambial age versus ultrasound MOE (USMOE) sigmoids, referred to here 
as ‘fingerprint curves’, measured along sampled cores, are believed to be 
independent of the silviculture, size and growth of the trees. Variation of these 
curves is dependent on genetics and environment. They allow the grower and 
processor to determine the performance potential of genetic material in a given 
environment (e.g. the age when a stand will produce 10,000 MPa wood). 

o The radial growth versus USMOE curves, referred to as ‘radial sigmoids’, are 
influenced by silviculture as well as genetics and environment. These curves 
can be processed to estimate the quantity of wood of a given performance (e.g. 
>10,000 MPa). 

o Both of these curves provide valuable information on product performance. 
This information is useful to manage plantation growth and processing, 
improving the growers’ and processors’ abilities to value stands of trees. 

• The USMOE using a 2D reconstruction approach can estimate MOE for individual 
boards that can be sawn from trees with moderate accuracy (R2 = 0.53) and very little 
bias (2%). Similar accuracy and bias were achieved using 3D approaches. However, 
board MOE estimation using the 3D static bending simulation had a better prediction 
capacity for rating the boards. These correlations are robust, since they are based on a 
deterministic approach that directly connects products to the trees from which they 
were derived. This has potential to improve the growers’ and processors’ abilities to 
value stands of trees and the trees within these stands. The choice of the method of 
board MOE estimation is dependent on the objective and the level of accuracy 
required by the grower or processor. 

• An initial characterisation of the southern pine resource has been completed. This 
study highlighted that some plots or stands will produce high MOE wood (>10,000 
MPa) at a young age (e.g. 5-10 years old) and other stands will not produce this 
quality of wood during a typical rotation. The drivers of the geographical variation of 
the wood properties has to be better understood to be able to map this variation 
spatially and temporally, and to optimise the sampling strategy. 

• Of the three technologies tested, the USMOE provided the most accurate measure of 
sawlog MOE (R2 = 0.78) and the least biased (9% bias). The Resistograph was the 
second most accurate tool at predicting log MOE (R2 = 0.68) and a 9% bias. The 
ST300 was the least accurate tool to predict log MOE (R2 = 0.42) and had a large bias 
of 41%. The large bias on the ST300 resulted in this tool over-predicting the MOE of 
the trees in the stands. 

• The ST300 (time-of-flight of stress waves) and Resistograph (resistance to drilling) 
technologies only give a single measurement or prediction for each sawlog MOE, and 
this number is based on calibrations and approximations. Hence, they cannot be used 
to accurately predict the value of different parts of the plantation estate, but they may 
be useful for a general ranking of stands. They are useful at segregating plots in the 
extreme high or low MOE range. 

• Changing the sawing pattern used on a log can have a dramatic impact on the recovery 
of MGP10 or better boards. This could improve product value with flow-on effects 
across the whole value chain. 
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• In the factorial analysis, moisture related variables had the biggest impact on MOE, 
with variates associated with making moisture available (e.g. rain and increased 
number of rain days) having a positive impact on MOE and drought related factors 
(e.g. number of months with low rainfall (≤ 30 mm of rain) and the total number of 
dry months) having the largest negative effect on MOE. Higher stocking rates were 
positively correlated with higher MOE.  

• Neither taxon nor site appear to have an impact on resin development in the trees, 
however age appears to have an impact on all southern pine taxa investigated, with 
older trees generally having more resin.  

• There was no significant variability in liquid radial permeability between different 
genotypes of the F1 hybrid, nor different stocking rates as tested in this study. 
Permeability does however display a pattern with higher permeability measured nearer 
the outer wood, and low or no permeability near the pith. 

10.2 Key recommendations 
• The sawlog and board MOE estimated by the USMOE should be further validated by 

destructively sampling a broad range of the plots. It is recommended that destructive 
processing of plots / stands with predicted average poor board MOE (< 10,000 MPa) 
and good board MOE (> 10,000 MPa) be undertaken to validate the project findings. 
In addition, for those regions where a number of plots in the lower end of the predicted 
MOE range occur, we recommend the industry should undertake additional surveying 
to see how reflective the results observed here are for these regions. 

• Southern pine growers could use the fingerprint curves obtained from USMOE 
measured on cores at age 17, along with LiDAR information to better manage their 
plantation estates to maximise sales of high value products. 

• Processors could use the USMOE to optimise their settings to maximise recovery of 
high value products improving returns across the whole value chain. 

• Costly silvicultural interventions should be made after the trees in a plot or stand have 
started producing structural wood to maximise the recovery of high value products.  
This needs further investigation. 

• Improving the calibration of the IML Resistograph should be undertaken to try to 
improve its MOE prediction capacity, particularly the MOE of younger plots. Further 
investigations on the traces would inform on the potential to extract local MOE values 
and its ability to predict board performances. In addition, metrological evaluation of 
the tool should be undertaken. 

• If resin is a problem, try to harvest coupes earlier. If resin is desirable then delaying 
harvest may result in more resin being accumulated in the plots. 

• Variation in wood properties above the height where we assessed to in this study 
(approximately 8 m) should be investigated (e.g. the MOE of the top logs may be 
highly impacted by the greater proportion of knots). 

• We have only started to “mine” this large dataset, which warrants much further 
investigation over the coming years to provide on-going benefits to all stakeholders 
across the forest value chain. 

• Site and environmental drivers of wood properties should be evaluated at a finer scale 
than was possible in this study, where we worked on interpolated average climate data 
between planting and sampling age for each plot.  For the climate data, it should be 
possible to align this to the cambial age of the cores to directly compare the impact of 
climate (on a yearly or monthly basis) on wood value. 

• Soil and genetics should be included as factors in future studies to explain more of the 
variation in MOE than that possible in this study. 
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• Plantation growers need to capture soil and genetics data and accurately link this to 
stands, to better understand the impact of these factors on wood value. This will 
facilitate a better understanding of the effect of these factors on wood value and will 
help inform the decision making process. 

• Quantification of the importance of genetics and environment on the cambial age 
sigmoids needs to be investigated to further understand the influence of both of these 
factors on cambial age. This will help answer the question ‘how can we select for or 
manage the trees to maximise production of high value wood?’ 

• Sensitivity analysis should be undertaken on the results and models developed during 
this project to provide confidence in the results and models by quantifying the 
uncertainty in any results or model, and secondly by evaluating how much each input 
is contributing to the output uncertainty. 

• This initial resource characterisation should be expanded to provide tangible benefits 
across the southern pine resource value chain. 

• The reconstruction of log and board MOE from the USMOE should be applied across 
other pine resources in Australia to maximise value in these supply chains. 

• The same approach can be applied to other products such as veneer and/or other 
performance criteria such as fibre length or calorific power. 

• We have presented a useful approach based on the models developed in this project. 
With its current accuracy, it can be implemented on southern pine and other pine 
resources to assess the performances and value of any stand. However, there is great 
potential to improve this approach and make it more user friendly. One avenue for 
further work is around investigating faster means of obtaining useful data so the 
resource can be better understood. 

• Future work should focus on developing user-friendly algorithms into a predictive 
decision support tool to assist the future management of southern pine, radiata pine 
and pinaster pine resources. Eucalyptus plantation resources could as well benefit 
from the project approach (e.g. fibre length). This would deliver technological and 
economic benefits to the timber industry and provide insights about the resource, 
facilitating design of new industrial technologies and optimising current forestry 
operations under changing market and environmental conditions. 

