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Abstract

Development of novel molecular methods for accurate and economical identification of species has become crit-
ical both for pure biological research and for a wide range of applied areas. The most widely used current molec-
ular diagnostic tool, the mitochondrial cytochrome c oxidase subunit 1 gene (COI), the so-called DNA barcode,
has been highly criticised and is known to be ineffective at distinguishing species in many groups. Alternative
markers are needed to circumvent these issues and provide diagnosticians with a greater range of tools for making
accurate identifications. To address this, we describe here a novel analytical workflow for diagnostic marker de-
velopment that utilises near-genomic-scale data to search for potential informative loci. The workflow takes ad-
vantage of orthologous gene databases, in combination with tests of phylogenetic resolution, and benchmarking
of nucleotide variation against COI, to determine putative loci that might outperform COI. We use transcriptomes
of 14 tephritid fruit flies and especially the taxonomically complex genus Bactrocera, as a case study. Of 1646
orthologues searched, our workflow retained a total of five loci following our conservative filtering strategy.
One locus, POP4, had strong potential as a novel diagnostic marker for Bactrocera fruit flies. POP4 discriminates
most species in the training set of taxa, but like COI fails to separate the sibling species Bactrocera tryoni and
Bactrocera neohumeralis. Further validation of this potential new marker against a broader taxonomic sample
is ongoing. We advocate that this simple and efficient workflow is, with minor modification, customisable for di-

agnostic development in almost any taxonomic group.

Key words

INTRODUCTION

The need to reliably and efficiently identify species is fundamen-
tal to biological research and to most applied and/or commercial
uses of biological data, including areas as disparate as quaran-
tine, food security, invasive species monitoring, bioprospecting,
conservation, infectious disease management and forensic sci-
ence. While the majority of species diagnostic methods devel-
oped over the last two centuries rely on morphological
features, the limitations of purely morphological diagnoses are
now well documented (De Salle et al. 2005). As alternatives,
DNA-based diagnostic protocols have increased in availability
in line with improvements in molecular technologies in general
and cost reductions for DNA sequencing in particular. The use
of molecular diagnostic protocols for most species, however,
faces an immediate hurdle in that species delimitation, for all
but a few species was not initially based on differences in
molecular-level characters (Schlick-Steiner ez al. 2010). Instead,
most species delimitations are based on discriminating morpho-
logical differences. Although such morphological characters
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COI, molecular diagnostics, OrthoGraph, POP4, RNA-Seq.

may differ greatly in how easily they are observed, whether they
are present in all life stages and/or genders and how easily they
can be translated into a diagnostic protocol (such as a dichoto-
mous key), they commonly remain the ultimate arbiters of spe-
cies identification (Clarke & Schutze 2014). Molecular
characters, in contrast, rarely form part of the set of discriminat-
ing characters for the majority of species descriptions, and so, the
development of molecular diagnostic protocols centres on iden-
tifying novel characters that correspond to the species limits al-
ready defined by other, usually morphological, criteria (but
refer to Renner 2016).

The methods by which diagnostic molecular variation is
assessed to assign species identifications means that available di-
agnostic technologies thus fall into two broad groups: categorical
tests and tree-based diagnostics. Categorical tests are those that
represent underlying molecular variation without direct infer-
ence of the molecular sequence and include a wide variety of
techniques based on diagnostic variation in the size of DNA frag-
ments as inferred through gel electrophoresis (e.g. RFLP, AFLP,
DGGE, RAPD) (Mattock et al. 2010). In contrast, tree-based di-
agnostics use sequence variation to infer phylogenetic relation-
ships and interpret membership of particular clades in the tree
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as indicative of species identity (e.g. Collins et al. 2012).
Categorical tests have advantages of speed and economy, but
are disadvantaged by how previously uncharacterised species
are dealt with; i.e. if they match a characterised species, the test
will return a false positive, and entirely novel molecular profiles
cannot be objectively designated as either uncharacterised spe-
cies or uncharacterised variation within a characterised species.
Tree-based diagnoses are generally slower and more expensive
but are more flexible with respect to how novel molecular varia-
tion can be interpreted. Specifically, placing an ‘unknown’
barcode specimen in a phylogenetic context allows a more accu-
rate identification to be made. Fundamentally, this aligns with
the phylogenetic species concept (Rosen 1979; Mishler &
Donoghue 1982; Donoghue 1985; Mishler 1985; Nixon &
Wheeler 1990); however, the nature of speciation is such that
this approach also complies with most other species concepts.
Additionally, because there is now a well-developed theoretical
framework for phylogenetic species delimitation (e.g. Sites &
Marshall 2004; Pons et al. 2006; but also refer to Carstens
et al. 2013), tree-based diagnostic methods can be based on the
same markers used for species delimitation.

Although a large number of categorical molecular species di-
agnostics have been developed, the majority of research in this
field has relied on tree-based diagnoses, of which the DNA
barcoding paradigm (Hebert et al. 2003) has been far and away
the most widely adopted. DNA barcoding, as originally pro-
posed, was intended as a universal molecular identification tool
for animals by sequencing a standardised gene, the mitochon-
drial cytochrome c oxidase subunit 1 (COI) gene, and analysed
using genetic distance phylogenetic inference (NJ tree building)
(Hebert et al. 2003; Collins & Cruickshank 2013). While vari-
ants of this standard approach have included using different stan-
dard genes for some taxa (e.g. plants, Hollingsworth et al. 2011),
multi-locus approaches (Dupuis et al. 2012) and coalescent tree
building (Dowton et al. 2014), ‘classical’ DNA barcoding has
been used extensively, with, as of February 2016, over 4.7 mil-
lion barcodes sequenced representing over 230 000 species
(Barcode of Life Database, www.boldsystems.org). Despite its
widespread application, DNA barcoding has been highly
criticised (e.g. Will & Rubinoff 2004; Meier et al. 2006;
Rubinoff et al. 2006a; Taylor & Harris 2012; Collins &
Cruickshank 2013), both from a traditionalist perspective
favouring morphological identifications and also from molecular
evolutionary perspectives.

