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Summary

1. Abiotic environmental predictors and broad-scale vegetation have been used widely
to model the regional distributions of faunal species within forested regions of Australia.
These models have been developed using stepwise statistical procedures but incorpor-
ate only limited expert involvement of the type sometimes advocated in distribution
modelling. The objectives of this study were twofold. First, to evaluate techniques for
incorporating fine-scaled vegetation and growth-stage mapping into models of species
distribution. Secondly, to compare methods that incorporate expert opinion directly
into statistical models derived using stepwise statistical procedures.

2. Using faunal data from north-east New South Wales, Australia, logistic regression
models using fine-scale vegetation and expert opinion were compared with models
employing only abiotic and broad vegetation variables.

3. Vegetation and growth-stage information was incorporated into models of species
distribution in two ways, both of which used expert opinion to derive new explanatory
variables. The first approach amalgamated fine-scaled vegetation classes into broader
classes of ecological relevance to fauna. In the second approach, ordinal habitat indices
were derived from vegetation and growth-stage mapping using rules specified by an
expert panel. These indices described habitat features thought to be relevant to the
faunal groups studied (e.g. tree hollow availability, fleshy fruit production). Landscape
composition was calculated using these new variables within a 500-m and 2-km radius
of each site. Each habitat index generated a spatially neutral variable and two spatial
context variables.

4. Expert opinion was incorporated during the pre-modelling, model-fitting and post-
modelling stages. At the pre-modelling stage experts developed new explanatory
variables based on mapped fine-scale vegetation and growth-stage information. At the
model-fitting stage an expert panel selected a subset of potential explanatory variables
from the available set. At the post-modelling stage expert opinion modified or refined
maps of predicted species distribution generated by statistical models. For comparat-
ive purposes expert opinion was also used to develop maps of species distribution by
defining rules within a geographical information system, without the aid of statistical
modelling.

5. Predictive accuracy was not improved significantly by incorporating habitat indices
derived by applying expert opinion to fine-scaled vegetation and growth-stage mapping.
Use of expert input at the pre-modelling stage to derive and select potential explanatory
variables therefore does not provide more information than that provided by remotely
mapped vegetation.

6. The incorporation of expert opinion at the model-fitting or post-modelling stages
resulted in small but insignificant gains in predictive accuracy. The predictive accuracy
of purely expert models was less than that achieved by approaches based on statistical
modelling.

7. The study, one of few available evaluations of expert opinion in models of species
distribution, suggests that expert modification of fitted statistical models should be
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confined to species for which models are grossly in error, or for which insufficient data

exist to construct solely statistical models.

Key-words: Australia, conservation, prediction, species distribution models.
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Introduction

Regional assessments of the adequacy of conservation
reserve systems require detailed information on species
distribution across large regions. Due to practical con-
straints this information cannot be obtained through
biological surveys alone (Austin & Heyligers 1989; Ferrier
1997). Statistical modelling of biological survey data
in relation to mapped environmental variables can
provide a cost-effective surrogate for direct species
distributional data (Austin, Cunningham & Fleming
1984; Margules & Stein 1989; Nicholls 1989; Lawton &
Woodroffe 1991; Austin & Meyers 1996; Austin et al.
1996; Neave et al. 1996; Neave, Norton & Nix 1996a,b;
Scott, Tear & Davis 1996; Manel et al. 1999; Palma, Beja
& Rodriguez 1999; Suarez, Balbontin & Ferrer 2000).

Several Australian studies have demonstrated the
importance of abiotic environmental variables (climate,
terrain, substrate) in statistical modelling of species
distribution, and in predicting faunal habitat at the
regional scale (Austin, Cunningham & Fleming 1984;
Braithwaite et al. 1989; Mackey et al. 1989; Margules
& Stein 1989; McKenzie et al. 1989; Nicholls 1989,
1991; Lindenmayer et al. 1991b; Nix & Switzer 1991). In
particular, recent studies aimed at facilitating regional
conservation planning in south-eastern (Austin & Meyers
1996; Mills et al. 1996; Neave et al. 1996; Neave, Norton &
Nix 1996a,b) and north-eastern New South Wales (NSW)
(NSW NPWS 1994a, 1995) have built on the method-
ology of earlier predictive modelling that determined
species distribution in relation to abiotic predictors.

Extensive modelling of faunal species distribution
has already been undertaken in forested north-east NSW
as part of the North-East Forests Biodiversity Study
(NEFBS) (NSW NPWS 1994a). The predictive variables
used in these models included abiotic environmental
variables, broad-scaled vegetation variables derived from
Landsat TM imagery and broad-scaled disturbance
variables (clearing and logging) derived from Landsat
imagery and logging history maps. In a recent evalu-
ation of these models, Pearce, Ferrier & Scotts (in press)
found that 89% of the models provided predictions that
were significantly better than those from a random
model, with 70% of the models providing high levels of
discrimination accuracy.

The accuracy and spatial resolution of these models
might, however, be improved by incorporating other types
of available information, such as finer-scaled vegeta-
tion and growth-stage mapping and expert opinion
of species’ habitat requirements. These variables may
provide additional information on important habitat

attributes (e.g. nesting sites, protective cover, food resources)
known to be of critical importance to specific faunal
groups, including arboreal mammals (Lindenmayer
et al. 1991a; Lindenmayer, Cunningham & Donnelly
1993; Pausas, Braithwaite & Austin 1995), small terrest-
rial mammals ( Dickman 1991), nectivorous birds (Scotts
1991), ground-foraging and nesting birds (Recher 1991)
and bark-foraging birds (Clode & Burgman 1997).