• We propose that a suite of logical follow-on projects would bring growers and 
processors further towards the mutually-beneficial target of Precision Forestry 
Chain. We propose that extending the modelling work and performing further 
analysis of genetic and environmental factors and use of GIS and LiDAR technologies 
will improve the logistics and field management, stand allocation and timing of 
harvesting, information for replanting (second/third-rotation) decisions, impacts of 
climate change on wood production (structure and properties) and processing and 
product development. 
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 Appendices 

14.1 Appendix 1. Site and location information for the study 

14.1.1 Selection of growth plots in Queensland 
The initial basis for the development of a sampling strategy in Queensland was informed by a 
report by Nester 2014 (internal report commissioned by HQPlantations in the lead up to the 
project). He recommended a stratified sampling approach be adopted across plantation nodes 
including: taxa, site index, age class and prior land use history.   
In the adopted sampling strategy, we limited the project to the three major southern pine taxa 
(PCH = P. caribaea var. hondurensis, PEE = Pinus elliottii var. elliottii and hybrid pine (PEE 
x PCH, both F1 and F2 hybrids) across age ranges: thinning age (15 to 20 years old) and 
harvest age (25-36 years).  Three southern pine nodes in SEQ were included in the study: 
Wongi (north of Maryborough), Tuan-Toolara (Maryborough to Gympie region: the largest 
node) and Beerburrum (south of Caloundra) accounting for approximately 100,000 ha of 
southern pine plantations (Figure 106). 
Given we were sampling three distinct locations in Queensland (Wongi, Tuan-Toolara and 
Beerburrum), up to three taxa at each location and a range of site index classes and age 
classes, the decision was made to locate existing growth plots covering as many of the 
combinations as possible. In addition we included ex-pasture, ex-native forest and second 
rotation sites to examine the impact of prior land use on wood quality.  
In SEQ, we selected trees from four site index classes (site index is based on the height of the 
tallest 50 trees per hectare at age 25 years).  The site index classes targeted were: 22-24 m, 
25-27 m, 28-30 m and 31-33 m. In addition five age classes; one being post thinning (15-20 
years old) and four representing harvest age (25-36 years) for each of the three taxa included 
in the study. Selected plots were then overlayed on taxa and planting age maps which showed 
an excellent distribution of plots across the range of the plantings for the respective taxon and 
planting ages.  In total 79 plots were measured and sampled in Queensland. 

14.1.2 Selection of growth plots on the NSW estate. 
In the FCNSW estate, site index, age, location and southern pine taxa were also considered 
when selecting sites to measure, assess and core.  As permanent growth plots were not 
available, compartments were nominated based on their age profile of 15-20 years (similar to 
the thinning age plots in Queensland) and older compartments (25-27 years old) representing 
the oldest plantings of the hybrid pine (F1 and F2), the focus of the work in NSW. Other 
factors considered included the distribution of the compartments across the estate, the ability 
to compare and contrast the wood properties of different southern pine taxa (pine hybrid, PEE 
and P. taeda) and the potential to value add to the project by including compartments already 
assessed in previous wood properties studies (e.g. Palmer and Brown 2013, FCNSW internal 
report, no date). Based on this, 12 plots were established in NSW: eight in the region near 
Whiporie and four near Yabbra (Figure 8).  

14.1.3 Sampling in genotype × spacing trials 
This component of the study involved measures and assessments of two Genotype × spacing 
trials in Queensland.  
• Experiment 622NC, a taxon (three F1 clones and a single F1 family) × spacing trial 
planted during March 1997 at SF 611 Beerburrum.  The trees were 19 years old at the time of 
measurement and sampling in October 2016 and represent a broad range of stocking rates: 
200, 333, 500, 666 and 1,000 spha. These are low to moderately high stocking rates 
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representing a range of low to intermediate inter-tree competition effects. Thirty trees were 
also destructively sampled from this trial (see section 5.2.2). 
• Experiment 288GYM a taxon (10 F1 clones) × spacing trial (Nelder Wheel trial) 
planted in May 1993 in SF 1004 Toolara in the Fraser Coast, Queensland. The trial was 
established with the research objective to quantify the effect of spacing on F1 hybrid 
performance (growth, branch, crown and stem characteristics). The trees were approximately 
24 years old when measured and sampled during February 2017 and represent a broad range 
of stocking rates: 229, 314, 423, 552, 1,006, 1,404, 2,020 and 2,660 spha.  These range from 
very low to very high stockings rates for southern pine. Eight trees of the clone F1 hybrid 
clone 887 (which was sampled in the other genotype × spacing trial) were also destructively 
sampled from this trial. 

 
Figure 106. Example map detailing the plots to be sampled for ST300, cores and resin on HQPlantations 
land near Beerburrum. Age classes of interest are grey (15-20 years old) and purple (24-35 years old).    
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14.1.4 Sampling within the growth plots  
Across all growth plots measured, assessed and sampled we used a stratified sampling 
strategy to capture data on the trees. 
Collection of ST300, core samples and IML Resistograph data 

The initial 10 plots assessed were used as a pilot study to determine the sampling intensity for 
the remainder of the trial. For these plots, two cores per 15 selected trees were extracted. One 
core was taken at 1.2 m above ground, parallel to the row and the second core at 0.7 m above 
ground perpendicular to the row. In addition, ST300 data were collected for the 300 pilot 
study trees. The results from the ST300 trial are presented in Figure 107 and Figure 108 
which shows a strong correlation between the two measures taken for each tree. A simple 
linear regression forced through the origin shows a 1:1 relationship which explained 80% of 
the variation.  
Figure 107 shows that the plot means were very similar for the two sampling positions (along 
and across the planting row. Based on an analysis of the results from these cores it was 
decided that only a single core was required from each tree, and all remaining plots were 
cored only at the 1.2 m height parallel to (along) the row direction. 

 
Figure 107. ST300 acoustic velocity perpendicular to the row (Y-axis) versus velocity parallel to the row 
(X-axis) for the trees measured in the pilot study (10 plots × 15 trees × two axes). 
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Figure 108. Average ST300 velocity of the 30 trees in each pilot study plot. Bars indicate standard error of 
the ‘Mean’ plot velocity 
 
Data was collected from 91 growth plots 

• In these 91 growth plots (79 in Qld and 12 in NSW), field data on row direction, 
aspect, slope and moisture was collected. A stratified sampling was used to select  ̴30 
trees, representing the full range of diameter classes available from the plot.  Each tree 
was measured for total height with a Vertex IV (Haglof, Sweden AB), DBHOB, lean 
(degrees), height to and type of limiting defect, ovality of the tree at 1.3 m (using 
callipers) and time of flight (ToF) acoustics using the Director ST300 (Fibre-gen, 
Christchurch, New Zealand). 

• In a subset of 54 growth plots, 15 trees (of those measured and assessed using the 
ST300), had bark-to-bark cores collected at 1.2 m above ground level, with cores 
collected along the planting row.  Selection of these trees to core was also based on 
stratified sampling to ensure the full range of diameter classes available within the plot 
were sampled. 

• IML Resistograph traces were collected from the same 30 trees sampled using the 
ST300, for 81 growth plots. This data was captured approximately four months 
following the end of the previous measures and sampling. During this time, 10 growth 
plots had been harvested, so Resistograph traces / data are not available for these plots. 
Resistograph traces were collected within 10 cm of 1.2 m point above ground level 
along the planting row and parallel to any previous cores taken from the trees, to allow 
direct comparison between cores and Resistograph predictions of density and MOE.  

14.1.5  Sampling within the Genotype × spacing trials 
In Experiment 622NC data was collected across the whole trial with 15 trees × each genotype 
(three F1 clones [clones 522, 625 and 887] and one F1 family [Batch 4957 ex Beerburrum 
nursery]) × five spacing treatments (200, 333, 500, 666 and 1,000 spha).  Selection of trees to 
measure and assess in each field plot was based on stratified sampling to ensure the full range 
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of diameter classes available within the plot were sampled. For each tree total height, 
DBHOB, lean (degrees), height to and type of limiting defect, ovality of the tree at 1.3 m, 
time of flight (ToF) acoustics using the Director ST300 (Fibre-gen, Christchurch, New 
Zealand) and IML Resistograph traces were collected.  
In Experiment 288GYM data was collected from two replicates in the trial across eight 
stocking rates: 229, 314, 423, 552, 1006, 1404, 2020 and 2660 spha.  For each tree total 
height, DBHOB, lean (degrees), height to and type of limiting defect, ovality of the tree at 1.3 
m, time of flight (ToF) acoustics using the Director ST300 (Fibre-gen, Christchurch, New 
Zealand) and IML Resistograph traces were collected. 

14.1.6 Sacrificial plots: destructive sampling on commercial and experimental plots 
 
The first batch comprised 30 sacrificial trees from a growth plot located within a typical 
commercial plantation, compartment 25B Cowra Logging Area (LA) in State Forest 915 
Tuan, near Maryborough, Queensland (Figure 109). These trees provided a proportional 
representation of the range and distribution of diameter stem classes for the compartment. The 
taxon was F2 hybrid (second filial hybrid, Pinus elliottii var. elliottii × P. caribaea var. 
hondurensis, PEE × PCH cross) and the site was planted during May 1987 giving the trees an 
age of 29 years old at the time of harvest in April 2016. The stocking rate at the time of 
harvest was 388 stems per hectare (spha) which provided representative trees from a relatively 
open plantation with typical post-thinning spacing and minimal inter-tree competition. 
 