One of the key molecular biology-based criticisms of DNA
barcoding relates to choice of the standardised marker gene
COI. From the original DNA barcode proposal by Hebert et al.
(2003), and in most subsequent empirical DNA barcoding stud-
ies of various faunal and taxonomic groups, no attempt was
made to justify the choice of COI over other potential marker
loci. The performance of DNA barcode studies has typically
been assessed by a verification approach whereby the proportion
of species correctly assigned by COl is the measure of diagnostic
success. This is similar to most methods for developing categor-
ical diagnostic tests that assess if a given marker can successfully
discriminate species, rather than assessing multiple markers to
determine which has the greatest discriminating power. Attempts
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to identify which of a range of markers work best for barcoding
particular taxonomic groups have been attempted (e.g. Vences
et al. 2005; Luo et al. 2011; Nelson et al. 2012), with the most
notable being the search for an optimal barcode locus for plants
(Kress et al. 2005; Rubinoff et al. 2006b; Hollingsworth et al.
2011). Alternatively, Coissac et al. (2016) and others have ar-
gued for an ‘extended barcode’, the use of the whole organelle
genome as the diagnostic loci collected by genome skimming
or other low-pass next-generation sequencing approaches; how-
ever, such methods remain far too expensive for routine diagnos-
tic applications (>$200/sample). Nonetheless, both classical
COI barcoding and studies that have attempted to identify alter-
native and/or complementary markers still rely almost exclu-
sively on organelle genomes (mitochondria for animals,
chloroplasts for plants) as the source of marker loci. This reliance
on organelle-derived markers has also been heavily criticised
due to the unique aspects of organelle inheritance (e.g. Rubinoff
et al. 2006a) and the existence of nuclear pseudogenes (Song
et al. 2008). Attempts to utilise nuclear genes as DNA
barcode-style diagnostic markers have yet to be significantly
used for any group other than fungi, where ribosomal ITS has
been applied (Seifert 2009).

The ideal design for a DNA-based, species diagnostic test
would thus address the concerns outlined in the previous texts.
First, it would preferably use a tree-based approach as this is
more flexible with respect to uncharacterised species and/or pop-
ulations than categorical tests, and tree-based approaches are in
line with modern phylogenetic methods of species delimitation.
Second, the marker/markers to be used would be chosen from
the largest potential pool of markers that could be practically
assessed. Experimentally determining which markers have the
highest discriminating power is vastly superior to simply verify-
ing if an arbitrarily chosen marker can discriminate a test set of
species. Finally, the markers chosen would have diagnostic util-
ity as individual genes or as a small number of loci to allow
broad and economical use of the test for applied diagnostics. A
diagnostic protocol based on complete genome sequencing for
all unknown samples is unlikely to be routinely used (cf. Coissac
et al. 2016). An ideal diagnostic would thus resemble a DNA
barcode (sensu Hebert et al. 2003) but with marker loci chosen
from a broad survey of genome-level data for their ability to dis-
criminate between species within the focal taxon. Genomic and
near-genomic datasets (e.g. EST libraries) have been used to
screen for single-nucleotide polymorphism (SNP) and simple se-
quence repeat (SSR) markers (e.g. Duran et al. 2009; Davey
et al. 2011), but these marker types are not suitable for tree-based
analysis and cannot be effectively down-scaled for use by se-
quencing one or even a small number of loci. The object of the
present study was to determine if RNA-Seq data, as a form of
near-genomic data, could be mined for such potentially ‘ideal
DNA barcodes’ in a group with a high need for efficient molec-
ular diagnostics, the tephritid fruit fly genus Bactrocera
Macquart.

The genus Bactrocera (Insecta: Diptera: Tephritidae) is ex-
emplary of the taxonomic groups most in need of molecular di-
agnostic methods and the challenges in developing them.
Bactrocera is a large genus, over 600 species, which includes
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the most significant pests of horticulture in Asia, Africa and
Australasia (White & Elson-Harris 1992). A comparatively
small number of species are pests (only 45 economically impor-
tant species are listed in Drew & Romig 2013, or ~7% of the
genus), but they are often very difficult to distinguish morpho-
logically from non-pest species, with a series of morphologically
nearly homogenous ‘species complexes’ formally recognised
within the genus (Schutze et al. 2017). Additionally, the destruc-
tive phase of the insect is the maggot, which develops within rip-
ening fruit and lacks nearly all species-level diagnostic
morphological features. This life stage is thus the target of quar-
antine efforts to prevent the international spread of pest fruit flies
in infested fruit (Dohino et al. 2017). Identifications of suspect
intercepts have historically required rearing maggots to adult-
hood, greatly slowing trade and biosecurity responses. Several
molecular diagnostic approaches have been developed for the
genus to speed the identification process; however, they all pos-
sess considerable limitations.

Earlier methods, including allozyme electrophoresis and
RFLP, were developed for key pest groups such as species in
the oriental fruit fly (Bactrocera dorsalis) complex (Yong
1995; Armstrong et al. 1997; Armstrong & Cameron 1998;
Muraji & Nakahara 2002), and these remain part of current diag-
nostic protocols (Plant Health Australia 2016). However, these
approaches were developed for only a small number of species,
have an especially high risk of detecting false positives, do not
distinguish some very closely related species and thus have ex-
tremely limited capacity across the genus (Armstrong &
Cameron 1998; Plant Health Australia 2016). COI barcoding
has been used extensively to improve Bactrocera diagnostics,
due to its high-throughput capacity and ability to make compar-
isons against broader barcoding studies and available databases
(e.g. BOLD). In arguably the largest single tephritid barcoding
initiative to date, Armstrong and Ball (2005) analysed COI
barcodes for 60 tephritid species, of which nearly 40 were from
the genus Bactrocera. Akin to other techniques, the COI barcode
does not resolve among closely related members of some species
complexes (e.g. Bactrocera tryoni cannot be discriminated from
Bactrocera neohumeralis); levels of intraspecific vs. interspe-
cific sequence divergence overlap for some taxa; NJ analyses
nest some unambiguous species within others, and preferentially
amplified pseudogenes confound interpretation of sequencing
results (Armstrong & Ball 2005; Blacket et al. 2012; Morrow
et al. 2015). Barcoding in fruit flies also suffers from the require-
ment for an extensive, accurately identified, reference database
for species identification (Barr et al. 2012; Frey et al. 2013). This
is particularly problematic when datasets are drawn from pub-
licly available databases, such as NCBI Genbank or BOLD
(e.g. Jiang et al. 2016), for which taxon assignment may be
erroneous and is especially challenging for groups where species
boundaries remain unresolved. The highly diverse B. dorsalis
species complex perhaps best exemplifies this (Boykin et al.
2014; Schutze et al. 2015), but it is not unique (Schutze et al.
2017).