Fine-scale vegetation information may be derived from
aerial photograph interpretation (e.g. the forest-type
classification; State Forests of NSW 1989), modelling
of floristic plot data in relation to abiotic environ-
mental variables, or air-borne videography (Catling &
Coops 1999), and can be based on either dominant
canopy species (NSW NPWS 1994b) or full floristic
composition ( Keith, Bedwood & Smith 1995). In north-
east NSW a forest-type map at the scale of 1 : 25000 is
available, based on a combination of aerial photograph
interpretation and modelling of forest types to fill in
gaps in the aerial photograph interpreted coverage.
Growth-stage maps derived through aerial photograph
interpretation are also available at this scale (NSW
NPWS 1996).

The use of fine-scaled vegetation mapping in statist-
ical modelling of faunal distributions presents spe-
cial challenges due to the large number of vegetation
categories typically defined in such classifications. For
example, in north-east NSW there are 110 forest types
mapped. Regression analysis would normally treat each
of these types as a separate class of a factor variable.
Consequently, using raw forest types as an explanatory
variable in statistical modelling results in significant
problems of data sparsity due to the large number of
factor classes relative to the total number of surveyed
sites. Many of the mapped forest types contain no, or
only a very small number of, faunal survey sites. To
avoid these problems in regression, the information
contained within the finer-scaled vegetation and growth-
stage mapping needs to be generalized to provide
meaningful and relevant predictors for use in model
development. Examples of this approach include the
development of habitat indices ( Braithwaite et al. 1989)
or the amalgamation of forest types into ecologically
meaningful classes based on their structural and floristic
characteristics (Scotts 1996).

Statistical modelling of species distribution using
biological survey data and abiotic and biotic predictors
is not the only approach to predictively mapping dis-
tributions for regional conservation planning. For
example, habitat suitability index models are widely
used in the United States to describe species distribution
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(Cole & Smith 1983). These indices are based on qual-
itative accounts and general statements about a species’
habitat preferences. Maps of species distribution are
developed by combining vegetation or habitat classes
within a geographical information system (GIS), and
combining this with expert-based rules for linking
faunal distribution data to these classes. In this study,
we investigated ways in which these two approaches,
statistical models and expert-defined habitat suitability
indices, may be integrated. First, we evaluated tech-
niques for incorporating fine-scaled vegetation type
and growth-stage variables into statistical models at
both on-site and landscape scales. Two previously used
techniques were evaluated: the development of habitat
indices and the amalgamation of forest types into
ecologically meaningful classes. Both these techniques
require expert opinion to define subjectively the levels
of the indices or classes.

Secondly, we investigated a number of other approaches
to incorporating expert opinion into statistical models
of species distribution. We evaluated the incorporation
of expert opinion at the model-fitting stage through
selection of relevant explanatory variables. We also
evaluated the contribution that experts can make at the
post-modelling stage through expert refinement or
modification of predictions from statistical models. The
predictive accuracy of models developed using these
approaches was compared with that of models for
which expert input was confined to the derivation of
habitat indices (i.e. at the pre-modelling stage) and models
developed purely from expert opinion (without any
statistical analysis).

The study was undertaken for a region of north-east
NSW, Australia, using databases collated over the past
8 years. The evaluation was intended to provide guide-
lines for the immediate needs of conservation planning
in the region.

Materials and methods

This study was conducted in two stages. In the first
stage, two approaches to incorporating fine-scaled
vegetation and growth-stage information into models
of species distribution were evaluated using data for 93
fauna species in north-east NSW. In the second stage, a
subset of these species was used to evaluate different
strategies for incorporating expert opinion into models
of species distribution. Each of these components is
described in detail below.

INCORPORATING FINE-SCALED VEGETATION
AND GROWTH-STAGE MAPPING

As indicated earlier, fine-scale vegetation mapping usually
contains too many classes to allow a sufficient number
of sites to be surveyed in every class for the purposes of
faunal modelling. The classification used to map forest
types in NSW (State Forests of NSW 1989) contains
110 unique forest types for north-east NSW alone, mapped

atascaleof 1 : 25 000. Aerial photograph interpretation
has recently (1995-96) been used to subdivide further
each of these forest types into seven growth-stage classes
(NSW NPWS 1996): old-growth forest, mature forest,
mature disturbed forest, young forest, rainforest, cleared
land, and an unmapped category. A total of 770 com-
binations of forest type and growth stage can therefore
potentially occur within the region.

In this study we evaluated two approaches to pre-
processing the forest-type/growth-stage classifications
to reduce complexity prior to development of faunal
models. The first approach involved amalgamating for-
est types to form generalized vegetation classes. For
this purpose we employed a scheme devised by Scotts
(1996), which amalgamated forest types into nine groups
(Table 1). These forest-type groupings represent eco-
logical classes deemed to be relevant to fauna, and were
devised by considering the structural, floristic and envir-
onmental characteristics of each of the forest types.

The amalgamated forest-types and the growth-stage
classes were treated as two unordered factor variables
(one for vegetation and the other for growth stage).
These variables were then considered for entry into the
statistical models along with existing abiotic environ-
mental variables.