 
Figure 109. The F2 hybrid 30 logs, selected from a typical commercial plantation at Tuan. 
 
The remaining trees for destructive sampling were sourced from two separate spacing trials. 
These trials were included to provide an insight to the effects of cambial age and levels of 
inter-tree competition on development of wood properties and characteristics. Eight trees 
were harvested in February 2017 from a Nelder Wheel format spacing trial of ten F1 hybrid 
clones. This Nelder Wheel trial (Experiment 288GYM; Figure 110) is located in 
Compartment 81B Elliott LA, SF 1004 Toolara in the Fraser Coast region of south-east 
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Queensland. The trial was established in May 1993 on a second rotation site with the research 
objective to quantify the effect of spacing on F1 hybrid performance (branch, crown and stem 
characteristics). The trees were approximately 24 years old when harvested during February 
2017. The four stocking rates represented by the selected trees were 1,006 spha, 1,404 spha, 
2,020 spha and 2,660 spha which are relatively high to very high stockings, representing 
strong inter-tree competition. All trees were of the same genetic origin (clone C887). 
 

 
Figure 110. Experiment 288GYM- Nelder Wheel plot layout showing high inter-tree competition near the 
centre and wide spacing near the periphery. 
The second spacing trial provided 31 trees of which one was later rejected due to its small 
size and another was unable to be fully tested as it was broken during harvesting and 
handling. The trees were extracted from Experiment 622NC, an F1 taxon × spacing trial 
planted during March 1997 within Compartment 202 Donnybrook LA, SF 611 Beerburrum, 
north of Brisbane, Queensland (Figure 111). The trees were 19 years old at the time of harvest 
in October 2016 and represent material from three different genetic origins (F1 seedling, clone 
C887 (same as that collected in the other spacing trial) and clone C625) and a broad range of 
stocking rates, from wide spacing at 200 spha and 333 spha, medium stocking rates of 500 
spha and 666 spha, to high stocking at 1,000 spha. 

 
Figure 111. Selecting trees for destructive sampling from Experiment NC622 spacing trials, Beerburrum. 
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Table 5. Site descriptions and types of wood quality data collected. 
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14.2 Appendix 2. Components of the wood value platform 

14.2.1 Increment cores 
Introduction and literature review 

Increment borers are used to extract cores from living and dead trees for analysis of growth 
trends of tree ring patterns and to evaluate wood quality. The coring method is relatively 
inexpensive, rapid and simple.  
 
Increment coring is the most widely used sampling technique for wood density analysis (Gao 
et al., 2017).  Kimberley et al., (2015) developed a wood density model using historical wood 
density dataset values obtained from increment cores and stem discs from almost 10,000 trees 
at over 300 sites of radiata pine (P. radiata) grown in New Zealand. They developed two sub 
models: one for predicting radial variation in breast height wood density and another for 
predicting distribution of density along the height. The model using both ring number and 
ring width predicted wood density better than the model that only considered ring number.  In 
a separate study, they also developed models to explain the variation of wood density among 
sites and among trees within stands and radial and longitudinal variation of wood density 
(Kimberley et al., 2017).  
 
Similarly increment coring has been used to analyse wood density and annual ring width in 
Scots pine (P. sylvestris) (Fries and Ericsson, 2006; Pokharel et al., 2016).  Gao et al. (2017) 
cited that increment corers have been used as a standard method for assessing wood density in 
trees, whereas other methods such as torsiometer, Pilodyn, and nail withdrawal tools have had 
very limited success and cannot replace increment corers. Analysis of annual ring specific 
gravity of breast height (1.37 m) increment cores from 3,957 trees representing 147 
plantations across the natural range of loblolly pine (Pinus taeda) showed that ring specific 
gravity increases with increasing age and varies significantly among physiographic regions 
(Jordan et al., 2008). 
 
Pokharel et al. (2014) extracted 127, 12 mm increment core samples at breast height from 
black spruce (Picea mariana) trees to model wood quality characteristics. Their models 
explained over 32% of variance, with estimated root mean squared errors of 40.4 kg/m3 and 
5.6% for density and latewood percentage, respectively. 
 
Apart from density modelling, increment cores extracted from breast height have also been 
used to analyse other properties and factors affecting wood quality. Dinulica et al.,  (2016) 
determined how wind regime affects the incidence of compression wood in silver fir (Abies 
alba) and found stronger wind effect in trees growing at higher elevation.  
 
Hong et al., (2015) investigated the efficiency of early selection for wood quality in forty year 
old Scots pine (P. sylvestris). A total of 778 wood increment cores were sampled from 179 
full-sib families. They found that wood density, fibre coarseness, fibre wall thickness, and 
MOE increased from the pith to bark and plateaued around ages 24–27, whereas annual ring 
growth and microfibril angle exhibited a declining trend from the pith to bark, reaching a 
minimum around ages 24–27.  
 
Zeller et al. (2017) investigated whether tree species mixing modifies tree ring wood density 
in Scots pine (P. sylvestris) and European beech (Fagus sylvatica). They analysed increment 
cores from 322 trees for tree ring width and tree ring wood density using a 
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LIGNOSTATION™ and found that tree ring width was 14% wider in mixed stands compared 
to pure stands for Scots pine, whereas, for European beech, tree ring widths were similar for 
both mixed and pure stands. 
 
Wood density and MoE variation in boreal softwoods (black spruce, balsam fir, jack pine) and 
hardwoods (paper birch, trembling aspen) were estimated using near-infrared spectroscopy on 
30,159 increment cores from 10,573 inventory plots (Giroud, Bégin, Defo and Ung, 2017). 
Higher temperature and precipitation increased overall wood density and MoE for all species.  
 
Increment cores from white spruce (Picea glauca) analysed from 375 trees were extracted to 
investigate the influence of cambial age correlations between different wood traits and the 
possibility of early selection in order to help decision-making for the improvement of juvenile 
wood (Lenz et al., 2011). They found most correlations became stronger in magnitude in 
rings closer to the bark. 
 
Ivković et al. (2008) collected 12 mm bark-to-bark increment cores at breast height (1.3 m) 
for basic density analysis and bark-to-pith cores were assessed by SilviScan to obtain 
individual ring value MOE, and ring-area weighted averages. The objective of the study was 
to examine the variability and relationship between stiffness, strength, shrinkage and basic 
wood properties. They found that the variability in wood stiffness and strength from pith-to-
bark was very high with greatest change near the pith. For the prediction of billet MOE, the 
combination of ring width, density and microfibril angle showed good correlation (R2=0.506). 
They concluded that although multiple regression can achieve good prediction (R2=0.42) in 
billet stiffness, it has weak potential to predict wood strength and shrinkage (R2=0.22).  
 
Since the annual rings are readily distinguished for pines (Pinus spp., Eberhardt & 
Samuelson, 2015), an increment borer is an efficient tool for dendrochronological analyses for 
these species (Grissino-Mayer, 2003). 
 
Increment coring has been widely used for density analysis and developing correlation 
between properties. However, limited studies have been conducted to predict wood value with 
a focus on MOE. For example, in southern pine, Harding (2008) used 12mm diameter 
increment cores to assess extracted and un-extracted basic density, spiral grain and microfibril 
angle from a range of southern pine genetics and silvicultural trials. He reported moderate 
correlations between core MFA measured on Silviscan and stress wave velocity of the Fakopp 
and Wood Spec instruments. Kain (2003) also used a 12mm diameter increment core to assess 
spiral grain and variation in earlywood and lower latewood density and the ability to select for 
density in southern pine trials. 
 

14.2.2 Tree coring 
Taking a 12 mm core from a tree at breast height is a non-destructive method for collecting a 
large number of wood specimens to determine wood age, rates of growth and wood properties 
without the need to harvest the tree. Although less invasive tools are available, they cannot 
provide the same level of information as a full diametrical core of solid wood. Most non-
destructive evaluation (NDE) methods provide indications of the qualities of the outer wood 
which is often the highest quality within the stem due to its typical higher stiffness and 
density and straighter grain. However, this zone of wood is often removed during 
conventional processing techniques and measurements taken from the periphery of the tree 
may not correlate well to the performance of the inner wood. Therefore transverse cores 
provide the most accurate, and greater breadth, of information across the full diameter. 
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For this project 1,130 transverse cores were extracted from representative trees across 54 
plots. Plot selections were based on age classes to include thinning age (15 to 20 years old) 
and final harvest age plantations (25 to 36 years old). Within the plots trees were selected 
from a stratified sample based on the range and distribution of tree diameters.  
 
