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Sorghum, a genetically diverse C4 cereal, is an ideal model to study natural variation in photosynthetic capacity. Specific leaf
nitrogen (SLN) and leaf mass per leaf area (LMA), as well as, maximal rates of Rubisco carboxylation (Vcmax),
phosphoenolpyruvate (PEP) carboxylation (Vpmax), and electron transport (Jmax), quantified using a C4 photosynthesis model,
were evaluated in two field-grown training sets (n = 169 plots including 124 genotypes) in 2019 and 2020. Partial least square
regression (PLSR) was used to predict Vcmax (R2 = 0:83), Vpmax (R2 = 0:93), Jmax (R2 = 0:76), SLN (R2 = 0:82), and LMA

(R2 = 0:68) from tractor-based hyperspectral sensing. Further assessments of the capability of the PLSR models for Vcmax,
Vpmax, Jmax, SLN, and LMA were conducted by extrapolating these models to two trials of genome-wide association studies
adjacent to the training sets in 2019 (n = 875 plots including 650 genotypes) and 2020 (n = 912 plots with 634 genotypes). The
predicted traits showed medium to high heritability and genome-wide association studies using the predicted values identified
four QTL for Vcmax and two QTL for Jmax. Candidate genes within 200 kb of the Vcmax QTL were involved in nitrogen storage,
which is closely associated with Rubisco, while not directly associated with Rubisco activity per se. Jmax QTL was enriched for
candidate genes involved in electron transport. These outcomes suggest the methods here are of great promise to effectively
screen large germplasm collections for enhanced photosynthetic capacity.

1. Introduction

Sorghum (Sorghum bicolor L. Moench), a C4 pathway spe-
cies and the world’s fifth most produced cereal [1], is
adapted to a range of environments and retains high photo-
synthetic efficiency in diverse conditions [2–4]. These char-
acteristics make it a crop of interest for the dual challenge
of meeting increasing demands for food and adapting to
the effects of climate change [5, 6]. In addition to the C4
pathway, which confers adaptation to hot and dry environ-
ments, the natural genetic diversity of sorghum provides
potential to identify genotypes or genetic loci associated with
greater photosynthetic capacity [7]. However, in order to

select the photosynthetically favourable genotypes adapted
to contrasting environments, tools are required to quantify
the biochemical parameters underpinning photosynthetic
capacity in a high-throughput manner, removing the pheno-
typing bottleneck with the traditional gas exchange
approach.

Photosynthesis is the process of converting captured
solar radiation into chemical energy by fixing carbon dioxide
(CO2) to form carbohydrates and biomass. Improving pho-
tosynthetic capacity is seen as a major target to further
improve crop yields [2, 3, 8]. Screening germplasm to
directly breed for improved photosynthetic responses to
environment conditions is constrained by the complexity

AAAS
Plant Phenomics
Volume 2022, Article ID 9768502, 18 pages
https://doi.org/10.34133/2022/9768502

https://orcid.org/0000-0003-2028-7267
https://orcid.org/0000-0003-3988-1303
https://orcid.org/0000-0002-6612-7691
https://orcid.org/0000-0002-1671-8266
https://orcid.org/0000-0002-8128-1304
https://orcid.org/0000-0001-6407-2669
https://orcid.org/0000-0003-4732-8452
https://orcid.org/0000-0002-9711-2759
https://doi.org/10.34133/2022/9768502


of measuring such responses and requires development of
higher-throughput indirect phenotyping techniques.