The second approach to incorporating fine-scale
vegetation and growth-stage mapping into faunal model-
ling involved the derivation of habitat attribute indices.
These indices predict habitat attributes thought to be
of relevance in shaping the distribution of fauna (e.g.
tree hollow index, nectar index). The indices were derived
by an expert panel of three faunal ecologists who assigned
a value for each index to each of the 770 unique com-
binations of forest type and growth stage. Each index
consisted of a discrete number of ordered levels. The 10
habitat indices developed by this process are summar-
ized in Table 2.

For the purposes of deriving faunal models, each
habitat index was expressed as a spatially neutral
variable, and as two spatially explicit contextual vari-
ables. The spatially neutral variable was assigned the
value of the habitat index at each site in the landscape.
The two spatially explicit variables were assigned the
mean value of the index within a square centred on the
site of interest, with an edge length of 1 km and 4 km,
respectively.

For each approach, predictive models were developed
using field survey data from north-east NSW collected
during the NEFBS (NSW NPWS 1994a). Presence/
absence models were fitted using generalized additive
modelling (GAM; Hastie & Tibshirani 1990) with for-
ward stepwise selection of variables and using the logit
link. Models were derived for 93 species: eight small
reptiles, seven arboreal marsupials, 58 diurnal birds,
eight nocturnal birds and 12 microchiropteran bats
using a sample size of 672,738, 528,611, and 427 survey
sites, respectively. These data were collected between
1992 and 1993. Explanatory variables considered are
listed in the Appendix and discussed below. Continuous
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Table 1. Grouping of forest types mapped in north-east NSW according to Scotts (1996)

Vegetation group Forest types Description (character species)
Rainforest

1 1,2,3,4,5,6,7,8 Subtropical rainforest

2 10,11,12,13,14,15 Warm temperate rainforest

3 16,17,18,19,20 Cool temperate rainforest

4 21,22,23,24,25,26 Dry and depauperate rainforest
Coastal wet sclerophyll (typical rainforest understorey; > 35—> 55m height)

5 36 Eucalyptus pilularis

6 42,45,46,47 E. microcorys, E. saligna

7 48,49 E. grandis, Syncarpia glomulifera

8 51 E. dunnii

9 53,55 Lophostemon confertus
10 60,87 E. acmenoides, E. resinifera,

E. siderophloia, E. biturbinata

Tablelands wet sclerophyll (typical mesic understorey; > 35—> 55m height)

E. obliqua, E. fastigata

E. andrewsii

E. laevopinea, E. dalrympleanalE. viminalis
E. deanei, E. saligna, E. fraxinoides

E. pilularis dominant, E. maculata

E. propinqua, E. siderophloia,

E. acmenoides, E. carnea, E. saligna

E. maculata, E. siderophloia, E. crebra,
E. sideroxylon, E. propinqua,

E. pilularis, E. moluccana

11 150-155,164

12 163a,170

13 131,168

14 52,158,162,98

Coastal grassy dry sclerophyll (frequent fires; < 25—< 35, maybe 45 m height)
15 37,39

16 56,61,62,64

17 70,71,72,74,76,81,82,83,84,215

18 85,92,93,65,211

E.tereticornis, E. amplifolia, E. moluccana

Coastal heathy dry sclerophyll (typically <20 —< 30, maybe to 35 m height)

19 38,41 E. pyrocarpa, E. pilularis, E. gummifera,
Angophora floribunda
20 40,97,117,119,115,129,126, 130,105,106,107 E. planchoniana, E. globoidea, E. tindaliae,

E. intermedia, E.signata, E. rossii, E. pilularis

Tablelands grassy dry sclerophyll (drier tablelands; much cleared; < 20 —< 30m height)

21 122,167
22 140-142,159,160,161,103,138,111

Tablelands heathy dry sclerophyll (very poor granite)

23 163b

Swamp sclerophyll forest

24 30,31,32

Woodlands

25 138,136,137

26 171,175,176,177,172
27 180,182,203,204,213

E. laevopinea, E. caliginosa, E. cameronii
E. pauciflora, E. dalrympleana, E. rubida,
E. nova-anglica, E. viminalis, E. caliginosa,
E. laevopinea, E. cameronii, E. deanei

E. andrewsii ssp. campanulata
E. robusta, Melaleuca spp., Casuarina glauca

E. pauciflora, E. stellulata

E. melliodora, E. albens, E. dealbata,

E. blakelyi, E. macrorhyncha, E. caliginosa
Callitris endlicheri, E. albens,

E. polyanthemos, E. conica, E. crebra,

E. melanophloia, E. sideroxlon

variables were tested for entry into models as smoothed
functions with 4 degrees of freedom. At each step in
the selection process, any variables not significantly
related to the response at the 5% level (incorporating a
Bonferroni correction) were not considered further in
later steps. After completing this selection process, each
variable in the model was re-examined to determine
whether a reduction in function complexity (degrees of
freedom) could be achieved without a significant
increase in deviance. Degrees of freedom of 3,2 and 1
were considered. Pearce & Ferrier (2000a) found this
stepwise selection strategy (excluding the Bonferroni
correction) to provide the most accurate predictive
models compared with less stringent strategies.

Each species model was spatially interpolated by
applying the fitted generalized additive model for that
species to environmental data held within a GIS for
each and every 4-ha grid cell within the region. Each
of these interpolated distributions provided a map of
probability of occurrence.