Diametrical cores (bark-to-bark), were extracted using a cordless hammer drill fitted with the 
patented DAF 16 mm tree corer bit (DAF, 2015; Figure 112). 
 

 
Figure 112. DAF tree corer system comprising a rechargeable hammer drill (top) and extension bar and 
corer bits (bottom). 
The initial 10 plots accessed were used as a pilot study to determine the sampling intensity for 
the remainder of the project. For these pilot study plots, two cores per 15 selected trees were 
extracted. One core was taken at 1.2 m above ground, parallel to the row direction and the 
other was taken at 0.70 m above ground level perpendicular to the row. Based on an analysis 
of the results from these cores it was decided that only a single core was required from each 
tree, and all remaining plots were cored only at the 1.2 m height parallel to row direction. 
 
Each core was placed in a vacuum-sealed bag to maintain its moisture content and to protect it 
from moulds and fungi. Of the 1,130 cores extracted, 1,018 were processed through the wood 
value platform to provide data for this report. Examples of an intact core and a segmented 
core are depicted in Figure 113. 
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Figure 113. Increment core sample (top) and segmented core (bottom).  
 

14.2.3 Diametrical samples from discs 
Additional cores from four heights along the stem were cut out of discs retrieved from 68 
destructively sampled trees (refer to section 5.2.2). These stems also provided sawlogs and 
peeling billets for extracting commercial products (boards and veneer sheets) which were 
subsequently tested according to Australian and New-Zealand standards. The diametrical 
cores cut out of these 272 discs were segmented and processed through the wood value 
platform as for the increment cores from the standing trees.  
 

14.2.4 Referencing and age mapping 
Cambial age refers to the age of the cambium when the wood was formed. On a seasonal 
basis it corresponds to the ring number when counting outwards from the pith. Cores were 
edged on two sides to provide flat contact surfaces for subsequent ultrasound testing. A high-
definition colour scan was archived to retain a record of the full core. The cores were marked 
out at 20 mm intervals starting at the outer end (bark side) and a unique number marked on 
each segment. Based on the planting date for each plantation, the chronological age at the 
time of core extraction was determined and an allowance made for the position of the core 
(distance from ground level, apical age). Growth rings were transposed onto a booking sheet 
and the minimum, mean and maximum cambial and chronological ages for each 20 mm 
segment recorded (Figure 114). After mapping, the cores were segmented into 20 mm 
sections using a guillotine, ensuring no wood fibre was lost. As indicated above, each 
segment had a unique identifier to maintain chain-of-custody traceable to its original core, 
tree, plot, compartment and logging area. Numbering of core segments was from the outside 
toward the pith of the tree for each side of the tree. For example segment 1 = directly under 
the bark on the side of the tree where drilling into the tree was initiated. When the pith of the 
tree is reached number restarts from the first segment on the opposite side of the tree (directly 
under the bark) so the segments with the highest number from each side are closest to the pith. 
 



 

140 
 

 
Figure 114. Producing a cambial age map from an increment core. 
 

14.2.5 Wood stiffness (Modulus of Elasticity, MOE) 
Stiffness refers to a board’s ability to resist deflection under load and is a function of 
combined wood properties (mainly moisture content, density, microfibril angle) and the 
anatomical structure of the wood. Higher stiffness properties for boards are more valuable due 
to their capacity for longer spans in service. Boards with high stiffness properties can also be 
used in a smaller cross-sectional dimension than boards of lower stiffness. MOE is 
determined directly via standardised static methods in compression, in tension and in bending. 
Non-destructive evaluation (NDE) via resonance acoustics overcomes the problems induced 
by static tests which are time consuming and destructive. 
 
Acoustic techniques provide some of the most accurate methods for non-destructively 
extracting fundamental material information. Pulse-echo ultrasonic methods are commonly 
used to determine the speed of sound in solids, where a single short pulse of high frequency 
sound is applied to one surface and a time-of-flight record of the reflected ultrasonic wave 
from the solid is analysed to estimate the speed of sound given the distance travelled in the 
round trip. Various methods for velocity measurement using pulse-echo methods have been 
previously described in a number of reviews. Among them, ultrasonic, acoustic and resonance 
methods are widely used for wood properties characterisation. 
 
In this project, the mean wood stiffness value for each segment was determined using an 
ultrasound device (Figure 115). The segments were placed between two transducers, with their 
thickness recorded. Measurements were performed in transmission mode at 1 MHz with a dry 
coupling (thin elastomer). The device ensured a constant, light contact pressure. The output 
signal was digitised to calculate the propagation time. The equipment used for this test includes 
a Picoscope oscilloscope (Pico 3224), Olympus 5077PR square wave emitter/receiver, two 
contact transducers (V103 Videoscan, Olympus) and a computer. The software version used 
was CIRAD Ultrasound Transmission Velocity 2015. 
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Figure 115. Ultrasound apparatus for calculation of wood stiffness properties (USMOE). 
 
The stiffness of each segment, expressed as MOE in megapascals (MPa), was determined 
through a corrective formula of the conventional equation: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  𝜌𝜌𝑉𝑉2 = 𝜌𝜌 �
𝐿𝐿
𝜏𝜏
�
2

 
(11) 

 
Where ρ = the density, V = the wave velocity, L = the segment thickness, 𝜏𝜏 = the propagation 
time. This last equation is only valid for guided waves in a freely bound slender beam. 
 
The corrective formula takes into account the Poisson ratios in longitudinal-tangential 
and longitudinal-radial planes, the shape and the dimensions on the specimen. 
 
To establish the correction formula, it was assumed that: 

1. The natural resin within the wood tissue does not alter the wave propagation in the 
wood 

2. The presence of free water over and above fibre-saturation point (FSP, set as a constant 
value of FSP=30%) will alter wave propagation. 

These assumptions have been verified. 

14.2.6 Wood density 
Wood is a porous solid with a similar cell wall density across all species of approximately 
1,500 kg/m3. Different species have different cell wall thicknesses and void sizes so the actual 
range of dry wood densities (12% moisture content) varies from as low as 130 kg/m3 for balsa 
wood (Ochroma pyramidale) up to 1,350 kg/m3 for gidgee (Acacia cambagei). Although 
density by itself is not a self-sufficient index of wood quality, wood density is the most 
commonly studied wood property due to its importance in determining general end-use. 
Density is relatively inexpensive and simple to measure including on small samples such as 
the segments from increment cores used in this project. Segment densities were calculated at 
green, 16%, 8% and oven dry moisture conditions. The water displacement method was used 

A/N acquisition board 

Contact E/R transducers 

Square wave emitter/receiver 
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according to the immersion method described in Australian Standard AN/NZS 1080.3:2000 
Timber—Method of test density. A Mettler Toledo MS 204TS laboratory balance was used for 
all sample weighing (Figure 116).  
 

 
Figure 116. Wood segment density determined in accordance with Australian Standards.  
 
To prevent surface tension on the green wood segments and to provide a stable wet 
environment during immersion, three drops of a wetting agent (Pervitro 75%) were added to 
the water. At 8% moisture content, the segments were treated with a light spray of 3M 
Scotchguard™ fabric and upholstery protector. This prevented instability caused by the 
occurrence of air bubbles during weighing in water. Densities were calculated using the 
formula: 

𝜌𝜌2 =  
𝐴𝐴

𝐴𝐴 − 𝐵𝐵  
 ×  𝜌𝜌𝜌𝜌 

(12) 

 
where:  
  ρ2 = the density of the segment in grams per cubic centimetre 
  A = the mass of the segment in air in grams 
  B = the mass of the segment when immersed in water in grams 
  ρo =the density of the water in grams per cubic centimetre. 
 
The density results were corrected for resin content using predictions for each segment 
gathered by near infrared spectroscopy (NIR) at 8% moisture content (Francis 2016). 
 

14.2.7 Wood shrinkage 
Wood is a biological product formed in an aqueous environment. Freshly harvested southern 
pines typically have moisture content in excess of 100% of the dry wood mass. The removal 
of moisture during drying imparts stability and improves mechanical properties, but results in 
dimensional changes. After drying, wood products can continue to shrink or swell in 
correlation with changing micro-climate conditions, sometimes leading to distortion (spring, 
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twist and bow). One of the objectives of the project was to develop a relatively inexpensive 
alternative method to provide comparative shrinkage data from the 20 mm segments. 
 
