CSIRO PUBLISHING

www.publish.csiro.au/journals/cp

Quantification of wheat water-use efficiency
at the shire-level in Australia

A. Doherty™, V. O. Sadras®“, D. Rodriguez”, and A. Potgieter"

AQueensland Primary Industries and Fisheries — APSRU, PO Box 102, Toowoomba, Qld 4350, Australia.
BSouth Australian Research & Development Institute, Waite Campus, GPO Box 397, Adelaide, SA 5001, Australia.
CCorresponding author. Email: victor.sadras@sa.gov.au

Abstract. In eastern Australia, latitudinal gradients in vapour pressure deficit (VPD), mean temperature (T),
photosynthetically active radiation (PAR), and fraction of diffuse radiation (FDR) around the critical stage for yield
formation affect wheat yield and crop water-use efficiency (WUE =yield per unit evapotranspiration). In this paper we
combine our current understanding of these climate factors aggregated in a normalised phototermal coefficient, NPq=(PAR-
FDR)/(T - VPD), with a shire-level dynamic model of crop yield and water use to quantify WUE of wheat in 245 shires across
Australia. Three measures of WUE were compared: WUE, the ratio of measured yield and modelled evapotranspiration;
WUEypp, i.e. WUE corrected by VPD; and WUEyp, i.e. WUE corrected by NPq. Our aim is to test the hypothesis that
WUENnpq suits regional comparisons better than WUE or WUEypp.

Actual median yield at the shire level (1975-2000) varied from 0.5 to 2.8 t/ha and the coefficient of variation ranged from
1810 92%. Modelled median evapotranspiration varied from 106 to 620 mm and it accounted for 42% of'the variation in yield
among regions. The relationship was non-linear, and yield stabilised at ~2 t/ha for evapotranspiration above 343 mm. There
were no associations between WUE and rainfall. The associations were weak (R>=0.09) but in the expected direction for
WUEypp, i.e. inverse with seasonal rainfall and direct with off-season rainfall, and strongest for WUEnpq (R2 =0.40).
We suggest that the effects of VPD, PAR, FDR, and T, can be integrated to improve the regional quantification of WUE
defined in terms of grain yield and seasonal water use.
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Introduction

In Australia, wheat is grown in environments of predominant
winter rainfall in Victoria, South Australia, and Western
Australia, in environments of predominant summer rainfall in
northern New South Wales and Queensland, and in a transition
region in central New South Wales where rainfall is more evenly
distributed throughout the year (Gentilli 1971). Prevalent size
and frequency of rainfall events also vary widely, with typically
larger and less frequent events in summer-rainfall regions and
smaller, more frequent events in winter-rainfall regions
(Sadras and Rodriguez 2007). Seasonality, size, and frequency
of rainfall events strongly influence the dynamics of water in
these agroecosystems; e.g. a higher proportion of rainfall loss
through soil evaporation is associated with winter rainfall and
small and more frequent rainfall events (Sadras 2003; Sadras
and Rodriguez 2007). In the eastern wheat-growing region,
there are strong gradients in fraction of diffuse radiation
(FDR), vapour pressure deficit (VPD), mean temperature (T),
and photosynthetically active radiation (PAR) during the critical
phenological window of kernel set (Rodriguez and Sadras
2007). Owing to this gradient, wheat yield in a transect
between Horsham (36°S) and Emerald (23°S) was unrelated
to the photothermal quotient (Fischer 1985) defined as the
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ratio between radiation and temperature in this phenological
window (Rodriguez and Sadras 2007). However, yield was
related to NPq, a photothermal quotient normalised to account
for VPD and FDR (Rodriguez and Sadras 2007).

Availability and efficiency in the use of water constrain wheat
yield over much of Australia (Fischer 2009). For this reason, it is
common to predict wheat yield using linear models relating yield
and seasonal evapotranspiration (Angus et al. 1980; French and
Schultz 1984a, 1984b; Cornish and Murray 1989; Angus and van
Herwaarden 2001; Sadras and Angus 2006; Walcott ef al. 2006).
This model assumes an x-intercept representing seasonal soil
evaporation and a slope representing an upper limit of the yield-
to-transpiration ratio. Shire-level comparisons in Australia have
been used to identify districts with high and low efficiencies under
the assumption of a constant yield-to-transpiration ratio (Beeston
et al. 2005; Walcott et al. 2006). But at this spatial scale this
assumption does not hold: the ratio is affected by T, PAR, FDR,
and VPD (Rodriguez and Sadras 2007; Sadras and Rodriguez
2007).