The accuracy of models derived using one or both of
the above approaches to incorporating fine-scale vegeta-
tion and growth-stage mapping was compared with
that of models employing only abiotic environmental
variables, or abiotic variables and broad-scale vegeta-
tion variables. Abiotic variables considered are listed in
the Appendix. Each abiotic and broad vegetation vari-
able was stored in a GIS at a 4-ha grid resolution, while
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Table 2. Description and derivation of the expert-defined habitat indices

Habitat index description and derivation

Predator index

Nectar index

Fine litter index

Coarse litter index
Fruit index

Bark index

Eucalypt foliage index

Non-eucalypt foliage index

Structural complexity index

Hollow index

The relative exposure of terrestrial and scansorial fauna to predation by foxes. Index
based on the size of the predator population (represented by elevation classes of forest
type) and the influence of understorey structure (represented by forest type and growth-
stage classes) on the foraging patterns of foxes and the avoidance strategies of prey.
Index derived from published and expert knowledge of nectar volume of overstorey
species (represented by forest type), floral density (represented by growth stage) and the
duration of nectar flow.

Index of relative invertebrate availability throughout the year. Fine litter index defined
as the product of the accumulation rate of litter (represented by forest type and to a
small extent growth stage) and its decomposition rate (a product of moisture, nutrients
and soil depth). Invertebrate availability influenced by episodic drying (represented by
forest type) which results in migration to soil layer and therefore low availability.

As for fine litter, but also includes other foraging and basking substrates such as logs.
Growth stage exerts a stronger influence on this index.

Fleshy fruit index based on overstorey and understorey floristic composition
(represented by forest type) and production rates (represented by growth stage).
Aerial bark index developed as an index of invertebrate microhabitat and

vertebrate foraging substrate provided by higher order branches and the tree trunk.
The index is based on annual production (defined by growth stage), bark form and
tree architecture (defined by forest type).

Foliage nutrient index based on published nitrogen levels of dominant overstorey
eucalypt species (represented by forest type) and production rates (defined by a
combination of forest type and growth stage). Other factors such as palatability and
the presence of polyphenols and tannins were not considered.

As above for non-eucalypt component of canopy.

An index of structural complexity defined as the number of strata plus gaps
between and within strata. The index is based on site quality (defined by forest

type) and growth stage.

An index of the availability of hollows based on the number and quality of hollows
produced by dominant tree species (forest type) and the age at which hollows begin
developing in each species (growth stage).

the fine-scaled vegetation and growth-stage variables
were stored at 1-ha grid resolution.

Broad-scale vegetation systems were treated as a fac-
tor variable with three classes: rainforest, wet sclerophyll
forest and dry sclerophyll forest, mapped from Landsat
TM imagery (NSW NPWS 1994b). In the original
NEFBS project some refinement of this vegetation
system information was undertaken by modelling each
of the three forest classes independently as a func-
tion of climate, terrain, substrate and point-sampled
forest-type data within each mapped vegetation system
(NSW NPWS 1994b). Three continuous variables were
produced that predicted the probabilities of rainforest,
wet sclerophyll forest, and dry sclerophyll forest occur-
ring in each grid cell. These refined vegetation system
variables were also used to derive spatially explicit con-
textual variables by averaging, with inverse distance
weighting, the modelled probability of each vegetation
class within a 500-m and 2-km radius of the grid cell of
interest (NSW NPWS 1994a). In addition to vegeta-
tion system information, the severity of logging disturb-
ance at each site was expressed on a three-point scale of
light, moderate and heavy, based on maps of logging
history. Contextual variables describing the average
level of logging within the surrounding landscape were
developed using radii of 500 m and 2 km. This resulted
in three highly correlated variables for each vegetation

system and the logging history variables. These groups
of three variables were treated as correlated groups
in the stepwise selection procedure. In the first step of
variable selection, the significance of each variable was
calculated, and the most significant variable of the
correlated set retained for consideration in subsequent
steps of stepwise selection. The percentage of forest
cleared within a 2-km radius was also considered as a
contextual variable. The logging history and percentage
of forest-clearing variables were based on data collected
in 1992-93.

For each species used in this evaluation, 10 separate
models were developed using different combinations of
spatially neutral and spatially explicit abiotic environ-
mental variables, broad vegetation system variables,
expert-derived habitat indices and amalgamated forest-
type classes. Asindicated previously, these variables are
not contemporaneous. The growth-stage variables were
derived from information collected 3—5 years after the
species data and other environmental descriptors. This
may therefore cause problems in modelling due to
habitat change over the time period. However, we
believe the extent of this problem is likely to be limited
in our data sets, as only a very small proportion of the
study area has been logged in the period 1991-96. The
combinations of predictive variables examined were
as follows:
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. abiotic variables only;

. abiotic variables and amalgamated forest-type classes;
. abiotic variables and spatially neutral habitat indices;
. abiotic variables and spatially explicit habitat indices;
. abiotic variables and spatially neutral vegetation
systems;

6. abiotic variables and spatially explicit vegetation
systems;

7. abiotic variables, spatially neutral vegetation system
and habitat index variables;

8. abiotic variables, spatially explicit vegetation system
and habitat index variables;

9. spatially neutral habitat index information only;
10. spatially explicit habitat index information only.