In the C4 photosynthetic pathway, the biochemical pro-
cesses in the mesophyll cells are coordinated with a CO2
concentrating mechanism in the bundle-sheath cells [9,
10]. In the mesophyll, CO2 is initially fixed by phosphoenol-
pyruvate (PEP) carboxylase into C4 acids, which are then
decarboxylated in the bundle sheath cells leading to high
CO2 levels and hence more efficient carboxylation of Ribu-
lose-1,5-bisphosphate (RuBP) by Ribulose 1,5-bisphosphate
carboxylase-oxygenase (Rubisco) [11, 12]. The energy for
the regeneration of RuBP in the bundle sheath and PEP in
the mesophyll comes from chloroplast electron transport
[11]. Due to their key roles in the photosynthetic pathway,
the maximal rates of Rubisco carboxylation (Vcmax, μmol
m-2s-1), PEP carboxylation (Vpmax, μmol m-2s-1), and maxi-
mal electron transport rate (Jmax, μmol m-2s-1) largely deter-
mine photosynthetic capacity of C4 plants and therefore
underpin crop productivity. Simulations using a diurnal
canopy photosynthesis model predict that canopy growth
rate of C4 cereals responds largely to changes in Jmax [13].
Quantification of these biochemical parameters is hence of
value for selecting enhanced photosynthesis and growth.
This is traditionally achieved by conducting gas exchange
measurements and fitting observed photosynthetic
responses to CO2 or light with the Rubisco-activity or
electron-transport limited equations in the C4 photosynthe-
sis model [11, 14]. However, this method is very time-
consuming and not suitable for high-throughput screening
of large germplasm collections.

The capacity of leaves to convert absorbed CO2 and radi-
ation into biomass also depends on key leaf physiological
and structural properties [15]. Two such properties are spe-
cific leaf nitrogen (SLN, g m-2) and leaf mass per leaf area
(LMA, g m-2), and both of these are known to be closely
associated with photosynthetic capacity [16, 17]. Because
nitrogen is a key element in photosynthetic machinery, such
as chloroplasts, plant nitrogen status closely links with leaf
photosynthetic rates and canopy radiation use efficiency
[18–20] and is hence an important parameter in canopy per-
formance modelling [13, 21]. The relationship between leaf
nitrogen content and maximal net photosynthesis rate is
influenced by LMA which is strongly associated with leaf
lifespan and thus affecting the rates of the photosynthetic
parameters [15, 16, 22]. However, conventional measure-
ments of SLN and LMA are destructive and slow, limiting
their potential to identify germplasm with higher photosyn-
thetic capacity in large breeding programs.

High-throughput plant phenotyping technologies enable
the collection of plant biochemical and physiological traits
rapidly and nondestructively at large scale [23–26]. Various
vegetation indices, which are usually calculated using a few
selected wavelengths, have been correlated with plant struc-
tural traits (e.g., leaf area index and biomass) or leaf pigment
concentration (e.g., chlorophyll). Typical canopy size indica-
tors include normalized difference vegetation index (NDVI)
[27, 28] and optimized soil adjusted vegetation index
(OSAVI) [29]. Chlorophyll content, on the other hand, has
been indicated by indices, such as normalized difference

red edge (NDRE) [30] and chlorophyll vegetation index
(CVI), which is an indirect measure of nitrogen content
[31]. Adjustments to these vegetation indices have also been
reported. For example, replacing red bands with red edge
when calculating some indices exhibited better performance
in estimating chlorophyll content [32].

More recently, hyperspectral imaging sensors with wave-
lengths in the visible (400-700nm), near infrared (700-
1000nm), and shortwave infrared (1000-2500nm) domain
have advanced the development of high-resolution spectros-
copy techniques. This has led to significant increases in the
accuracy and the types of physiological properties that can
be retrieved [26, 33]. The linkage between photosynthetic
capacity and hyperspectral features therefore constitutes a
promising avenue to predict photosynthetic performance of
plants across broad scales [20, 34–36]. Various studies have
exploited the plethora of bands (>270) and themuch narrower
band width (<6nm) available from current hyperspectral sen-
sors to better quantify biochemical and physiological proper-
ties in crops [35, 37]. However, most of the studies so far use
hyperspectral reflectance to estimate leaf photosynthetic
capacity in C3 crops [34, 35, 37–41], and similar studies are
much rarer for C4 crops. At least one study focused on
V cmax, Vpmax, leaf nitrogen content, and specific leaf area from
whole spectra reflectance (500-2400nm) using partial least
square regression (PLSR) in C4 crop maize [42]. However,
Jmax that quantifies the rate of electron-transport limited pho-
tosynthetic rate [11] is also important in determining daily
biomass growth [13], but has not previously been targeted.