The process involved painting one tangential longitudinal face of the 20 mm segments in the 
green condition with white correction fluid and scanning to produce a benchmark digital 
image (Figure 117). Scanning was repeated after drying to 8% moisture content and the two 
areas analysed with the image analysis freeware program ImageJ (Schindelin et al., 2015) by 
first removing artefacts using a threshold function, then selecting a position within the region 
of interest to calculate the number of pixels at a set resolution. The difference in the two areas 
expressed as a percentage provides a comparative indication of the magnitude of shrinkage. 
 

  
Figure 117. Digital scanning of segments (left); ImageJ plot of scan for area analysis (right).  

No significant findings were made and hence we have excluded further discussion on 
shrinkage to concentrate on the more important issue of wood MOE. 

14.2.8 Wood extractives’ content 
Extractives are naturally-occurring compounds produced by plants, often for the purposes of 
wound repair and bio-chemical defence against insect pests. In pines, the best-known 
extractives are collectively referred to as ‘resin’, evident as a semi-solid exudate containing 
aromatic hydrocarbons such as the pinene group of terpene compounds (Figure 118) which 
give pines their distinctive odour.  

 
Figure 118. Resin in the core of a log (left) and exuding from freshly sawn pine boards right). 
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Extractives impact on wood density measurements, which in turn are used in the calculation 
of wood stiffness using data collected during ultrasound testing. Extractives were accounted 
for in this study by predicting the extractives content from core segments enabling an 
extractives content correction factor to be applied to the density values. Near infrared 
spectroscopy (NIR) was selected to indirectly predict the extractives content in diametrical 
cores. A multivariate NIR calibration model was developed from wet chemistry extraction 
data, which enabled rapid predictions of the extractives. The triple extraction wet chemistry 
process was conducted in accordance with the method described by Alves et al., 2012. This 
process involves percolation and extraction steps for each of three solvents: dichloromethane 
(DCM), 96% ethanol and deionised water (Figure 119). 
 

 
Figure 119. Wet chemistry solvent extraction processing of southern pine material. 
 
Fifty-eight sacrificial trees representing different age classes for five southern pine taxon 
growing on a range of sites (n=28) were selected from Queensland and New South Wales 
plantations to develop the NIR calibration models. Disc specimens were collected from breast 
height then sub-sampled from the sapwood, intermediate wood and inner heartwood (close to 
pith). The preliminary step involved scanning of both sawdust (wood ground through a 1 × 1 
mm mesh) and solid wood samples using Bruker MPA NIR (Bruker Optics, Ettlingen, 
Germany) to obtain diffuse reflectance spectra. Spectra were acquired between 800 nm to 
2,500 nm and the spectral resolution of 16 cm-1. To minimise the effect of moisture, sample 
storage and NIR processing were carried out in a constant environment room set to conditions 
equivalent to an equilibrium moisture content of 8%. These data were then interrogated using 
Bruker OPUS software which enabled selection of 87 specimens to be further processed and 
analysed through the wet chemistry laboratory for development of the multivariate calibration 
model. The multivariate NIR calibration model was developed using MATLAB software 
(MATLAB R 2016b).  
 
The DCM extraction resulted in the best calibration with a coefficient of determination R2 = 
0.98, whereas the ethanol and deionised water extractions yielded less extractives (<8%) and 
were more sensitive to extraction measurement uncertainties. This means that the DCM wet 
chemistry and NIR predictions could be used with more prediction power than either the 
ethanol or water extractions. The statistical method of root mean square error of calibration 
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(RMSEC) was used to measure how well the calibration model fitted the calibration set. The 
result was RMSEC = 2.2085. Bias is a measure of how far the curve is away from a line 
forced through the origin and for this calibration bias was 0. Cross validation is a useful tool 
enabling an assessment of the optimal complexity of a model (for example, the number of 
principal components in a Principal Components Analysis (PCA) or Principal Components 
Regression (PCR) model. Similarly it is used to calculate the number of latent variables in a 
Partial Least Squares (PLS) model and it allows the estimation of the performance of a model 
when it is applied to unknown data. A venetian-blind cross (splitting data into groups) 
validation with 16 splits was run on the NIR predicted data, providing the following results: 
• coefficient of determination (cross validation) R2 = 0.97  
• root mean square error of cross validation (RMSECV) = 2.54  
• cross validation bias = -0.056. 
 
The multivariate NIR calibration model was used to rapidly predict resin contents within 20 
mm solid wood segments of diametrical cores collected from 54 plots. A near infrared 
spectrum representing each core segment was collected using the integrating sphere of a 
Bruker MPA and a custom made sample oscillator for sample presentation (Figure 120). The 
sanded radial surface of each 20 mm segment was scanned using the microsample option of a 
Bruker MPA. Again, the constant environment room was used for storage of core segments 
and collection of NIR spectra.  
 

 

 
Figure 120. Rapid scanning of segments using the Bruker MPA near infrared spectroscope (NIR). 

14.2.9 Permeability  
Permeability is the property of a material that indicates how freely fluids or gases flow in 
response to a pressure gradient. Growth features (such as ring width), anatomical features 
(such as tracheid pitting) and wood chemistry (for example, the incidence of resin) impact 
permeability. The permeability of wood to liquids influences many processes including 
treatment (e.g. with preservatives), modification, drying, pulping, gluing and finishing. In the 
case of permeability by liquids, permeability is measured as the rate of flow of fluid through a 
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wood specimen of known length and cross-sectional area while a known pressure gradient is 
applied. Permeability is expressed in milliDarcy units (mD) where 1 mD = 1.01 × 10-15 m². 
 
Tangential permeability measurements were conducted on a sample from fifty-seven trees 
harvested from 28 sites. These were selected to represent the range of taxa, age classes, sites 
across south-east Queensland and northern New South Wales.  
 
Radial permeability was measured on specimens from 30 F1 hybrid trees from a spacing trial 
(622NC, refer to Appendix 1) 
 
Each tree sampled provided a transverse disc from breast height (1.3 m above ground level). 
The discs were conditioned to 8% moisture content, then three specimens at 22 mm diameter  
× 8.5 mm thickness were cut out using a hole-saw drill attachment from positions near pith, 
mid-radius and near bark (Figure 121, tangential permeability and Figure 122, radial 
permeability).  
 

 
Figure 121. Tangential permeability sample positions.  
The range of cambial ages (ring number from the pith) was recorded for each specimen and 
they were coated with epoxy resin on all surfaces except the surface facing the direction of 
flow. This was done to minimise any liquid movement through surfaces other than the 
tangential or radial surface, so permeability could be measured in one direction only. 
 
Wood liquid permeability measurements were undertaken on all the samples using a Porolux 
1000 Porometer. This wood value platform module measures the pore size and liquid 
permeability. Samples were subjected to water flowing at a constant pressure of 4,200 
millibars for five minutes. In some cases, where the sample registered zero permeability after 
five minutes, a second permeability test of up to one hour was implemented. Figure 123 
shows a permeability test being undertaken using the Porolux 1000 porometer equipment. 
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Figure 122. Radial permeability specimen locations. 

 

 
Figure 123. Permeability module in the wood value platform: Porolux 1000 porometer. 
Permeability was calculated from Booker’s equation (Booker, 1977): 
 

K = QLη/AΔP 
 

(13) 

 
Where K = permeability (mD) 
 Q = flow rate (m/s) 
 L = length of the specimen (m) 
 η = viscosity (Pa.s) 
 A = cross-sectional area of flow (m2) 

ΔP = pressure difference across the specimen (Pa) 
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Resin contents for each permeability specimen were predicted using the NIR module 
described earlier section 5.1.1.7). Wood density was measured using the immersion method 
also described earlier (section 5.1.1.5). 
 