The predictive accuracy of the 10 models developed
for each species was evaluated using independent
survey data supplemented by jack-knifing techniques.
Independent data were available to validate models
developed for small reptile and diurnal bird species
(NSW NPWS 1995; Clode & Burgman 1997, NSW
NPWS, unpublished data). In total, 497 small reptile
and 359 bird survey sites were available for evaluation
using data collected in 1995-96. A small amount of
independent data was also available for the arboreal
marsupial, nocturnal bird and microchiropteran bat
species (NSW NPWS, unpublished data). However,
these data were strongly biased in their environmental
coverage, being predominantly restricted to high-
elevation, high-rainfall, areas of north-east NSW.
Consequently, a five-group jack-knife technique ( Efron
1982) was used to develop pseudoindependent data
from the model development survey sites to validate
models for these fauna groups. In this procedure, the
data were divided into five groups. Four groups were
combined and used to develop a predictive model. This
model was then applied to the withheld fifth group to
calculate the predicted values for this set. This proced-
ure was repeated four times, each time developing a
model based on four of the groups of data, and apply-
ing the model to the fifth group, until all the sites were
assigned a predicted probability of occurrence.

The predictive accuracy of each model was assessed
using the Mann—Whitney statistic as a measure of dis-
crimination ability (for further details see Pearce &
Ferrier 2000b). This statistic measures the ability of a
model to discriminate correctly between occupied and
unoccupied sites in an evaluation data set. This statistic
can be interpreted as the probability that a model will
correctly distinguish between observations at two sites,
one observed occupied and the other observed vacant.
In other words, if an occupied site and an unoccupied
site are selected at random the index is an estimate of
the probability that the model will predict a higher
likelihood of occurrence for the occupied than for the
unoccupied site. The Mann—Whitney statistic ranges
between 0-5 for a model performing no better than random
to 1 for a model exhibiting perfect discrimination ability.

The Mann—Whitney statistics obtained by applying
the 10 modelling approaches to the 93 species were

N A W N -

subjected to an analysis of variance (ANOVA) to test
the effect of each of the 10 combinations of abiotic,
vegetation and growth-stage variables on model per-
formance. In the ANOVA, species was treated as an error
term (Chambers, Freeny & Heiberger 1992). The effects
listed under ‘error: species’ are those relating to differ-
ences in model performance between different species.
These effects are not of direct relevance to this study.
The effects listed under ‘error: within’ are those relating
to differences in performance between different types
of models fitted to the same species, controlling for dif-
ferences between species. The effects found to be sig-
nificant in the ANOvA were compared using Scheffé’s
test for unplanned comparisons (Day & Quinn 1989).

INCORPORATING EXPERT OPINION

Expert opinion may be incorporated into models of
species distribution at a number of stages in the model-
ling process. Experts can provide input at the data
preparation, or pre-modelling, stage through the devel-
opment of habitat indices, or by grouping vegetation
types into broader ecological classes. These sources of
expert input were evaluated in the first part of this study
(described above). At the model-fitting stage, experts
can provide input by selecting a subset of the available
predictors that are of particular ecological relevance
to the species concerned. This restricts the number of
potentially correlated variables being considered for
inclusion in a model, and ensures that only biologically
relevant variables are selected for a given species. Expert
opinion can also be used at the post-modelling stage to
constrain, modify or refine a statistically derived model,
by incorporating additional information not included
in the model. Alternatively, predictive models can be
formulated based on expert opinion alone, without any
statistical procedure used to calculate model coefficients.

The above approaches were evaluated for a selected
set of 16 species: two small reptiles, four diurnal birds,
five nocturnal birds, two arboreal marsupials and three
microchiropteran bats. These species were selected to
represent a range of taxonomic groups and guilds, rare
and common species and species with statistical models
of varying accuracy.

An expert panel of three faunal ecologists, highly
familiar with the species and habitats present within
the north-east NSW region, was convened to establish
the following.

1. Modify or refine predicted distributions from statist-
ical models. The experts specified additional rules based
on any of the available GIS layers (forest types, growth
stages, habitat indices, abiotic environmental variables)
to refine predicted distributions to better reflect their
knowledge of species distribution. The statistical models
with the highest predictive accuracy from the first stage
of the study were used as the basis for this task.

2. Derive models based purely on expert opinion with-
out any statistical analysis. For each species, the experts
specified a habitat model in terms of rules based on any
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combination of the available GIS layers (forest types,
growth stages, habitat indices, abiotic environmental
variables). The expert panel also derived a new vegeta-
tion variable for nine of the 16 species as described in
task 4 below. This variable was only available to ‘expert-
only’ models.

3. Select a subset of predictors of particular ecological
relevance to each species, and specify the likely functional
form (shape) of the relationship between the species and
each of these selected variables. The GAM model for each
species was then refitted using only these predictors.
4. Derive specific vegetation index maps for each
species, based on expert opinion. For species for which
the expert panel recognized a strong relationship with
individual forest types, forest types were ranked on a
four-point scale (core habitat, intermediate habitat,
marginal habitat and non-habitat) according to their
perceived value for each individual fauna species. A
new GIS layer was developed for each species, describ-
ing the forest-type habitat value indices defined by the
expert panel. This variable was then considered along
with abiotic variables for inclusion in a statistical model.