A more comprehensive study on quantifying the key
parameters of photosynthesis Vcmax, Vpmax, and Jmax in a
C4 crop species is proposed. In addition, a high-
throughput method to predict key parameters linked to pho-
tosynthetic capacity from canopy-level hyperspectral mea-
surements will aid in the selection of genetic material with
improved photosynthetic capacity at a large scale. To our
knowledge, there are no published previous attempts to esti-
mate the full set of key parameters known to limit C4 photo-
synthesis, at canopy level, using hyperspectral reflectance.
Additionally, next generation sequencing techniques have
provided a high-throughput and cost-efficient tool for
detecting genomic regions associated with crop traits of
interest via genome-wide association studies (GWAS)
[43–45]. Combining the techniques of hyperspectral sensing
and GWAS would greatly facilitate the improvement of pho-
tosynthetic capacity and ultimate crop performance, which
to date has rarely been explored.

The main objective of this study was to estimate traits
associated with photosynthetic capacity from proximal
hyperspectral sensing of sorghum canopies. Specifically, we
aimed to (i) develop algorithms to predict photosynthetic
parameters (Vcmax, Vpmax, and Jmax), SLN, and LMA from
proximal hyperspectral canopy reflectance captured with a
spectrometer attached to a mobile phenotyping platform in
two field-grown training sets; (ii) extrapolate the algorithms
to GWAS trials grown adjacent to the training sets using a
fully genotyped sorghum diversity panel; (iii) evaluate the
heritability of the predicted traits; and (iv) undertake GWAS
to detect genomic loci associated with the key
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photosynthetic parameters and identify potential candidate
genes to assess the usefulness and robustness of the
approaches used in this study.

2. Materials and Methods

2.1. GWAS Trials. Two field experiments were conducted dur-
ing two consecutive summer seasons (2019 and 2020) at Gatton
Research Station (GAT), Gatton, Queensland, Australia (27°33′
S, 152°20′E, 94m above sea level). GAT1 and GAT2 were sown
on 14 January 2019 and 12 November 2019, respectively. Both
trials were designed using partial replication with spatially ran-
domised genotypes arranged in rows and columns. There were
875 plots, including 650 genotypes in GAT1, and 912 plots,
including 634 genotypes in GAT2, with 70 genotypes in com-
mon between trials (Table 1). The genotypes in GAT1 were
all inbred lines (n = 649) from a sorghum diversity panel com-
prising world-wide collections [43], and one hybrid was also
included. In GAT2, 89% genotypes were hybrids from the
Queensland breeding program, and the rest were inbred lines
from the sorghum diversity panel. Each plot (4.5m length and
3m width) sown to a genotype consisted of four rows. Both tri-
als were planted with a GPS precision planter at a population
density of 108,000 plants ha-1. For both trials, 150kg of nitrogen
per hectare was applied preplanting, and plots were irrigated
regularly to provide nutrient and water nonlimiting conditions.
The temperature, photosynthetic photon flux (PPF), and rela-
tive humidity (RH) from 6am to 6pm for the duration of each
trial are shown in Table 1.

2.2. Training Sets. Adjacent to each of the GWAS trials, a
training set comprising a representative sample of the lines
in the GWAS trials was used to collect ground truth data
for association with hyperspectral measurements.
Completely randomised block designs (row-column) were
also used in the training sets. The middle two rows (0.63m
row spacing) of each four-row plot were used for the ground
truth data collection while the outside two rows (0.75m row
spacing) were guard rows. The training set in 2019 (TS1)
consisted of 80 plots comprising 60 genotypes which were
all inbred lines and also included in GAT1. In the training
set of 2020 (TS2), there were 108 plots with 93 genotypes
of which 63 (68%) were hybrids. There were 19 genotypes
in common between TS1 and TS2. Due to differences in ger-
mination and vigour of the diverse germplasm used, there
was substantial variability in final plant establishment in
both trials. The ground truth measurements were only taken
from plots which had good establishment, which reduced
the number of possible observations that could be used to
develop the models. To maximise the number and the range
of observations, the ground truth data from TS1 and TS2
were pooled.