It has become evident that ‘standard’ molecular diagnostic
approaches have reached their limits of capacity for Bactrocera
(Blacket et al. 2012; Jiang et al. 2014), and while some tools
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are useful under specific circumstances, there is a need to de-
velop novel markers that are genus-specific and based on robust
phylogenetic associations. Such new diagnostic tools would be
more likely to discriminate among previously ‘un-diagnosable’
taxa should they be supported as real biological entities. In the
present study, therefore, we test the utility of a novel approach
to genome mining for identifying candidate markers in an eco-
nomically important group with a demonstrated need for new
and improved molecular diagnostic tools. We use a variety of
criteria to filter new loci and benchmark against COI, including
testing specific hypotheses about the diagnostic capability of po-
tential novel loci by sequencing a selection of species from the B.
dorsalis and B. tryoni complexes. Specifically, COI does not
separate B. tryoni and B. neohumeralis, whereas it does discrim-
inate B. dorsalis, Bactrocera carambolae and Bactrocera
kandiensis. This specific comparison of the diagnostic informa-
tiveness of novel loci allows identification of loci that perform
as well or better than COI and which are of greatest priority for
further testing.

MATERIALS AND METHODS

Locus discovery workflow

The conceptual workflow for locus discovery used is outlined in
Figure 1. Conceptually, the workflow consists of finding sets of
1:1 orthologous nuclear protein coding genes shared across the
taxon of interest (in this case, Bactrocera fruit flies). Each 1:1
orthologue is then tested for the resolution of species-level diver-
gences within this group by inferring its corresponding gene tree.
Individual loci whose gene trees recover a set of relationships
‘expected’ on the basis of previous phylogenetic studies are
retained: Those that lack them are excluded. This step selects
for loci whose gene tree resolution matches that of the species
tree for the taxon of interest, ensuring that, for any locus selected
as a novel barcode, new unknown species can be placed accu-
rately in a phylogenetic context, thereby aiding species identifi-
cation. Retained loci were then assessed for exon—intron
boundaries and useful size by mapping against available genome
data, to exclude those which could not be reliably amplified in a
single PCR. Finally, nucleotide variability within each locus was
compared with that of COI sequences from the same set of taxa;
candidate loci that had higher variability than the standard
barcode gene were retained for experimental verification. Exact
methodologies used for each step in this workflow are outlined
in the succeeding texts.

Taxon coverage, data collection and de novo
transcriptome assembly

Taxon choice aimed to maximise coverage of Bactrocera and
included members of the closely related genus Zeugodacus
(Zeugodacus cucumis (French) and Zeugodacus cucurbitae
(Coquillett)) and two other tephritid taxa (Ceratitis capitata
(Weidemann) and Rhagoletis  pomonella (Walsh)). We
downloaded transcriptome gene sets for all Bactrocera species that
were available on GenBank at 13 July 2015, including B. dorsalis

© 2017 Australian Entomological Society
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Schematic flow chart that illustrates the major steps in the analytical workflow for diagnostic locus discovery and development de-

scribed in this paper. [Colour figure can be viewed at wileyonlinelibrary.com]

(Hendel), B. minax (Enderlein) and B. oleae Gmelin, along with Z.
cucurbitae, C. capitata and R. pomonella (Table 1). We used an
unpublished transcriptome assembly for B. #ryoni (Froggatt) from
the study of Kumaran ez al. (2014). Short read archives (SRAs) for
B. latifrons (Hendel) were also downloaded and assembled in-
house (refer to the succeeding texts).

To complement the existing GenBank data, we de novo se-
quenced adult transcriptomes for six additional dacine species
(B. bryoniae (Tryon), B. frauenfeldi (Schiner), B. jarvisi (Tryon),
B. kraussi (Hardy), B. musae (Tryon) and Z. cucumis). Again,
this was to maximise taxonomic diversity and breadth across
the tree in the initial set, but was limited by availability of fresh
material and project scope. Specimens were collected from labo-
ratory cultures maintained by Queensland Department of Agri-
culture and Fisheries, Cairns, Australia. Cultures were kept in
separate rooms for each species, and adult males and females
were collected between 3 and 5 days after emergence, killed by
freezing and transferred immediately to RNA/ater for transport
to the Molecular Genetics Research Facility (MGRF), QUT,
Brisbane, Australia. One individual of each sex per species was
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pooled in a single replicated RNA extraction, conducted using
a modified Trizol/Trisure RNA isolation as described in Krosch
and Bryant (2015). RNA quality and quantity were assessed on
an Agilent 2100 Bioanalyser (Agilent Technologies, USA) and
an RNA 6000 Nano kit for total RNA. Total RNA from repli-
cates was pooled for cDNA library preparation, and paired-end
(150 bp) sequencing was conducted according to manufacturer
protocols and performed on an Illumina NextSeq 500 at the
MGREF. All bioinformatic analyses were conducted on QUT’s
High Performance Computing Facility. Reads were quality
assessed using FastQC (Andrews 2011), before trimming and as-
sembly using default commands incorporating inbuilt
Trimmomatic (Bolger et al. 2014) functionality in Trinity Ver-
sion 20140413pl (Haas et al. 2013). All new assemblies are
available on the Transcriptome Shotgun Assembly (TSA) data-
base associated with BioProject PRINA385731. Assembly qual-
ity was assessed using the TrinityStats.pl script built into the
Trinity distribution to attain basic summary statistics. De novo
assemblies and downloaded gene sets were further compared
for quality using two strategies: CEGMA analysis (Parra et al.
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2007) that searches for hits to 248 core eukaryote genes and de-
termining the number of transcripts that span the full length of a
gene according to BLASTX searches against the SwissProt
database.