The above four models were developed sequentially
for each species at a single expert workshop, convened
by K. Cherry. Models were developed in the order 1, 4,
3, and then 2. It was recognized that, in some cases, this
sequential approach may have resulted in a lack of
independence between the four models. However, time
and resource constraints prohibited separate work-
shops being convened for each type of model. It was
thought that this bias would positively favour the
development of expert-only models, as the expert panel
could evaluate the performance of the statistical models
as their first task. However, given the subsequent results
of this study, the effect of this bias on the relative pre-
dictive accuracy of the models is unclear.

The first two models were developed interactively by
the expert panel, in collaboration with an experienced
GIS operator (M. Drielsma), using the Arcview GIS
software package. The expert panel chose to combine
explanatory variables in a multiplicative fashion. Vari-
ables were expressed either in their original continuous
form or converted to ordinal classes according to the
decisions of the expert panel. While predictions of hab-
itat suitability were generated on a continuous scale,
this scale was not necessarily expressed in terms of
probability and could contain values greater than one.

This was not a problem for the subsequent evaluations
of predictive accuracy because we were interested only
in discrimination performance, which effectively treated
the predictions from a given model as a relative index of
occurrence rather than as true probabilities.

Two statistical models were developed for the third
type of expert input, using a stepwise GAM procedure
with only those variables nominated by the expert panel
considered for inclusion. In the first of these models,
each variable was expressed in the functional form
nominated by the expert panel. Once the final model was
obtained, each variable in the model was re-examined
to determine whether a change in complexity was war-
ranted given the significance of the resulting change in
deviance. The second model considered all nominated
variables with 4 degrees of freedom. Once the model was
obtained, each variable was re-examined to determine
whether a reduction in degrees of freedom could be
achieved without a significant increase in deviance.

The predictive accuracy of the first three models
developed for each species was assessed using the evalu-
ation data and techniques described for the first stage
of the study. The relative performance of these models
was then compared with that obtained for models
developed without any expert input during or after the
model-fitting process.

The fourth model was evaluated by comparing the
predictive performance of models that contained only
abiotic variables, with models developed in which the
vegetation variable was considered for inclusion in the
model. The modified z-test of Hanley & McNeil (1983)
was used to compare the predictive performance of the
two models for each species. This test accounts for the
correlation between measures that arises due to the same
data being used to calculate each statistic.

Results

INCORPORATING FINE-SCALED VEGETATION
AND GROWTH-STAGE MAPPING

A significant difference in predictive performance was
found to exist between models derived using different
combinations of explanatory variables ( Table 3). How-
ever, this effect was not consistent across all biological
groups, as indicated by the significant interaction term
in Table 3.

Table 3. Results of ANOVA analysing the discrimination capacity of models developed for species within several faunal groups,

using different combinations of explanatory variables

Variables d.f. SS MS F-value P-value
Error: species

Faunal group 4 0-6576 0-1644 0-9419 0-4437
Residuals 88 15-3588 0-1745

Error: within

Variable combination 9 0-8398 0-1003 38-1895 0
Variable combination X biological group 36 0-2682 0-0083 3-1472 0
Residuals 797 2-1716 0-0026
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Fig. 1. Effect of the choice of explanatory variables on the overall accuracy of the species distribution models. Groups of
explanatory variables considered were abiotic environmental variables (Abiotic), habitat index variables (Index), vegetation
system and disturbance variables (Vegsystem), and grouping of forest types and growth stages according to Scotts (1996)
(Veggroup). Habitat indices and vegetation systems are also represented as spatially explicit variables (Spatial). The adjusted
Mann—Whitney statistics are residuals from a linear model containing species as an explanatory term, in order to remove the effect

of variation among species.

Models based solely on habitat index information
(spatially explicit or neutral) performed significantly
worse in terms of discrimination accuracy than did the
other variable combinations, containing abiotic variables
alone or in combination with vegetation and growth-
stage information. There was no significant difference
between the performance of the other variable combina-
tions (Fig. 1). Habitat index information therefore did
not improve model predictive accuracy over models
containing abiotic variables and remotely mapped
vegetation systems. Models containing spatially expli-
cit vegetation information performed better than those
containing spatially neutral information. Although the
ranking of models changed slightly when individual
faunal groups were considered separately, the overall
patterns remained unchanged.

INCORPORATING EXPERT OPINION

For each of the 16 faunal species considered by the
expert panel, four models were developed that incor-
porated different types of expert input: two statistical
models developed by including expert input at the
model-fitting stage, a model derived by incorporating
expert input at the post-modelling stage, and a model
derived solely using expert-defined GIS rules. The deci-
sions made by the expert panel to create these four
models for each species are available from the authors.

The mean performance of each of the four models
incorporating expert opinion was compared with that
of the best-performing statistical model from the first

Table 4. Results of ANOvA comparing the performance of tech-
niques used to incorporate expert knowledge into models of
species distribution

Variables d.f. SS MS F-value  P-value

Expert method 4  0-055 0-014 4706  0-002
Species 15 1-181 0079 27:094 0O
Residuals 63 0-183  0-003

stage of this study. The ANOvA results are shown in
Table 4, and suggested that mean predictive accuracy
varied significantly between these five models. Multiple
pairwise comparisons using Scheffé’s technique (Day
& Quinn 1989) suggested that models developed using
only expert-defined rules performed significantly worse
than the other four techniques. The techniques incor-
porating statistical modelling with or without expert
input performed equivalently (Fig. 2).