A comprehensive spatial characterisation of the
environmental potential and limitations to yield and water-use
efficiency is relevant in a context of water constraints for food
production (Falkenmark et al. 2009). The objective of this paper
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Fig. 1. (a) Actual median wheat yield (t/ha), (b) coefficient of variation of yield (%), and
(c) (facing page) modelled median seasonal evapotranspiration (mm) in wheat-producing shires
of Australia. All variables are for the period 1975-2000.
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is to quantify water-use efficiency of wheat in 245 shires across
Australia. To capture the spatial variation in climate, we
combined recent advances in the understanding of climatic
drivers of crop yield and water-use efficiency (Rodriguez and
Sadras 2007), with outputs from a shire-level dynamic model
(Potgieter et al. 2006). Three measures of water-use efficiency
were compared: WUE, the ratio of actual yield and modelled
evapotranspiration; WUEypp, i.e. WUE corrected by VPD
(Tanner 1981; Abbate et al. 2004; Kemanian et al. 2005); and
WUEnpq, i.e. WUE corrected by NPq. Our aim is to test the
hypothesis that WUEp, suits regional comparisons better than
WUE or WUEVPD~

Methods
Oz-Wheat model

Oz-Wheat is a shire-level production model that has been fully
described in Potgieter ez al. (2006). Briefly, the model generates a
final water-limited stress index by integrating (i) a daily water
balance during fallow and crop growth periods, (i7) daily weather
records, and (iii) crop-specific parameters. The model accounts
for spatial variability of rainfall, crop cultivar and phenology,
timing of sowing, soil depth, and plant-available water. It was
developed using yield from data collated by the Australian
Bureau of Statistics (ABS) between 1975 and 1999 (training
dataset), and validated against data for 2000. ABS data were
adjusted to fit the shire local area boundaries of 2000—01, and
variations in area associated with shifts in shire boundaries were
<10% for the shires included in the study. Thermal time to
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anthesis was calculated with APSIM (Keating et al. 2003) for
early, medium, and late cultivars, and one of the 3 simulated
cultivars was selected, depending on when the sowing event
happened inside a region-specific sowing window. The model
showed a significant ability to mimic actual shire-scale wheat
yield across the Australian wheatbelt and its suitability for climate
studies at regional level has been highlighted (Potgieter ez al.
20006).

Shire level yield, water use, and water-use efficiency

We combined actual shire yields and crop evapotranspiration
from Oz-Wheat to derive a series of measures of water-use
efficiency. Oz-Wheat was run for each wheat-growing shire in
Australia using daily weather data for the time series 1975-2000.
Toavoid artificial skill derived from grid data points, we only used
actual long-term climate stations that had the highest quality data.
Climate data for 927 recording stations were obtained from
the Australian Bureau of Meteorology SILO patch-point
dataset (www.bom.gov.au/silo/). When more than one weather
station was available within each shire, data were weighted by the
relative area of the shire they represented using Thiessen
polygons (de Berg et al. 2000). Crop evapotranspiration was
calculated assuming a 10%-full soil water profile at the end of the
previous year’s crop and simulating the fallow water balance with
Ritchie’s (1972) equations. Initial soil water (ISW, mm), final soil
water (FSW, mm), and in-crop rain (ICR, mm) were calculated,
and crop evapotranspiration (ET, mm) derived as:

ET = ISW 4 ICR — FSW (1)
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Water-use efficiency (WUE, kg/ha. mm) was calculated for
each year and shire as the ratio between actual yield (t/ha) and
modelled evapotranspiration (mm):

Yield
()
ET
and it was normalised by VPD (from 20 days before to 14 days
after anthesis) to derive WUEypp (kg.kPa/ha.mm):

Yield
ET/VPD 3)

WUE =

Building up on Fischer’s (1985) photothermal coefficient
relating temperature (T, °C) and photosynthetically active
radiation (PAR, MJ/m”.day), Rodriguez and Sadras (2007)
demonstrated the importance of vapour pressure deficit (VPD,
kPa), and the fraction of diffuse radiation (FDR) as sources of
variation in yield across a latitudinal gradient in eastern Australia.
They integrated these 4 factors in a normalised photothermal
coefficient, NPq (MJ/m?.day.°C .kPa):

xpy _ PAR X FDR @
=" VpDxT

Here we calculated NPq over a window from 20 days before
to 14 days after anthesis for each shire and season. VPD and
FDR were calculated using vapour pressure, temperature, and
incoming radiation from the Australian Bureau of Meteorology,
and the algorithms in Monteith and Unsworth (1990). WUE
normalised by NPq (WUEnpq, kg/ha.mm per MJ/m?.day.°C.
kPa) for each season and shire was calculated as:

Yield

WUENP = 15 Npq

(5)
Comparison of different measures of water-use efficiency
at shire level: associations with the proportions

of in-season and off-season rainfall

We compared shire-level WUE, WUEypp, and WUEyp, against
expected relationships with rainfall, namely:

(1) water-use efficiency decreases with increasing proportion of
seasonal rainfall as expected from unproductive water losses
(deep drainage, runoff), and reductions in yield associated
with transient water-logging and nutrient deficiencies
(French and Schultz 1984a, 1984b; Sadras and Roget
2004; Sadras and Angus 2006);

(2) water-use efficiency increases with increasing fraction of
off-season rainfall, as deep-stored water contributes
proportionally more to grain yield (Kirkegaard et al. 2007).

Sources of bias

Ozwheat (Potgieter et al. 2006) and the approach described above
make a series of assumptions that may bias our results. In addition,
we highlight the following potential sources of bias.

e Over-estimates of ET can be expected in high-rainfall areas of
south-eastern Australia and sandy soils in Western Australia
where episodic runoff or deep drainage occurs (e.g. Asseng
et al. 2001a).

A. Doherty et al.

e Weed control during fallow can be more effective in cropping-
intensive regions compared with shires where weeds may be
used as a resource for animal production, hence biasing our
estimates of initial soil water.

e Residual water from irrigation is unaccounted for, and may bias
our estimates of wheat WUE in shires of eastern Australia
where wheat is grown in rotations with irrigated cotton or rice.

e Region-specific sowing windows may not reflect recent
changes in practices, such as ‘dry sowing’, i.e. sowing
before opening rains (Fulwood 2009).

e QOur estimates are based on a static view of long-term
(1975-2000) yields. In this period, wheat yield has
increased but at different rates across regions (Stephens
2003; Turner and Asseng 2005; Fischer 2009).

* We assumed a stationary climate over this period, but there
were definite trends in climatic elements of relevance for
crop production, i.e. reduced rainfall in Western Australia
and increased temperature across the Australian wheatbelt
(Sadras and Monzon 2006; Asseng et al. 2009).

Results
Spatial variation in yield and evapotranspiration

The actual median wheat yield varied from 0.5 to 2.8 t/ha across
shires. It was higher in southern New South Wales and southern
and central Victoria (Fig. 1a). The coefficient of variation for
yield between 1975 and 2000 in each shire ranged from 18 to 92%
and increased inland and northwards in eastern Australia
(Fig. 1b). Modelled median water use varied from ~106 mm in
south-eastern Australia and the western wheatbelt to ~620 mm in
eastern New South Wales (Fig. 1¢). For the pooled data, i.e. all
wheat-growing shires, ET accounted for 42% of the variation in
yield (Fig. 2a, Table 1). While a continuous model (dashed line in
Fig. 2a) describes the relationship between yield and ET more
realistically, i.e. yield response to ET is gradual, a piece-wise
model (solid line in Fig. 2a) allowed estimation of agronomically
meaningful parameters: yield increased with ET at an average rate
of 4.3kg/hamm and stabilised at ~2t/ha for ET above a
breakpoint of ~343 mm. Piece-wise regressions for each state
returned slopes in a range from 13 kg/ha.mm in Victoria to
3 kg/ha.mm in New South Wales (Table 1). The slope and the
breakpoint ET were inversely related (R2 =0.84,P<0.001,n=5;
Table 1).

Climate factors and water-use efficiency

Yield was inversely related to median VPD around anthesis
(Fig. 2b), which ranged from 0.5 to 1.4 kPa (Fig. 3a). Median
NPq around anthesis varied 5.6-fold. It decreased northwards in
both the western and eastern regions (Fig. 3b). In eastern
Australia, the northward decline in NPq is explained by the
northward decline in both total and diffuse radiation, and the
northward increase in both VPD and daytime temperature around
anthesis (Rodriguez and Sadras 2007). Actual yield increased
non-linearly with NPq, reaching a plateau of ~2 t/ha (Fig. 2¢).
In eastern Australia, WUE decreased northwards from central
Victoria to Queensland (Fig. 4a). In Western Australia, it was
largely between 6 and 9 kg/ha.mm, with a patchy distribution of
districts with lower (<6kg/ha.mm) and higher efficiencies
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Table 1. Parameters from the split-line regression (slope and plateau)
between actual wheat yield and modelled crop evapotranspiration
a is the intercept (t/ha), b is the slope (tha.mm), and ET" is the
evapotranspiration at the breakpoint between the slope and plateau (mm).
All regressions are significant at < 0.0001. Yield and evapotranspiration are
medians for the period 1975-2000

HZ: 0.32 (piece-wise); F1'2: 0.42 (exponential)
both P < 0.0001
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Fig. 2. Relationship between actual wheat yield and (a) seasonal
evapotranspiration, (b) vapour pressure deficit, and (c) normalised
photothermal quotient, NPq (Eqn 4). In (@) exponential rise to maximum,
i.e.y=a+b[(1 —e )] (dashed line) and piece-wise (solid line) models were
fitted for comparison. Vapour pressure deficit and NPq correspond to a
window from 20 days before to 14 days after anthesis. All variables are
medians for the period 1975-2000.