Candidate locus discovery

We developed a set of clusters of orthologous gene (COGs) by
searching the OrthoDB7 database (http://cegg.unige.ch/orthodb7)
for all single-copy orthologous genes found in all of the following
reference species: Drosophila ananassae, D. erecta, D. grimshawi,
D. melanogaster, D. mojavensis, D. persimilis, D. pseudoobscura,
D. sechellia, D. simulans, D. virilis, D. willistoni, D. yakuba,
Glossina morsitans, Lutzomyia longipalpis and Phlebotomus
papatasi. Bactrocera transcriptomes were then searched for hits to
reference COGs using OrthoGraph (https:/github.com/mptrsen/
Orthograph), following the recommended protocol. OrthoGraph
uses a reciprocal BLAST approach to compare transcripts against
reference COGs and reports only the ‘best reciprocal hit’ (BRH)
for each COG. BRHs for each COG were summarised into sepa-
rate amino acid and nucleotide FASTA files using built-in scripts,
such that each file contained all BRH transcripts from each target
species for a given COG. COGs that were deemed too short
(<100 bp) to be useful diagnostic markers were excluded from
further analysis.

Transcripts were aligned using MUSCLE Version 3.8.31 (nu-
cleotide, Edgar 2004) and MAFFT Version 7.221 (amino acid,
Katoh & Standley 2013) under default conditions, and length
variable sections of alignments removed using GBLOCKS Ver-
sion 0.91 (Castresana 2000) to minimise any effects of assembly
error (manifested in length variable insertion—deletions, indel, re-
gions, possibly resulting from chimeric transcripts) in estimating
interspecific genetic diversity and phylogenetic relationships.
We filtered COGs again to remove those that were deemed too
short (<100 bp).

We assessed phylogenetic signal at each remaining locus as
a proxy for diagnostic utility, on the basis that loci that produce
topologies that match expectations from independent datasets
should be highly accurate for species diagnosis. Thus, gene
trees were inferred for all amino acid and nucleotide align-
ments in FastTree Version 2.1.8 (Price et al. 2009) and
rerooted with either C. capitata or R. pomonella (C. capitata
was used if both were present in a given alignment) using
NewickUtils (Junier & Zdobnov 2010). Branch lengths were
removed from resulting Newick tree strings, and all trees were
compared against a set of expected topologies using simple
text-based searches. Expected topologies were constructed
based on accepted phylogenetic analyses for the dacines
(Fig. 2), especially the recent densely sampled multi-locus
works of Krosch et al. (2012) and Virgilio et al. (2015). Only
loci that passed this filter for topology at both the amino acid
and nucleotide levels were retained.

Nucleotide alignments for selected putative diagnostic loci
were manually mapped to genomic sequences for B. dorsalis
and B. oleae in BioEdit (Hall 1999) to identify exon—intron
boundaries and assess intronic variation. This mapping process
was used as a further filter to identify loci that possessed
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(a)

All Bactrocera

— Zeugodacus cucurbitae

L Zeugodacus cucumis

(b)

All other Bactrocera

Bactrocera minax

All other Bactrocera
|: Bactrocera oleae

Bactrocera minax

{ Bactrocera dorsalis

Bactrocera musae

Fig. 2.  Critical expected relationships among sampled species that
were used to compare against inferred gene trees for putative diag-
nostic loci. These relationships are relative only to the taxa repre-
sented in the dataset and are based on the much more densely

sampled phylogenies of Krosch et al. (2012) and Virgilio et al.
(2015).

nucleotide spans that lacked substantial indels and possessed
sufficient length (>400 bp) and variation to be developed as a
PCR-based assay. Primers were designed using the online tool
Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/) for such loci to de-
termine the expected fragment length for each putative diagnos-
tic locus. Average percent difference (as the inverse of average
percent similarity) among the sampled tephritids was estimated
as a proxy for average variation for each locus using T-Coffee
(Notredame et al. 2000). We compiled a dataset of representative
COI barcodes from GenBank for the same target species to
provide a benchmark to compare the diagnostic utility of our
newly developed markers against (Table S1). Loci that pos-
sessed greater average percent difference than COI (Table 2,
Table S2) were selected for validation by PCR and Sanger
sequencing among a small number of carefully chosen
sibling species.

Experimental verification of diagnostic loci

As tests of the diagnostic capacity of candidate loci to resolve
closely related and/or sibling species, we selected individuals
of B. dorsalis, B. carambolae and B. kandiensis, and B. tryoni
and B. neohumeralis, members of the B. dorsalis and B. tryoni
species complexes, respectively (Table S3). Within each of
the two species complexes, data from one of the test
species (B. dorsalis and B. tryoni, respectively) formed part
of the locus discovery workflow outlined in the previous
texts, but the other three species had not been previously


http://cegg.unige.ch/orthodb7
https://github.com/mptrsen/Orthograph
https://github.com/mptrsen/Orthograph
http://bioinfo.ut.ee/primer3-0.4.0

Table 2 Alignment details for the five loci retained post-filtering

Transcriptome-based diagnostic locus design 7

COG name Transcript ~ Transcript Length Average B. dorsalis gene annotation B. dorsalis
(OrthoDB7) alignment  alignment of primed percent genome accession
length (aa)  length (nt)  region (bp)  difference (nt)

EOG7XDNSQ 177 534 500 20.65 Ribonuclease P protein subunit p29 (POP4) NW_011876313

EOGT735F6M 597 1794 650 16.75 Nodal modulator 1 (NOMOLI) NW_011876390

EOG71GN4X 592 1775 640 15.87 Carnitine O-palmitoyltransferase 2, NW_011873997
mitochondrial (CPT2)

EOG7F5BCP 186 567 500 15.29 Low-quality protein: replication protein A NW_011876190
32 kDa subunit (RPA2)

EOG7VI1S1IK 607 1820 670 14.84 Dolichyl-diphosphooligosaccharide—protein NW_011876390

glycosyltransferase subunit 2 isoform X2 (DDOSTs2)

Alignment length is given in amino acids for protein alignments and base pairs for nucleotide alignments. Lengths of primed regions correspond to the region
spanned by primers designed in Primer3 on the nucleotide alignment and are given in base pairs. Average percent difference was calculated on the nucleotide
alignment. Gene function was assigned by BLAST searches to the B. dorsalis genome: Annotations and accessions are provided here.

assessed for these genes and thus represent a real test of the can-
didate gene’s resolving power. Additionally, multiple individ-
uals of each of the five species were included to test
intraspecific variation. Representatives from sympatric popula-
tions of B. dorsalis and B. carambolae, and B. tryoni and B.
neohumeralis, were included to minimise any influence of
geographic differentiation. COI barcodes were available already
for some of these specimens (GenBank Accessions in Table S1)
and newly sequenced for the remainder.