The forest types that compose each of the forest-type
habitat indices derived by the expert panel for each spe-
cies are available from the authors. They recognized a
strong relationship with vegetation type for only nine
of the 16 species. The mean accuracy values and their
standard errors for each of these nine species are shown
in Table 5. The new species-specific vegetation variable
entered only three of the nine models, and signific-
antly improved only the model for the greater glider
Petauroides volans. This improvement was not signific-
antly greater than that provided by the addition of
expert-derived habitat index information.
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Fig. 2. Discrimination accuracy (and standard error) of models developed for 16 species with various types of expert input. The
results are presented as adjusted Mann—Whitney statistics in order to remove the effect of variation among species.

Table 5. Comparison of discrimination performance of models containing only abiotic environmental variables with those
additionally containing the species-specific habitat quality variable developed for eight species by the expert panel during the
derivation of expert-based GIS models. Models for which the habitat quality variables did not enter the predictive model are

marked by —

Mann—Whitney Statistic (+ SE)

Species common name Species scientific name

Abiotic only

Significance

Abiotic + expert habitat classes  of difference

Common brushtail possum  Trichosaurus vulpecula

0-7667 £ 0-0364  —

Greater glider Petauroides volans 0-7953 £0-0212  0-8253 £0-0210 0-001
Little cave vespadelus Vespadelus darlingtoni 0-7828 £0-0293 - -
Large forest vespadelus Vespadelus pumilus 0-8136 £0-0274 - -
Sooty owl Tyto tenebricosa 0-5977 £0-0370 - -
Marbled frogmouth Podargus ocellatus 0-9026 £ 0-0651  0-9299 £ 0-0672 NS
Black-faced monarch Monarcha melanopsis 0-8143 £0-0355 - -
Spectacled monarch Monarcha trivirgatus 0-6771 £0-0647  0-6583 £ 0-0615 NS

Discussion

The results suggest that fine-scaled vegetation and
growth-stage information often provide important addi-
tional information to abiotic environmental and broad
vegetation variables when modelling the distribution of
faunal species across the landscape. However, for this
information to be useful, the results suggest that each
attribute needs to be spatially explicit. Habitat indices and
broad-scale vegetation systems both provide important
information on vegetation and disturbance. However, it
appears that development of habitat indices by an expert
panel may not provide sufficient additional information
over that obtained using remotely mapped vegetation
systems to improve significantly model predictive ability.

Two schemes for amalgamating forest types using
expert opinion were evaluated in this study, the first
based on Scotts (1996) and the second derived individu-
ally for species by the expert panel during this study.
Both schemes did not appear to improve substantially
model predictions over a model containing only abiotic
variables. Although other schemes for the amalgamation
of forest types are available and may prove useful, this

study suggests that limited resources would best be
directed to the development of expert-derived habitat
indices rather than schemes to amalgamate forest types.

Asexpected, the addition of expert opinion into stat-
istical models of species distribution proved effective,
but only at a single stage in the modelling process: the
pre-modelling stage, through the development of habitat
indices. Other forms of expert input proved insignificant
(model refinement by an expert panel and specification
of explanatory variables) or even detrimental (expert-
derived GIS rules).

A number of factors may have contributed to the low
(or equivalent) predictive accuracy of expert models
relative to statistical models in this study. First, all
maps of species distribution were developed at a 4-ha
grid cell resolution as this is the resolution at which
species distribution models were being developed
for regional planning activities in north-east NSW.
Statistical models, given adequate data, can model the
distribution of a species at this level of resolution quite
accurately (Pearce et al., in press). However, in a region
of approximately 7-9 million hectares, it is substanti-
ally more difficult for an expert panel to consider the

85U807 SUOWWOD dA R8I0 3(qedt|dde ay) Aq peusenob aie sapile YO ‘@SN Jo S9N 1oy Akeiq 18Ul UO AB|IM UO (SUOTHPUOD-PUEe-SWB)/W0D A8 | 1M Afe1q 1 BUI|UO//SUNY) SUORIPUOD PUe S | 38U} 885 *[2202Z/TT/ET] Uo ARIgITaUIUO A8|IM BIfISNY 8LRIL0D [uoeN ¥ WHN AQ X'80900'T00Z /992-G9ET [/9v0T 0T/10p/L00 A8 M Aiq1jpul|uo's fpu.noag//sdiy wouy papeojumoq ‘2 ‘TO0Z ‘¥992S9ET



421

Including expert
opinion in
predictive models

© 2001 British
Ecological Society,
Journal of Applied
Ecology, 38,
412-424

landscape at such a fine scale. In this study the experts
developed or refined statistical models to better repre-
sent the broad regional distribution of the species when
the map was viewed from a lower resolution. For exam-
ple, the panel combined environmental variables in a
manner that provided a good match with their knowl-
edge of broad patterns of species distribution across
the whole region. They then examined parts of the
region in more detail, to ensure that the patterns within
these areas concorded with their knowledge. However,
it was not possible to examine the predicted distribu-
tion of each species at the resolution of individual grid
cells across the entire region.