(>9 kg/ha.mm). Comparison of Fig. 4a with 45 and 4¢ highlights
climatic influences on the geographical gradients of WUE. For
example, the pattern of declining WUE from central Victoria to
central Queensland (Fig. 4a) is smoothed when correcting by
VPD (Fig. 4b) and is partially reversed when correcting by NPq

State a b ET R? n

Victoria —0.66 0.013+£0.002 203+2 0.52 38
Western Australia ~ —0.19 0.008 +0.001 229+10 0.44 60
South Australia 0.16 0.006+£0.001 308+38  0.46 45
Queensland 0.24 0.005+0.001 323+62  0.31 35
New South Wales 0.90 0.003+£0.001 410+5 0.29 67
All 0.60  0.004+0.0003 343+9 041 245

(Fig. 4c). Most shires had WUENpq in arange from 10 to 30 kg/ha.
mm per MJ/m?.day.°C kPa, with higher efficiencies in central
Victoria and northern Queensland.

Relationships between water-use efficiency and rainfall

We expected WUE to be inversely associated with seasonal
rainfall and positively related to off-season rainfall. There
were no associations between WUE defined as the ratio of
yield and water use and rainfall (Fig. Sa, d). The associations
with rainfall were weak but in the expected direction for WUE
normalised by VPD (Fig. 5b, e), and strongest for WUE
normalised by NPq (Fig. 5¢, f).

Discussion

Where water availability constrains crop yield, benchmarks of
yield against water use are widely applied (Angus et al. 1980;
French and Schultz 1984a, 1984b; Cornish and Murray 1989;
Sadras and Angus 2006; Walcott et al. 2006; Grassini et al. 2009a,
2009b). The need to correct WUE by VPD or other measures of
evaporative demand is well established (de Wit 1958; Tanner and
Sinclair 1983; Sadras ef al. 1991; Chen et al. 2003; Abbate et al.
2004; Kemanian et al. 2005). Our approach to correcting WUE
(Eqns 4 and 5) further incorporates two robust physiological
concepts, namely (7) the notion of a critical window for grain yield
determination (Fischer 1985; Foulkes et al. 2009; Sadras and
Denison 2009), and (i) the enhancing effect of diffuse radiation
on canopy photosynthesis (Spitters 1986; Stockle and Kemanian
2009).

Theoretical justification of WUEnpq

Direct comparison of WUEypp and WUENpq (Fig. 4bv. ¢) and the
differential ability of these efficiencies to capture agriculturally
meaningful patterns (Fig. 5) indicated that normalisation by NPq
improved on raw WUE or the generalised normalisation by
VPD. This improvement can be interpreted physiologically as
follows. Consider the expression of WUE relating biomass (B),
and the components of ET, i.e. crop transpiration (T) and soil
evaporation (Es) (Cooper et al. 1987):

B/T

WUEg = —+——
BT+ ET

(62)
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Fig.3. (a) Vapour pressure deficit (kPa) and (b) normalised photothermal quotient (MJ/m?.day.°C.
kPa) in wheat-producing shires of Australia. Both variables are medians for the period 1975-2000
and correspond to a window from 20 days before to 14 days after anthesis.
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Fig. 4. (a) Water-use efficiency (kg/ha.mm), (b) water-use efficiency corrected by vapour pressure deficit (kg kPa/ha.mm),
and (¢) (facing page) water-use efficiency corrected by normalised photothermal quotient (kg/ha.mm per MJ/m?.day.°C.kPa) in
wheat-producing shires of Australia. All variables are medians for the period 1975-2000. Information contained in the variables
increases from WUE to WUEypp to WUENp; hence, the need for an increasing number of categories in this sequence of maps.
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and the derived expression of WUE on a grain yield basis
equivalent to Eqn 2:

B/T) - [(KN - KS)/B|

WUE —
1+E,/T

(6b)

where KN is kernel number and KS is average kernel mass.
Biomass per unit transpiration is an inverse function of VPD
(Tanner 1981; Sadras et al. 1991; Gregory et al. 1992; Kemanian
et al. 2005; Haefele et al. 2009). Thus, for WUE defined on a
biomass basis (Eqn 6a), correction by VPD is necessary and
sufficient. However, for a definition of WUE on a grain yield basis
(Eqns 2 and 6b), we also need to account for climatic factors that
influence kernel number and size. Fischer (1985) demonstrated
that wheat kernel number is proportional to a photothermal
quotient in a window bracketing flowering, and Rodriguez and
Sadras (2007) have expanded this index to account for VPD and
fraction of diffuse radiation (Eqn 4). Furthermore, physiological
and evolutionary evidence support the notion that not only
kernel number but also potential kernel size are determined
in this narrow phenological window (Sadras 2007; Sadras
and Denison 2009; Yang et al. 2009). Collectively, these
considerations provide a theoretical justification for using NPq
to correct yield-based measures of WUE. For WUE on a biomass
basis, correcting by NPq is theoretically unjustified. Limitations
of NPq that stem from correlations between its components,
e.g. high VPD is often associated with lower FDR and lower

A. Doherty et al.

1000 km
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rainfall, have been discussed in detail (Rodriguez and Sadras
2007).

Application of WUENp,

The measure of WUE in Fig. 4a, where yield is divided by water
use, has led to the conclusion that south-eastern and western
regions perform better than the north-eastern grain region in
Australia (Beeston et al. 2005; Walcott et al. 2006). For the
eastern Australian wheatbelt, a positive correlation between NPq
around anthesis and actual yield has been reported (Rodriguez and
Sadras 2007). In contrast to the conclusions of Walcott et al.
(2006), the normalisation of WUE with NPq indicates that the
north-eastern region has WUEs as high as or even higher than
those observed in the southern region. Among other factors, this
might reflect the high degree of specialisation in the northern
production systems where cropping land is less often shared with
livestock enterprises. Of the 3 efficiencies compared in this study,
only WUEnp, captured the expected associations with rainfall,
i.e. negative with seasonal rain and positive with off-season rain
(Fig. 5).

A measure of WUE accounting for known climate drivers
around a narrow critical window of grain yield determination is,
we propose, a more robust means to identify low efficiencies and
probe for causes (Fig. 4c). The south-western and western
wheatbelt have been characterised by decline in soil nutrients
and biological activity, soil acidification, surface soil structural
decline, surface water logging, subsoil compaction, and
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Fig. 5. Shire-level relationship between (a, d) water-use efficiency (WUE, Eqn 2), (b, e) water-use efficiency corrected by vapour pressure
deficit (WUEypp, Eqn 3), and (c, f) water-use efficiency corrected by normalised photothermal quotient (WUExpq, Eqn 5) and (a—) seasonal or
(d—f) off-season rainfall expressed as fractions of annual rain. All variables are medians for the period 1975-2000.

secondary salinity from rising ground-water (Rengasamy 2002;
Williams et al. 2002). Stephens (2003) suggested that high rates
of drainage and water-logging on duplex soils reduce WUE in
wetter districts of Western Australia. Similarly, low efficiencies in
the high-rainfall areas of southern Victoria can be related to
surface water logging, soil acidification, and decline in soil
nutrients and biological activity (Williams et a/. 2002). In the
South Australian Eyre Peninsula, subsoil chemical constraints,
i.e. salinity and sodicity, are widespread (Rengasamy 2002).
Subsoil chemical constraints and water repellency have been
invoked as factors reducing WUE in this region (Stephens 2003).
Low WUE in south-eastern Queensland can be partially related to
subsoil salinity (Dang et al. 2006). Soil acidification and decline
in soil nutrients and biological activity (Williams et al. 2002) are
likely sources of inefficiencies in shires from the central, Northern
Tablelands and Granite Belt, Western Downs, and New South
Wales Slopes and Plains.

Shire-level yield tended to level off at around 2 t/ha in relation
to both water use and normalised photothermal quotient
(Fig. 2a, ¢). This is consistent with crop-level modelling and
measurements in central Western Australia (Asseng et al. 20015),
the Mallee region of south-eastern Australia (Sadras and Roget
2004; Sadras 2005), and more broadly across diverse agro-
climatic zones of the Australian wheatbelt (Hochman et al.
2009), where shortage of nitrogen contributes to a comparable
ceiling at around 2 t/ha.

Conclusions

The effects of major climate drivers, namely vapour pressure
deficit, radiation, diffuse radiation, and temperature, can be

integrated to improve the quantification of water use efficiency.
This is particularly important for regional characterisations or
where these climatic factors vary substantially for other reasons.
We further propose a focus on the critical period of grain yield
determination, rather than on the whole season.
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