All specimens were wild-caught adult males from locations
that either spanned the known range of the species or were con-
firmed invasive locations (B. carambolae from Suriname). Total
genomic DNA was extracted from three legs using an ISOLATE
II DNA® kit (Bioline, Australia) according to manufacturer’s
protocol, and loci were amplified in an Eppendorf Mastercycler
Pro (Eppendorf, Australia). Reaction recipes and thermocycling
protocols for each locus are given in Tables S4 and 5. COI
barcodes for new specimens were produced according to
Schutze et al. (2015). Amplicons were purified using an ISO-
LATE PCR and Gel Kit® (Bioline) and direct sequenced using
ABI Big Dye® Terminator 3.1 chemistry on an ABI 3500
Capillary Electrophoresis Genetic Analyser at the Molecular
Genetics Research Facility at QUT. All sequences were checked
and aligned by eye in BioEdit, average percent difference calcu-
lated in MEGA4 (Tamura et al. 2007). Phylogenies were recon-
structed for each test locus incorporating all taxa (including those
with transcriptome sequences) under both Bayesian inference
(MrBayes Version 3.2.6, Huelsenbeck & Ronquist 2001;
Ronquist & Huelsenbeck 2003) and maximum likelihood
(RAXML Version 8.2.9, Stamatakis 2006), implemented on the
CIPRES portal (Miller et al. 2010). All new sequences derived
from target taxa were deposited in GenBank (accessions pro-
vided in Table S3).

RESULTS

Transcriptome sequencing undertaken in this study resulted in
between 21 (21 164 218) and 38 (37 709 330) million high-
quality reads per species, which were assembled into between
62 990 and 87 840 transcripts (Table 1). All indices of assembly

quality suggested that de novo assemblies were quite rigorous,
and comparisons with downloaded gene sets from B. oleae, B.
tryoni and R. pomonella suggested that these published datasets
possessed fewer core eukaryote genes with fewer full-length
transcripts and were thus perhaps of lesser quality (Table 1);
however, we considered all assemblies to be sufficient for
downstream analyses. Average transcript length ranged from
345 (R. pomonella) to 3065 bp (C. capitata), and N50 statistics
(a weighted median statistic that describes the transcript length
that half of all transcripts in an assembly are equal to or larger
than) ranged from 425 (R. pomonella) to 3914 (C. capitata).

Our set of target loci developed using OrthoDB7 contained
1646 COGs, of which a total of 1634 had a BRH to at least
one target tephritid species, and 547 COGs had BRHs to tran-
scripts from all 14 target species. Initial filtering by alignment
length retained 1279 and 1005 loci at the nucleotide and amino
acid levels, respectively. Gene trees from 619 of these loci
matched the expected topology when analysed at the nucleotide
level, while 134 loci matched in amino acid analyses, with only
69 loci inferring gene tree topologies that match the expected to-
pology for both nucleotide and amino acid datasets. As a conser-
vative approach to locus discovery and to limit the number of
loci that needed exon mapping (refer to the succeeding texts),
only loci for which the target topology was inferred from both
nucleotide and amino acid datasets (69 total loci) were retained
for subsequent analysis.

The 69 potential diagnostic loci were mapped against the as-
sembled B. dorsalis and B. oleae genomes to determine exon—
intron boundaries and gauge intron length differences among
species. Aligned regions demonstrated that 57 of 69 loci were
multi-exonic, and the intervening introns often varied in length
between the two genomic references, suggesting a high probabil-
ity of intron length variation across Bactrocera species. Primer
design was therefore restricted to single exons (either loci that
comprised only a single exon, or within a single selected exon
for multi-exonic loci), to avoid developing targets that may
require PCR amplification across large intronic indels. Further
restricting our targets to loci for which the primed exonic region
was greater than 400 bp resulted in 45 loci. Our final filter, that
potential loci have average pairwise divergences greater than that
of the COI barcode region for the corresponding species
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(14.57%), resulted in just five loci (CPT2, NOMOI, RPA2,
DDOSTs2, POP4, Table 2). These genes have functional roles
in DNA replication, cell signalling, fatty acid oxidation, RNA
processing and protein glycosylation, respectively.

The five candidate loci identified by bioinformatic means
were then tested for their reliability in diagnostic settings by
PCR amplification and Sanger sequencing: Primers are provided
in Table 3. PCR amplification produced single bands for four of
the five loci (RPA2, POP4, DDOSTs2, NOMO1); however,
CPT2 produced several sub-bands, likely resulting from non-
specific binding of primers. This locus was excluded from fur-
ther consideration. POP4 was notably more difficult to amplify
from B. dorsalis than other species; however, this could be asso-
ciated with specimen condition and storage. Direct sequencing
of PCR products resulted in final nucleotide alignments as fol-
lows: RPA2: 477 bp, POP4: 460 bp, DDOSTs2: 651 bp and
NOMOI1: 532 bp. Of these, both DDOSTs2 and NOMOI
showed less sequence differentiation than COI among selected
species pairs (Table 4). However, RPA2 and POP4 show greater
differentiation than COI between the close sibling species B.
dorsalis and B. carambolae, but less than COI in all other
pairwise comparisons. Phylogenies for POP4, DDOSTSs2 and
NOMOL supported both the B. dorsalis and B. tryoni species
complex members as monophyletic clades (Fig. 3, Figs S1
and S2); however, RPA2 could not resolve deeper relationships
among species and did not support the B. dorsalis complex spe-
cies as monophyletic (Fig. S3). By comparison, COI did not fit
our species tree expectations (Fig. 2) with respect to the place-
ment of B. minax and B. oleae: These were moderately supported
as sister taxa, with these being sister to the two Zeugodacus spe-
cies (Fig. 3). COI also does not resolve B. dorsalis as a well-
supported monophyletic group, nor does it support B. tryoni or
B. neohumeralis as monophyletic. Branch lengths for DDOSTs2
and NOMO1 were very shallow within each species complex,
and generally, neither locus could resolve differences between
members of each species complex (Figs S1 and S2). The locus
POP4, on the other hand, resolves B. dorsalis, B. carambolae
and B. kandiensis in strongly supported monophyletic clades,
with B. carambolae and B. kandiensis as sister taxa and as a
clade sister to B. dorsalis. As with COI, POP4 does not separate
B. tryoni and B. neohumeralis as reciprocally monophyletic.
While not 100% discriminatory at the species level, taken to-
gether, POP4 is supported by our analyses as meeting or

Table 3  Primer details for five selected novel diagnostic loci

Table 4  Average percent pairwise genetic distance between members
of selected sibling pairs

COI POP4 RPA2 NOMOI! DDOSTs2

B. dorsalis/B. carambolae  1.97% 349% 141% 0.63% 0.31%
B. dorsalis/B. kandiensis 7.96% 5.71% 0.66% 0.64% 0.70%
B. carambolae/B. kandiensis 8.34% 4.13% 1.01% 0.79% 0.97%
B. tryoni/B. neohumeralis 4.14% 0.92% 032% 0.11% 0.04%

exceeding the diagnostic capacity of COI and therefore most
likely to hold potential as a new diagnostic marker for
Bactrocera species.