14.3 Appendix 3. Propagation time of acoustic waves in solids using the 
ST300 (Fibre-gen, New Zealand) 

Measurement methodology 
The experimental setup consisted of two acoustic probes (accelerometers), a hand-held 
hammer, and a portable digital oscilloscope (Figure 124). The two probes were inserted into 
the tree trunk at about 45° to the trunk surface (pierce the bark and cambium and extend into 
the sapwood) and aligned within a vertical plane on the same face approximately 1.2 m apart 
from 60-70 cm above ground level. A laser guided ultrasound rangefinder measured the exact 
distance between the probes. Acoustic waves were introduced into the tree in the longitudinal 
direction by impacting the lower probe with the hand-held hammer. The receiver probe 
recorded the acoustic signal passing through the tree and a propagation time (Time-of-fight, 
TOF) was determined. The distance between probes and TOF were sent by wireless 
communication to a PDA (personal digital assistant) that calculated the acoustic velocity 
(Wang et al., 2001; Carter et al. 2005; Wang et al., 2007). Wang et al. patented the principle 
of measurement in 2008. 
 

 
Figure 124. Experimental setup used for testing standing trees (ST300, Fibre-gen, Inc.) 
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14.3.1 Time-of-flight: rationale and literature review 
Analysis fundamentals 
The distance between probes (L) divided by the propagation time (TOF) is equal to the 
calculated acoustic velocity (V): 
 

𝑉𝑉 =
𝐿𝐿

𝑇𝑇𝑇𝑇𝐹𝐹
 

(14) 

 
 
 
Theoretically, the acoustic velocity (V) is linked to the apparent modulus of elasticity (MOE) 
and density of the material (ρ) by the one-dimensional wave equation: (Wang et al., 2001; 
Paradis, 2013) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜌𝜌𝑉𝑉2 (15) 

 
This equation is valid for homogeneous material (e.g. steel) and planar compressional waves. 
This type of one-dimensional wave propagation is encountered in very slender beams where 
the distance L is much greater than the diameter (e.g.10 × diameter).  In a tree this does not 
often apply (Brancheriau and Bailleres 2002) due to the large tree diameters.  Still, many 
authors report good velocity readings when the velocity is measured over 1.2-1.3 m (Wang et 
al., 2001; Carter et al. 2005; Paradis, 2013). This distance is used as it allows rapid 
measurement, and from practical concerns for operators reaching a comfortable height.  
 
An estimation of the apparent MOE requires a measure of tree density, but density is not 
usually measured in the field. Still, many authors hypothesised that the acoustic velocity is 
related to the mechanical properties of wood in the tree (Wang et al., 2001). Researchers 
therefore concentrated on correlating the velocity with quality criterion defined for trees, logs 
and boards (Carter et al. 2005; Wang et al., 2007; Paradis, 2013). At this point, it is important 
to remind readers of this report, that neither a correlation coefficient (r), nor a coefficient of 
determination (R²), are good indicators to compare different regression results from different 
studies because the R² depends on the variance of the trait (the standard deviation of the 
residuals should be used and compared in this case). 
 
As the acoustic velocity (V) is linked to the specific modulus (MOE/ρ), it is normal to find 
that V mainly varies according to: the moisture content within the tree (from pith to bark and 
from base to top of tree that is associated with the formation processes of juvenile and mature 
wood); with the grain angle and with the microfibril angle. Variation observations of the 
MOE and the density can be found in many references (see for example Kollmann and Côté 
1968, Bodig and Jayne 1982, Barnett and Jeronimidis 2003). 
 
When the trunk is impacted with a hammer, low frequency waves are induced in the medium 
(Arciniegas et al., 2014). These waves are of different types (compressional, shear and surface 
waves) (Bruneau and Potel, 2009). The acoustic velocity is defined as the apparent velocity of 
the fastest compressional wave. ‘Apparent’ velocity is used here, as different methods of time 
propagation analysis lead to different results (Arciniegas et al., 2014, 2015). For the specific 
case of the ST300, the user can visually evaluate the quality of the acoustic signal. A 
waveform with a sharp-rising pulse (high slope) in the beginning is deemed as a good signal 
and hence the ToF is determined by measuring the time difference between two rising start 
points of the waveforms (Wang et al., 2007). The slope-detection method, as cited by Wang 
(2007), is not documented in the literature. 
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To improve the accuracy of the ToF determination, Wang et al. (2007) performed tree 
measurements on a randomly selected side of the tree trunk, and three readings were collected 
to obtain an average acoustic velocity. In comparing the results between ST300 and HM200 
Carter et al., 2005 stated that the correlation is improved as one acquires and averages more 
samples around the stem circumference with the ST300. The best prediction of log velocity 
was achieved by averaging 27 hits/tree (three positions × nine hits). More recently, Paradis et 
al. (2013) chose eight successive hits to limit the variability between successive readings on 
the same tree. 
 
When using the ST300, the distance between probes is generally 1.2 m, but the equation is 
only valid for distances which are approximately 10 times the diameter (as an example, for a 
tree of 30 cm diameter, the probes should be placed 3.0 m apart). If the distance between 
probes is shortened, the configuration of the test changes progressively from one-dimensional 
waves to volume waves. Christoffel’s equation should therefore be used, where the stiffness 
matrix in the longitudinal direction is superior to the corresponding modulus of elasticity. 
Since the physical assumptions for these tools (based on equation 15) are violated, the ToF is 
higher than that which would be measured if the correct configuration was used. 
 
Issues to consider when using ToF acoustics to estimate MOE include: 
 Acoustic velocity varies with moisture content and hence season, with longitudinal 

velocity reducing with increased moisture content whereas radial and tangential velocities 
become variable (Legg and Bradley, 2016).  Density also varies with moisture content 
which will impact on the predicted MOE. Note that above fibre saturation point MOE is 
relatively constant. 

 Acoustic velocity decreases with increased temperature (Legg and Bradley, 2016). 
 Reaction wood can cause variations in acoustic velocity measurements (Legg and 

Bradley, 2016).  
 Branches, knots, grain angle and spiral grain can all reduce acoustic wave velocity (Legg 

and Bradley, 2016). 
 There may be a negative correlation between acoustic wave velocity and DBH, with 

some authors suggesting tree stiffness should be compared to slenderness (height/DBH) 
rather than DBH (e.g. Legg and Bradley, 2016 Watt and Zoric, 2010). 

 Acoustic velocity increases with increasing age of a tree in a non-linear way (Legg and 
Bradley, 2016). 

 ToF acoustic tools over-estimate the stiffness compared to resonance acoustics (e.g. 
HM200 or Beam Identification by Non-destructive Grading (BING) or bending 
techniques (Legg and Bradley 2016; Wang, 2013). 

 ToF measurements are over approximately 1 m compared to resonance acoustics 
measured over a whole log, hence ToF measurements are more prone to errors from 
localised variation in the wood properties (grain angle, knots / branches, spiral grain, 
reaction wood, etc). This can partially be compensated for by using multiple hammer hits 
(Legg and Bradley, 2016). 

 ToF acoustic measurements more closely correspond to the MOE of the outerwood than 
the corewood (Legg and Bradley, 2016). 

 Thinning is thought to reduce ToF velocities of some species e.g. P. radiata but not 
Douglas fir, Pseudotsuga menziesii (Legg and Bradley, 2016). 

 Increased stocking is positively correlated with increased ToF acoustic velocities and 
predicted MOE in P. radiata and Cryptomeria japonica (Japanese cedar; Legg and 
Bradley, 2016), P. taeda when stocking increased from 1,334-2,990 stems/ha (Roth et al., 
2007) and P. radiata when stocking increased from 275 to 2,990 stems/ha (Waghorn et 
al., 2007). 
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 Standing tree ToF acoustic tools can be operationally used for indicative stand level 
comparisons of stiffness.  They are also useful for comparative tests, such as in the 
selection of genetic material and assessment of thinning impacts.  Further work is needed 
for widespread application e.g. sorting compartments for wood quality and value 
(Murphy and Cown, 2015). 

 Field based acoustic tools are practical and show promise, however they cannot detect 
resin blemishes, decay, intra-ring checks and reaction wood (Murphy and Cown, 2015). 

 Using constant (assumed) densities may result in substantial over estimation of MOE 
from acoustic tools, particularly at the log level (Wielinga et al., 2009, Watt and 
Trincado, 2014). 

 There is often more variation in MOE within a Sitka spruce (Picea sitchensis) stand than 
between stands (Moore et al., 2013).  Given this, Moore et al., (2013) suggested that ToF 
acoustic tools could be used to segregate trees that have potential to produce high 
stiffness timber. 