2.3. Ground Truth Measurements in the Training Sets. In
both trials, gas exchange measurements were taken under
mostly cloudless conditions (between 9 am and 12 pm)
between 35 and 50 days after sowing (DAS)), which was dur-
ing the active vegetative growth period for all genotypes and
hence before the switch to reproductive growth which may

introduce physiological and metabolic changes, but after full
canopy closure. This period is known to be the most critical
period for grain production in sorghum [46]. In total, 75
CO2 (ACi) and 75 light (Ai) response curves were collected
across TS1 (n = 31 plots comprising 29 inbred lines) and
TS2 (n = 44 plots comprising 30 hybrid and 10 inbred lines)
with six inbred lines in common between TS1 and TS2. One
plant per plot was randomly selected for gas exchange mea-
surements. The ACi curves were performed on the last or
second last fully expanded leaf using a LI-6400 (LI-COR,
Inc., Lincoln, Nebraska USA) with a 6400-02B Red/Blue
LED light source illuminating a leaf chamber of 6 cm2. To
measure ACi curves, photosynthetically active radiation
(PAR) was set at 1800 μmol photons m-2s-1, flow rate
through the chamber at 500 μmol mol-1, and temperature
was set to leaf temperature measured at the commencement
of each curve. Vapour-pressure deficit (VPD) was generally
held at around 3.0 kPa, by adjusting the scrubbing of the
incoming air via the desiccant. For each ACi curve, the ref-
erence CO2 levels were set to the sequences of 200, 100, 50,
250, 400, 650, 800, 1000, 1200, and 1400 ppm, with a dura-
tion of 1-5 min for each step. Measurements were made at
each CO2 supply point when gas exchange had equilibrated,
at which point, the coefficient of variation for the CO2 con-
centration differential between the sample and reference
analysers was below 1%. The light levels for the Ai curves
were set at 2000, 1500, 1000, 500, 250, 120, 60, 30, 15, and
0 μmol m-2s-1. The other controls were set as follows: refer-
ence CO2 (constant at 400 μmol mol-1), flow (500 μmol mol-
1), temperature was set to leaf temperatures, and humidity
was controlled by scrubbing incoming air to maintain a
VPD around 3.0 kPa. The duration for every light level
was 1-3 min. Sample and reference analysers were matched
before each data point was logged.

A small square section of the leaf (1.6 cm2) was collected
with a leaf punch from the same leaf section as was used for
gas exchange measurements. The leaf sections were dried at
80°C and weighed to calculate LMA (g m-2). Percent nitro-
gen of each sample was determined with a continuous flow
isotope ratio mass spectrometer (CF-IRMS), and SLN (g
m-2) was calculated by multiplying percent nitrogen with
LMA. Across the two training sets, 129 SLN and 169 LMA
observations (plots) were obtained, involving 124 unique
genotypes.

To generate a maximised dataset and enhance robust-
ness of associating the ground truth data taken in a plot with
hyperspectral measurements obtained from the same plot,
individual plots, rather than genotypes, were considered as
an observational unit.