DISCUSSION

We present a novel analytical workflow for identifying diagnos-
tic marker loci from the comparative analysis of transcriptome
data. Comparative genomic approaches have been previously
applied to marker discovery for phylogenetic and systematic
studies, but attention to diagnostic applications has lagged be-
hind. For instance, both anchored hybrid enrichment (AHE,
Lemmon et al. 2012) and ultraconserved element methods
(UCE, Faircloth et al. 2012) rely on identifying conserved geno-
mic regions as targets for enrichment baits. Automated pipelines
for identifying these regions have been developed (e.g.
Baitfisher, Mayer et al. 2016; DISCOMARK, Rutschmann
et al. in press) and indeed share considerable similarities with
what was done here. The difference between such pipelines
and the present study is that these studies did not assess suitabil-
ity of individual loci. Marker discovery for systematic or phylo-
genetic purposes at the present is invariably undertaken with a
view to downstream use in multi-locus analyses, with target loci
obtained for sequencing either by PCR or genome reduction
methods (e.g. AHE, UCE). Accordingly, the information content
of individual loci is less important than the total information con-
tent of the combined suite of loci. In this way, marker discovery
methods mirror contemporary phylogenetic practise where com-
parisons of individual gene tree compatibility, which were com-
mon 20 years ago, have given way to default concatenation or
species tree coalescent methods.

The widespread adoption of any molecular diagnostic proto-
col will be subject to additional practical limitations beyond

COG name (OrthoDB7) Locus name Primer name Primer sequence (5'-3') T, (°C) Length of fragment (bp)

EOG7XDNSQ POP4 POP4-f ACATTACAATGTTGGAAGGGGG 55 520
POP4-r CTTYAYCTTYTTGACGCTGCG 55

EOG7F5BCP RPA2 RPA2-f ACAAATCTTATATTCGCBTGAGGG 54 525
RPA2-r AATTTTTDTTGCAAYTCTTTGCGG 53

EOG735F6M NOMOI1 NOMOI1-f TCATTTTCGATGAAGGYTCAAATT 52 570
NOMOI1-r CGATATGATACTCACTTGCAAC 51

EOG7VISIK DDOSTs2 DDOSTs2-f GTGGCAGATCGTGTTGAAGA 53 695
DDOSTSs2-r GGAACTTTAAAGGCCGATAATACTC 55

EOG71GN4X CPT2 CPT2-f GAAGTGCTRATGATRTTGTGATTGA 53 645
CPT2-r ACGGARTYGCCGTACTAAGAT 55

© 2017 Australian Entomological Society
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Maximum likelihood topologies for (a) COI and (b) POP4. Node support values represent Bayesian posterior probabilities (left) and

maximum likelihood bootstrap scores (right); posterior probabilities of 1.0 or bootstrap scores of 100 were relabeled as ‘*’, and any scores
<50 were coded as ‘-’. Sample codes and Genbank accession numbers correspond to Table S1 and S3. The B. dorsalis genomic scaffold used
for mapping exon boundaries in POP4 is indicated by its Genbank accession.

those affecting research applications in systematics. In particular,
methods that require specialised collecting techniques (e.g.
RNA-Seq) or equipment (e.g. AHE, UCE) or are expensive on
a per specimen basis (e.g. any method involving high-
throughput sequencing) are unlikely to be widely adopted, espe-
cially for monitoring programs such as quarantine screening or
invasive species detection. Bactrocera fruit flies are an example
of taxa that are the subject of both identifications in routine inter-
ceptions from international trade and landscape-scale monitoring
within horticultural districts. Practical diagnostic protocols for
Bactrocera therefore need to be cheap, methodologically simple

and accommodate the large species diversity in the genus. COI
barcoding fulfils most of these criteria except for its demon-
strated failure to discriminate between some Bactrocera species
and known problems with nuclear-encoded copies or
pseudogenes (Blacket et al. 2012). We therefore set out to find
better barcodes by combining comparative genomic approaches
known to identify phylogenetic markers with additional criteria
to ensure that individual loci have diagnostic utility.