 
A recent study has highlighted that the theoretical operations of ToF acoustic tools are still 
not completely understood with Essien et al. (2017) observing that whole disc density 
explained a higher portion of variation in acoustic velocity than just examining the outer 
wood density.  In their study of 14 year old P. taeda, they found a moderate but significant 
correlation (0.48) between cellulose and log velocity measured using an ST300. They also 
found cellulose content was strongly associated with acoustic velocity and MOE providing 
molecular level support for the capability of ToF tools to estimate stiffness. 
 
Studies evaluating the characterisation of plantation estates using ToF acoustic tools have 
been underway for the last 15 years following the development of portable ToF acoustic tools 
such as the Director ST300, IML Hammer, TreeTap and Fakopp. The reason these tools have 
been included in these resource characterisation studies is due to the ease of data collection in 
the field and the ease of analysing this data to rank plots / compartments for wood properties 
(but not necessarily value at the board level as described in section 6.4).  

14.3.2 Repeatability and operator effects 
Previous characterisation studies (e.g. Blakemore et al., 2010) have found that ToF stress 
wave tools were subject to errors associated with poor tool calibration and variation between 
operators. To account for this we have undertaken several studies to minimise the variation 
and understand what is being measured and how good the tools are at predicting MOE of the 
log and of the boards. 
 
To overcome calibration issues with the ST300 tool it was calibrated on a regular basis to 
ensure that it was providing accurate data.  We also undertook a range of supplementary tests 
as follows: 
 Effect of operator.  We found there was variation for the ToF velocity when three 

operators used the same equipment on the same tree.  Hence we decided to use only one 
operator to collect all ST300 data. 

 Similarly, we found that when using two calibrated ST300 tools there was up to a 12% 
difference in acoustic velocity readings between the two instruments.  Hence we decided 
to only use one ST300 tool for the whole study. 

 To ensure good repeatability of the ST300 across seasons, we conducted a season of 
sampling study within a single growth plot with 47 trees.  There were very strong 
correlations between the four repeated measures over an 11 month period with R2 ranging 
from 0.91 to 0.95. For example, Figure 125 shows correlations between acoustic velocity 
measures 11 months apart for the same trees. 
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In addition we evaluated what part of the logs the ST300 was measuring and how this data 
corresponded to ST300 measurements of 30 × 30 × 1,800 mm boards cut from these logs.  In 
this small study we evaluated two logs from a 38 year old PEE plantation.  We found that the 
acoustic velocity of the outer boards were highly correlated with the ST300 acoustic velocity 
of the logs (R2= 0.92). However, the acoustic velocity of the inner boards was not correlated 
to the log results (see blue circle, Figure 126).  Hence the ST300 is not predicting the wood 
properties or value of the inner boards that will be cut from a log even though these generally 
constitute the majority of the boards. 
 

 
Figure 125. Repeatability of ST300 acoustic velocity measures between two measure dates (11 months 
apart) for 47 trees in Growth Plot 640 at Toolara.  Data was collected by a single operator using the same 
ST300 tool. 
 

 
 

Figure 126. Comparison of ST300 acoustic velocity data collected from two 38 year old PEE logs with the 
acoustic velocity of boards cut from these logs. 
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14.4 Appendix 4. Resonance frequencies of acoustic waves in solids (HM200, 
Fibre-gen, New Zealand) 

14.4.1 Measurement methodology 
An acoustic probe is put in contact with one end of the log. The user hits the end of the log 
with a hammer (Figure 127). The probe records the resulting acoustic signal, and a built-in 
Fast Fourier Transformation (FFT) program analyses this signal to determine the fundamental 
resonance frequency of the log. Once the user enters the log length, or selects the length from 
a pre-loaded list, the acoustic velocity is determined. (Wang et al., 2005; Carter et al., 2005). 
The user can also program the HM200 to recognise up to three grade categories based on the 
displayed velocity. These are signalled to the operator by a colour code in the display and by a 
unique sound signal. The operator can then suitably colour spray or otherwise mark the log 
for subsequent sorting (Carter et al. 2005). 

 
Figure 127. (Left) Experimental setup used for testing logs (HM200, Fibre Gen, Inc., Carter et al. 2005). 
(Right) Collecting HM200 data in the field. 
 

14.4.2 Analysis fundamentals 
The log acoustic velocity is determined using the following equation: 
 

𝑉𝑉 = 2𝐿𝐿𝐿𝐿 (16) 

 
Where: 

V = acoustic velocity 
f = the fundamental natural frequency, and  
L = the log length (Wang et al., 2005). 
 

This equation is valid for homogeneous materials (e.g. steel) and planar compressional waves 
(one-dimensional wave-guide) in a slender beam, which can be characterised as having a 
length L ≥ 10 × diameter. The resulting velocity is linked to the global dynamic behaviour of 
the beam (Achim et al., 2011). This resonance velocity measures the whole log whereas ToF 
velocity only measures a local dynamic MOE. Furthermore, the vibration should occur in free 
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boundary conditions with negligible effect of the log supports which is different from a 
simply supported beam (Brancheriau and Bailleres, 2002). However this rarely applies in the 
field or mill. Ideally, acquisition settings of acoustic signals (sampling frequency and duration 
of acquisition) for the HM200 should be recorded and the probe should be firmly connected 
to the surface (Dossing, 1988). 
 
Tree acoustic velocity (ST300) was compared with log acoustic velocity (HM200) by Carter 
et al. (2005) and Wang et al. (2007). They found that in most cases the correlation between 
standing tree velocities and log velocities increases as age and diameter decrease (Carter et al. 
2005). Therefore, for small diameters, the resonance velocity is better linked with the ToF 
velocity. 
 
This phenomenon was partially approached by Wang et al. (2007) in isotropic material. The 
trial data showed that acoustic velocity measured on standing trees by ToF method is 
generally higher than the acoustic velocity measured in the butt logs by resonance method 
(Wang et al. 2007). Their results were consistent with previous findings on standing trees and 
logs, and concluded that deviation of tree velocity from log velocity seems be influenced by 
species, stand age and DBH of the trees. They proposed a correction of the form (Wang et al. 
2007): 

𝐶𝐶𝐿𝐿 = 𝑎𝑎 �
𝐷𝐷𝐷𝐷𝐷𝐷
𝑆𝑆

�
𝑏𝑏

𝐶𝐶𝑇𝑇𝑐𝑐 
(17) 

 
Where: 

CT is the acoustic velocity of a tree 
CL is the acoustic velocity of a butt log 
a, b, and c are coefficients determined by regression analysis 
S is the span between two probes.  

 
In the trial studies discussed in this paper, S was kept constant and was 1.2 m (Wang et al., 
2007). The HM200 was used in the study, as it is one of the traits predicted by the 
Resistograph. As the physical principle (measure of longitudinal resonance frequency) for 
both the HM200 and BING is the same, they were highly correlated (R2 = 0.95) and any 
difference would be attributed to operator effect.  In this study, we have provided data from 
BING (discussed next) because it can also be used on boards and veneers.  
 

14.5 Appendix 5. Resonance frequencies of acoustic waves in solids (BING, 
CIRAD, France) 

14.5.1 Measurement methodology 
The BING consists of a microphone, an acquisition card (Pico Technology), two elastic 
supports and a hand-held hammer (Figure 124). The geometric characteristics and the mass of 
the sample were measured with a calliper and a weight scale. This device, originally designed 
for small samples (360 mm × 20 mm × 20 mm), can be used with a wide range of shapes and 
sizes. The sample was placed on the two elastic supports to ensure free vibrations. An impulse 
was generated by hitting one end of the sample and the acoustic sensor recorded the induced 
vibrations on the other end. The acquisition card was an analog-to-digital converter (12 bit 
resolution for the Pico card) and the main settings were a sampling frequency of 
approximately 40 kHz with an acquisition duration less than one second depending on the size 
of the sample, and the test configuration. The BING software allowed the automatic detection 
of resonance frequencies and the computation of the results (Baillères et al., 2009; 
Brancheriau, 2014; Faydi et al., 2017). 
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Figure 128. BING resonance module determining stiffness (MOE) on a veneer strip. 

14.5.2 Analysis fundamentals 
For longitudinal vibrations, the following equation is used to determine the axial modulus of 
elasticity: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 4𝐿𝐿2𝜌𝜌 �
𝑓𝑓𝑛𝑛
𝑛𝑛
�
2

 
(18) 

 
 

Where: 
L = length of the beam 
ρ = density 
fn = vibration frequency of rank n.  