Certainly there are advantages to having each statist-
ical model checked by an expert panel. The expert panel
can identify areas of potential model weakness and
therefore suggest possible refinements, further explanat-
ory variables, or identify geographical barriers not
considered by the statistical procedure. Experts can also
identify problems with models for species for which there
has been taxonomic uncertainty in the past or for which
a number of distinct subspecies may have been repres-
ented in a single model. However, the results of this study
suggest that the large amount of expert time involved in
manually refining statistically derived models could be
more efficiently directed towards only modifying statist-
ical models that are grossly in error, or to the develop-
ment of GIS-based models for species for which there
are insufficient data to construct a statistical model, using
expert-specified rules. Species for which the data may
be unreliable should be identified at the data preparation
stage, when expert opinion should be used to identify
suspect records or subspecific status prior to modelling.

Based on this study, the following modelling pro-
cedure for integrating expert opinion and statistical
modelling may provide the most accurate models of
faunal species distribution.

1. Useexpertsto vet faunal data used to develop statist-
ical models to ensure that only reliable data are used.
2. Use experts to develop habitat indices based on
fine-scaled vegetation, growth-stage and disturbance
information.

3. Develop statistical models of species distribution
for species for which adequate data exist, using both
habitat indices and other abiotic environmental and
broad-scaled vegetation variables. Develop expert models
for species with insufficient data.

4. Validate all models using statistical techniques to
provide a measure of confidence in model perform-
ance. Independent data should be used where available.
5. Subject each predictive model to examination by
experts. Experts should only modify models for which
model predictions are grossly in error.

RECOMMENDATIONS FOR FURTHER
RESEARCH

This study has highlighted the need for further research
in two key areas. First, a more thorough evaluation of the

performance of expert input at the model development
and post-modelling stages is required. This might require
the development of a GIS toolkit to assist the expert
panel in manipulating explanatory variables, provision
of an adequate familiarization period prior to develop-
ment of models, clear definition of the requirements and
applications of the predictive models (including spatial
scale), and consideration of a larger range of species.
Secondly, significant effort needs to be devoted to
researching the role of spatial scale in modelling faunal
distributions, considering the uses to which models
will be applied. The issue of scale at which species are
modelled, and the scale at which conservation planning
decisions are made, is important and has not been
addressed fully in north-east NSW. All modelling
within the region has been undertaken at the finest grid
resolution available, which was 4 ha. Research must be
undertaken to determine the most appropriate spatial
resolution for modelling individual species to obtain
accurate predictive models of species distribution at the
spatial scale of relevance to the life history of the spe-
cies concerned (Turner, Dale & Gardner 1989; Roloff
& Haufler 1997). The relative performance of expert vs.
statistical models at coarser spatial scales also needs to
be determined. It is expected that expert models may
perform significantly better at a coarser scale.
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Appendix

Explanatory variables used to develop models of species distribution

Variable name Description (transformation) Arboreal Reptile Bird
Abiotic environmental variables

rain Mean annual rainfall (log[x]) g | a
temp Mean annual temperature O O O
rad Mean annual solar radiation O

topo Topographic position g | a
rugg Ruggedness O O O
mi Moisture index (X?) O O O
wi Wetness index

sd Soil depth O O 0
fert Soil fertility | O O
lith Lithology

north Australian map grid northing O O 0
effort Survey effort | O

month Survey month ad
Vegetation system variables

veg Vegetation system mapped from Landsat TM imagery g O a
rf Probability of rainforest at site O O 0
dry Probability of dry sclerophyll forest at site | O O
wet Probability of wet sclerophyll forest at site g O a
log Level of logging disturbance at site O O 0
rf500 Probability of rainforest within 500 m | O O
dry500 Probability of dry sclerophyll forest within 500 m g O a
wet500 Probability of wet sclerophyll forest within 500 m O O 0
log500 Level of logging disturbance within 500 m | O O
rf2k Probability of rainforest within 2 km g O a
dry2k Probability of dry sclerophyll forest within 2 km O O 0
wet2k Probability of wet sclerophyll forest within 2 km O O 0
log2k Level of logging disturbance within 2 km g O a
clr2k Amount of clearing within a 2-km radius (log[x]) O O 0

Habitat index variables

struct Structural complexity at site

bark Aerial bark accumulation at site

fruit Fleshy fruit production at site

fine Fine litter availability at site

coarse Coarse litter availability at site

pred Exposure to predators at site

nect Nectar production at site

hollow Hollow availability at site

eucfol Eucalypt foliage nutrients at site

nonfol Non-eucalypt foliage nutrients at site
struct500 Structural complexity within 500 m
bark500 Aerial bark accumulation within 500 m
fruit500 Fleshy fruit production within 500 m
fine500 Fine litter availability within 500 m
coarse500 Coarse litter availability within 500 m
pred500 Exposure to predators within 500 m
nect500 Nectar production within 500 m
holl500 Hollow availability within 500 m
euc500 Eucalypt foliage nutrients within 500 m
non500 Non-eucalypt foliage nutrients within 500 m
struct2k Structural complexity within 2 km
bark2k Aerial bark accumulation within 2 km
fruit2k Fleshy fruit production within 2 km
fine2k Fine litter availability within 2 km
coarse2k Coarse litter availability within 2 km
pred2k Exposure to predators within 2 km
nect2k Nectar production within 2 km

holl2k Hollow availability within 2 km

euc2k Eucalypt foliage nutrients within 2 km
non2k Non-eucalypt foliage nutrients within 2 km

I e e e e e e e e |

e e |

Oooooooooooooooooooooooooooooan
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