The main advantages of this marker discovery workflow are
that it produces large numbers of candidate diagnostic loci rela-
tively quickly and economically. We initially developed a set
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of 1646 single-copy COGs from reference species available on
OrthoDB7. Although more COGs may have been resolved had
we developed a tephritid-specific set of orthologues, the general
lack of detailed genomic data for the group resulted in a trade-off
between maximising the number of loci and ensuring that loci
were single copy. We opted for a conservative approach: 1646
well-characterised loci were considered a sufficiently large
dataset to search against. Of these 1646 single-copy orthologues
identified by comparative genomics, 69 loci had gene tree topol-
ogies that matched the phylogeny of the genus when analysed as
both DNA and amino acid alignments. This initial test set of 69
loci is over 10 times the size of the largest previous study of
Bactrocera phylogenetics based on arbitrarily chosen markers
(Boykin et al. 2014) and over five times the size of the mitochon-
drial protein-coding gene set, which has also been the subject of
marker discovery efforts (cf. Nelson et al. 2012). The remaining
two filters — presence of a single exon longer than 400 bp and av-
erage nucleotide variability greater than the COI barcode —
greatly reduced the number of candidate loci to just five markers.
However, alternative measures could have been applied at each
of these filtering steps to either open up or restrict the pool of
candidate loci. For example, assessing gene tree topological con-
gruence with the species tree under both nucleotide and amino
acid analyses was much more conservative than assessing just
nucleotides (69 vs. 619 candidate loci). Further, for other taxa
where diagnostic failure of COI is due to causes other than sim-
ply low variation (e.g. retention of ancestral polymorphisms or
mitochondrial introgression), raw variation may not be an imper-
ative, and any locus with a gene tree congruent with the species
tree could be experimentally assessed as a diagnostic marker.
As a new protocol for developing potential diagnostic loci,
some comment on practicality is necessary. We estimate that to
conduct the initial wet lab work for RNA sequencing to the iden-
tification of the five candidate loci for verification testing against
a broad taxon set would take approximately 40 days of full-time
work. Wet lab work represents only a small component of the
total time, whereas the bulk of the time involves the post-
sequencing bioinformatics. Given that the workflow largely uti-
lises existing software, bioinformatic time is determined mostly
by user proficiency and computational resources. Furthermore,
the number of samples analysed will impact on the time frame
of several stages of this workflow. Transcriptome assembly
and OrthoGraph searches can be run in parallel for each sample
(given sufficient computing resources) and are essentially scal-
able. However, more hands-on procedures, such as gene tree
searches against a true tree and exon—intron mapping, will signif-
icantly increase the time frame as loci and samples increase.
The investment in initial comparative data for this method is
quite modest relative to the number of loci that can be assessed;
however, sampling needs to effectively capture the evolutionary
diversity of the target group, as recommended for traditional
phylogenetic studies (Nabhan & Sarkar 2012). Methods for the
multiplex sequencing of RNA samples are now well developed,
resulting in significant economies of scale. The six newly se-
quenced transcriptomes used in this study were pooled in a sin-
gle Illumina NextSeq flow lane using the Mid-Output
chemistry, and even larger numbers of specimens can be readily

© 2017 Australian Entomological Society

pooled, depending on available barcodes and desired sequencing
depth, using the High-Output chemistry or on the Illumina HiSeq
system. While sequencing costs vary between providers, the
basic RNA-Seq data necessary for marker discovery through this
workflow can be obtained at US$250-US$500 per sample. Mi-
tochondrial genomes can be obtained extremely cheaply (US
$20-US$50 per sample) when sequenced 90-100 at a time using
pooled genomic DNA extracts (e.g. Gillett ef al. 2014); however,
this approach will at best yield 15 candidate loci prior to any fil-
tering. In contrast, even low-pass genomic sequencing is expen-
sive for all but the smallest animal genomes, and the sequencing
of multiple genomes is probably not economically viable for
most diagnostic discovery programs. RNA-Seq is thus a very
economical method of collecting the input data for marker
discovery.

Although the efficient de novo collection of genomic-scale
data is critical for diagnostic marker discovery using this analyt-
ical workflow, the benefit of pre-existing genomic resources
should also be noted. The mapping of exon boundaries (step 4
of the workflow) was only possible due to the previous sequenc-
ing of full genomes for two Bactrocera species. While the num-
ber of available draft genome sequences is rapidly expanding,
they still represent a miniscule proportion of total species diver-
sity, and it is likely that draft genomic sequences are not avail-
able for each taxon of diagnostic interest. In the absence of
draft genomes, exons can be mapped against the nearest relative
for which a genome has been sequenced, although the low con-
servation of exon—intron boundaries across larger taxonomic
scales makes this approach problematic (e.g. Lohse et al.
2011). Alternatively, exon mapping could be omitted entirely.
While the majority of candidate genes identified by step 3 (gene
tree congruence) were multi-exonic (57 of 69), more than half
(45 of 69) had single exons >400 bp long and were thus reason-
able targets for a single PCR amplification. While exon—intron
patterns vary considerably between taxa, designing multiple
PCR priming sites for each candidate gene would allow the ex-
perimental verification of conserved exons of usable length. This
approach is certainly less efficient than bioinformatic determina-
tion of exon lengths by genome mapping; however, the time
spent on such a work-around could be less expensive than com-
pleting a draft genome sequence.

The second potential artefact in our analysis was the use of
RNA-Seq data previously deposited on GenBank which had
been generated by multiple labs, using different NGS platforms.
It is well known that RNA-Seq studies vary considerably with
the number and length of raw reads generated and that this has
flow-on effects on the length, read depth and quality of the
resulting RNA assemblies. In the present study, both Rhagoletis
pomonella and Bactrocera oleae were represented by consider-
ably smaller and seemingly poorer quality RNA-Seq datasets
than the remaining species. Correspondingly, these two species
returned the lowest numbers of reciprocal best hits in the
OrthoGraph analysis, 846 and 849, respectively, only slightly
more than half those found for the other 12 species (Table 1). Al-
though it could be expected that the inclusion of a poor-quality
transcriptome may exclude loci that are present in the species
but not sequenced in that transcriptome, the approach used here



was conservative in this regard. Excluding R. pomonella and B.
oleae from the OrthoGraph analysis results, only a single extra
COG present in at least one species; however, the number of
COGs with hits in all species rises considerably (1232 vs.
547). These differences did not have an effect in the current
study, as gene tree analyses were conducted on all loci after fil-
tering by alignment length, and the gene tree—species tree topol-
ogy comparisons were conducted such that missing data for a
given species did not result in a locus being scored as failing to
return the expected topology. Removing candidate loci that are
not present in all study species is a conservative and potentially
more accurate approach, but would be dependent on high-quality
input transcriptomes to avoid needless removal of loci. This is-
sue should be addressed on a case-by-case basis; nevertheless,
we show that variable quality data can be included and gene ab-
sences accounted for without impacting the downstream pool of
candidate loci.