 
This equation is valid for slender beams (L/h ≥ 10, h: the height of the beam) and only for the 
fundamental frequency (Brancheriau and Bailleres, 2002). For higher ranks, the Poisson’s 
effect induces a bias and a correction was proposed by Brancheriau (2011). 
 
The BING technique has been used and tested with other NDE techniques to improve the 
stress grading of piece of timber (Baillères et al., 2009; Hein et al., 2010a; Bailleres et al., 
2012; Faydi et al., 2017) or to study the environmental and progeny effects on quality 
properties (see for example Hein et al., 2010b).  
 
Bing used in this study to measure the MOE of logs, boards and veneer. 
 

microphone 

elastic support 

hammer 
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14.6 Appendix 6. Resistance of drilling (torque): Resistograph IML-RESI 
PD-Series 

14.6.1 Introduction and literature review 
There is a range of publications over the last 20 years about micro-drill resistance tools to 
non-destructively evaluate wood properties of tree species. However, widespread adoption of 
these tools has not occurred, although several Australian forest growers have recently 
purchased Resistograph tools.  These tools measure variations in drilling resistance of a thin 
needle when driven into a tree at a constant force.  Measured variables include: power 
consumption, torque, depth penetration through time and are reported to relate well to 
variation in tree density and the tools can detect growth rings based on the variation in drilling 
resistance (Rinn et al., 1996).  Resistance tools have also been used to detect wood rot in trees 
(Kahl et al., 2009).   
Isik and Li (2003), evaluated an older version of the IML Resistograph tool in four 11 year 
old loblolly pine (Pinus taeda) progeny trials; directly comparing density measured on bark to 
bark cores to the Resistograph reading (amplitude) and found significant, weak to moderate 
phenotypic correlations between wood density and the Resistograph amplitude regression 
equation (r=0.29 to 0.65 across the four sites), however the correlation across all sites was 
weak (r=0.12). Given this they found a high family mean correlation between density and 
Resistograph amplitude, leading to them concluding the Resistograph could be used to rank 
loblolly pine families for wood density. In another study Gantz (2002) found that phenotypic 
correlations between Resistograph amplitudes and wood density was moderate for four 
species (two Pinus and two Eucalyptus species), R2 ranging from between 0.30 to 0.78. 
Recently, strong linear correlations (R2 range 0.66 to 0.87) have been found with the basic 
density of increment cores of eucalypts species (E. nitens and E. globulus) across 8 sites in 
southern Australia (Downes et al., submitted).  
Variation in air temperature, flexing of the drill bit during drilling and presence of knots are 
reported to impact the quality of the Resistograph traces and data of interior spruce (Picea 
spp.; Ukrainetz and O’Neill, 2010). In addition, moisture content of the wood may affect 
drilling resistance (Lin et al. 2003). The development, use and ability of the Resistograph to 
predict basic density is well described in Goa et al. (2017). 
No published papers were found on the ability of the IML Resistograph to predict log MOE 
and log HM200 acoustic velocity, however Downes and Lausberg (2016) have report a 
moderate relationship between these traits and the trace from the Resistograph for P. radiata.  

14.6.2 Analysis Fundamentals 
This technology is protected by confidentially agreements and we cannot analyse the 
fundamentals of how it operates. 
 

14.7 Appendix 7. Destructive standard static bending tests 
Static bending tests were performed using a testing method in accordance with AS/NZS 
4063.1:2010 Characterization of structural timber - Test methods (AS/NZS 4063). Random 
position tests were used on every board. MOE and MOR were calculated for each board. 
 
The load for the reference testing was applied and measured with a Shimadzu Autograph AG-
X 100 kN (10 tonne) universal testing machine depicted below (Figure 129).  
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Figure 129. Shimadzu Autograph AG-X 100 kN (10 tonne) universal testing machine. 

The term ‘universal’ indicates that the machine is capable of performing a range of tests 
including static bending, tension, compression, shear and hardness tests on large samples. The 
support consists of a solid steel roller 240 mm long by 50 mm diameter and a flat mounting 
plate. The mounting plates have two holes which are used to locate the plate over machine 
bolts situated in the centre of the supports. The roller, and to a lesser extent the mounting 
plate, are held in place by two springs which attach to bolts protruding from the centre of the 
load roller. 

  
Figure 130. Diagram of the 4-point bending method. 
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The Shimadzu UDH-30 is a ‘Grade A’ testing machine in accordance with Australian 
Standard AS 2193-2005 (R2017) Calibration and classification of force-measuring systems. 

The Australian and New Zealand Standard (AS/NZS 4063.1:2010) requires that the 
specimens shall be conditioned to a temperature of 20 ±3°C and in an environment having a 
relative humidity of 65 ±5%. This conditioning shall continue until the moisture content is 
stable within each piece (10-15%). 

Moisture content was checked using an electric resistance moisture meter to confirm that the 
boards had conditioned to the range specified in the standard. Bending strength and stiffness 
were then tested according to the methods specified in AS/NZS 4063. 

In the middle of the span the deflection was measured with a strain gauge type linear 
displacement transducer. The bending test span was 18 times the height of the board with load 
applied at four points. The load deflection curve was measured on the linear part of the 
loading curve for all specimens. The modulus of elasticity can be determined from the slope 
of the linear relationship between the applied load (P) and the resulting deflection (ε) using 
the following equation: 

 

ε
P
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lMOE s ∆

⋅⋅= 3

3

108
23

 
(19) 

 

The loading continued until failure of the specimen. The modulus of rupture was calculated 
using the following equation: 
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(20) 

 
The following equation gives an estimation of the relative maximal error on static bending 
MOE: 
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The relative errors on the measurements are based on a sample of 60 specimens and are: 

mm10
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k is calculated using the 95% confidence interval from the slope of the force-deflection 
diagram. This method ensures the maximum relative error in the calculation of static MOE 
using Equation 12. 

The coefficient 
k
k∆

 is calculated as 3 % and due to the similar methodology used in this study 

the same value was used. Thus the maximal relative error for static MOE is: 
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The maximal relative error of the MOR can be calculated by the following equation: 
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The relative error of the load applied is known as 1 % for the machine used. Therefore the 
maximal relative error of the modulus of rupture is: 
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14.8 Appendix 8. Factors evaluated for impact on wood property 
performance variability (sorted by abbreviation). 

 
Factors  Abbreviation 
Age Age 
Cardinal aspect of slope (flat, north, south, east or west) aspect 
Diameter at breast height DBH 
Variation in diameter at beast height measure using callipers dbh_eccent 
Average annual number of dry months with <= 30 mm of 
rain  

DryMonths 

Average yearly evaporation Evap 
Average yearly evapotransporation Evapotrans 
Total height to highest green shoot Ht 
Latitude Lat 
Lean (%) Lean 
Elevation measure by Lidar for the plot Lidar_Elev 
Longitude Long 
Number of consecutive drought seasons MaxDrought 
Extreme maximum temperature for the growing period MaxT 
Extreme minimum temperature for the growing period MinT 
Total number of dry months NoDroughts 
Pre-commercial thin completed pct 
Prior land use Prior use 
Has the plot been ground pruned pruned 
Mean daily solar radiation  Q 
Average yearly rainfall Rain 
Average yearly number of rain days Raindays 
Mean relative humidity at Tmax RHmaxT 
Relative humidity at Tmin RHminT 
Compass bearing of the planting row row_bearing 
Site index  SI 
Tree slenderness (ratio: Ht/DBH) Slenderness 
Percentage of slope slope 
Soil moisture at time of data collection soil_moist 
Stocking Stocking 
Taxon Taxon 
Commercial thinning operation thinned 
Mean daily maximum temperature Tmax 
Mean daily minimum temperature Tmin 
Volume vol 
Average yearly wetness index (Rain/Evap) Wetindex 
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14.9 Appendix 9. Median plot MOE rankings determined by non-destructive tools. 
For both the ST300 and the IML Resistograph additional plots were sampled.  Here we give the MOE predicted by these tools for the full range of 
plots sampled by each tool. The 93 plots sampled using the ST300 are shown in Figure 131 and the 83 plots sampled by the Resistograph are shown 
in Figure 132.  

 
Figure 131. Plots ranked by median MOE as measured by ST300. Colour indicates the state forest (SF) where the plot is located. 
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Figure 132. Plots ranked by median MOE as determined by the Resistograph. Colour indicates the state forest (SF) where the plot is located. 
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