Although this analytical workflow was developed for the
identification of nuclear protein-coding genes suitable as diag-
nostic markers, with limited modification, it can also be applied
to discovering other gene types with diagnostic utility. A version
of this workflow could be used to develop exon-primed intron-
crossing (EPIC) markers. While existing EPIC marker discovery
pipelines (e.g. Li et al. 2010) depend on genomic data to identify
exon—intron boundaries, RNA-Seq data is a means of economi-
cally expanding the range of taxa assessed. RNA-Seq data can
contribute to EPIC discovery in three ways: first, by identifying
loci that are genuine 1:1 homologues across the target taxon (step
1 of our workflow). Second, alignments of coding region varia-
tion provide clues about how conserved exon—intron boundaries
are within the target taxon (step 4). Finally, RNA-Seq data as-
sists primer design by identifying highly conserved regions
within exonic sequences (step 5). Modifying this workflow for
EPIC discovery simply involves reordering step 3 (infer gene
trees and compare to target phylogeny) and step 4 (exon map-
ping). Most previous studies that developed EPIC markers
within insects have utilised pre-defined target genes (e.g. Lohse
et al. 2011; White et al. 2015) rather than assessing locus vari-
ability as we advocate here. Additionally, most rely exclusively
on genome data (e.g. Lardeux et al. 2012; White et al. 2015)
and do not use RNA-Seq data to expand taxon coverage, al-
though Lohse ef al. (2011) successfully did so over broad taxo-
nomic scales (multiple hymenopteran families). Given that the
intron-like ribosomal RNA internal transcribed spacer (rRNA-
ITS) has proven to be an effective species-level marker within
Bactrocera (Boykin et al. 2014), EPICs may represent a useful
additional source of diagnostic markers for this genus and will
be the topic of future research.

We have emphasised here that novel barcode-like diagnostic
markers would be analysed using tree-building methods, but ul-
timately, these markers can be analysed using the same variety of
non-sequencing technologies as COI barcodes. Diagnostic se-
quence variation with the COI barcode region has been used to
design restriction fragment length polymorphism (RFLP) tests
to discriminate between species, particularly for industrial appli-
cations where routine screening far exceeds the economic use of
sequencing-based tests (e.g. food identification Haider et al.
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2012; Mueller et al. 2015). Similarly, species-specific real-time
PCR systems have been designed for tephritid fruit flies based
on COI barcode libraries (Dhami et al. 2016; Jiang et al.
2016). While all these systems have the same conceptual
and/or practical weakness outlined in the previous texts for reg-
ular COI barcoding (as demonstrated in Jiang et al. 2016), these
alternative technologies can be implemented for any genetic lo-
cus. Utilising the workflow detailed here to identify promising
diagnostic markers and experimentally verify their utility within
a target taxon will also improve their utility in downstream tech-
nologies such as RFLP and qPCR tests.

In conclusion, we outline an analytical workflow for utilising
the most economical near-genomic-scale sequencing technology
currently available (RNA-Seq) to identify the most promising
species diagnostic markers. This workflow enables the assess-
ment of a large number of potential markers relatively quickly
and cheaply, while the filters built into it can be applied flexibly
to expand or reduce the number of markers to be experimentally
verified. Taxonomic groups for which molecular diagnostics are
most needed frequently also have features that confound the use
of arbitrarily chosen diagnostic markers, such as poorly defined
species limits, introgression and/or retained ancestral polymor-
phisms (Rubinoff et al. 2006a). Searching a larger proportion
of the genome for markers via RNA-Seq greatly improves the
chances of identifying optimal diagnostic markers over arbitrary
gene choice and greatly reduces the susceptibility of downstream
diagnostic applications to failure due to choosing genes which
cannot discriminate between species. We do not advocate that
the loci identified here will accurately resolve species in taxo-
nomic groups outside Bactrocera, and we do not yet recommend
any of these loci as replacements for COI. We stress that the ma-
jor import of this workflow is to provide a mechanism by which
taxon-specific alternatives to COI can be developed. Validation
of identified potential loci against a broader taxonomic sampling
to determine their diagnostic utility is ongoing.
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SUPPORTING INFORMATION

Additional Supporting Information may be found online in the
supporting information tab for this article.

Figure S1 Maximum likelihood topology for NOMOI1. Node
support values represent Bayesian posterior probabilities (left)
and maximum likelihood bootstrap scores (right); posterior prob-
abilities of 1.0 or bootstrap scores of 100 were relabeled as ‘*’,
and any scores <50 were coded as ‘-’. Sample codes and
Genbank accession numbers correspond to Supplementary
Tables 1 and 2. The B. dorsalis genomic scaffold used for map-
ping exon boundaries in NOMOL is indicated by its Genbank
accession.

Figure S2 Maximum likelihood topology for DDOSTSs2. Node
support values represent Bayesian posterior probabilities (left)
and maximum likelihood bootstrap scores (right); posterior prob-
abilities of 1.0 or bootstrap scores of 100 were relabeled as ‘*’,
and any scores <50 were coded as ‘-’. Sample codes and
Genbank accession numbers correspond to Supplementary
Tables 1 and 2. The B. dorsalis genomic scaffold used for map-
ping exon boundaries in DDOSTSs?2 is indicated by its Genbank
accession.

Figure S3 Maximum likelihood topology for RPA2. Node
support values represent Bayesian posterior probabilities (left)
and maximum likelihood bootstrap scores (right); posterior
probabilities of 1.0 or bootstrap scores of 100 were relabeled
as “*’, and any scores <50 were coded as ‘-’. Sample codes
and Genbank accession numbers correspond to Supplementary
Tables 1 and 2. The B. dorsalis genomic scaffold used for
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mapping exon boundaries in RPA2 is indicated by its
Genbank accession.

Table S1 Genbank accession numbers for representative se-
quences (COI) and transcript identifiers that had best reciprocal
hits to five target genes (POP4, RPA2, NOMOI1, DDOSTs2,
CPT2), from all target species used for pairwise genetic distance
estimates and phylogeny reconstruction.

Table S2 Alignment details for the remaining 40 loci retained
post-filtering that did not have greater average percent difference
than COI. Alignment length is given in amino acids for protein
alignments and base pairs for nucleotide alignments. Lengths
of primed regions correspond to the region spanned by primers
designed in Primer3 on the nucleotide alignment and are given
in base pairs. Average percent difference was calculated on the
nucleotide alignment. Gene function was assigned by BLAST
searches to the B. dorsalis genome: Annotations and accessions
are provided here.

Table S3 Sample details and Genbank Accession numbers for
selected sibling species representatives used to test the efficacy
of newly developed putative diagnostic loci. Specimen codes
correspond to tip labels in Figure 3. Gene acronyms are given
in the text. CPT2 failed to amplify and was not sequenced. An
‘x’denotes failed sequencing or PCR.

Table S4 Polymerase chain reaction details for each of the five
selected novel diagnostic loci. Gene acronyms are given in the
text.

Table S5 PCR cycle protocols for each of the five selected novel
diagnostic loci. Gene acronyms are given in the text.


https://www.researchgate.net/publication/320582170