2.4. Canopy Hyperspectral Measurements. Hyperspectral
data captured before anthesis and around the same time as
the ground-truthing data (at 58 and 52 DAS in 2019 and
2020, respectively) was used to associate with the ground
truth data. At this stage of sorghum crop growth, canopies
are fully closed and nitrogen content of individual leaves is
expected to be at a maximum as all mainstem leaves are fully
expanded, but, prior to any translocation of nitrogen during
senescence [47]. A tractor-based field phenotyping platform
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(GECKO; developed at The University of Queensland)
which enables simultaneous crop canopy proximal sensing
was used [48]. The tractor moves at a constant 1.1 metres
per second and is integrated with a GPS real-time kinematic
system with 2 cm accuracy to locate sampling plots (individ-
ual size of 4:5 × 3m). A microhyperspectral imager (Micro-
Hyperspec VNIR model, Headwall Photonics, Fitchburg,
MA, USA) mounted on this phenotyping platform (3m
above ground and~1.7m above the canopy) was used to
obtain the spectral response of each pixel (5 × 5mm) at
272 spectral wavelengths between 395 and 997 nm (visible
and near infrared). The resolution was approximately
2.2 nm with 6.0 nm Full Width Half Maxima. A radiometric
calibration (dark signal calibration) of the hyperspectral
camera was performed weekly. A spectral calibration using
the nominal white and spectral diffusers with specific band
sets focused on the highest possible spectral resolution was
conducted every three months by comparing their respective
responses in almost identical illumination conditions. An
automated software data calibration pipeline was used to
convert raw digital numbers to reflectance values at each
pixel. Pixel reflectance was calculated by the ratio between
pixel radiance from the microhyperspectral imager and the
reference pixel radiance from an upward sensor measuring
incoming radiance. To segment plants from soil and remove
background noise from lower canopy levels, a threshold of
NDVI > 0:5 was applied for each pixel based on the frac-
tional vegetation cover [27, 36, 49], which could ensures
only spectral information from green leaves is retained for
the reflectance calculations and shadows and other back-
ground noise are excluded from the hyperspectral images.
After masking by NDVI > 0:5, plant pixels within a plot
were averaged to calculate reflectance of each plot. All
hyperspectral data was collected from 9 am to 12 pm to min-
imise the effects of relative orientation of the sun, and no
adjustments were made for the sensor or the distribution
of leaf angles in the masking. As an example, images, radi-
ance, and reflectance pre- and postmasking by NDVI > 0:5
for plot 361 in 2020 are shown in Figure 1.

A set of hyperspectral vegetation indices known to be
associated with photosynthesis was computed from the plot

reflectance involving 16 wavelengths as shown in Figure 1.
The equations used to calculate the indices in this study were
summarised in Table 2.

Note: Wavelengths with black bars show the wavelengths
used for calculating the set of vegetation indices known to be
associated with photosynthesis; wavelengths with red bars
indicate the wavelengths involved in the stepwise linear
regression (referring to 2.2).

2.5. Determining Vcmax, Vpmax , and Jmax from ACi and Ai
Curves. For quantifying the actual photosynthetic parame-
ters, we applied the C4 photosynthesis model to the mea-
sured ACi and Ai response curves [11, 14]. The CO2
assimilation rate (A) in the bundle sheath is given by the
minimum of either Rubisco carboxylation limited (Ac) or
electron transport limited (Aj) rates:

A =min Ac, Aj

� �
, ð1Þ

where,

Ac =
Cs − γ ∗Osð ÞVcmax

Cs + Kc 1 + Os/Koð Þð Þð Þ − Rd , ð2Þ

Aj =
1 − γ ∗Os/Csð Þ 1 − xð ÞJt
3 1 + 7γ ∗Os/ 3Csð Þð Þ − Rd , ð3Þ

where Os is the O2 partial pressure in the bundle sheath,
γ ∗ is the half of the reciprocal of Rubisco specificity, Kc
and Ko are the Michaelis-Menten constant of Rubisco for
CO2 and O2, respectively, and Rd is the mitochondrial res-
piration rate in the light. All enzymatic constants and var-
iables in the equations above were detailed in a previous
study [8].

The Cs (CO2 partial pressure in the bundle sheath) is
modelled by ambient CO2 (Ca) entering the leaf via stomata
and being diffused into the mesophyll, converted into C4
acids then decarboxylated, and released as CO2 in the bundle
sheath. The supply of CO2 to the mesophyll (Cm) depends

Table 1: Top: mean and maximum daily temperatures, mean daily photosynthetic photon flux, and relative humidity during the two GWAS
trials and two training sets in 2019 and 2020; bottom: number of plots and genotypes used in each experiment; and the genotypes in
common between trials are in italic.

Year
Temperature (°C) PPF (μmol s-1m-2) RH (%)

Mean Maximum Mean

2019 26.84 38.98 743.11 62.86

2020 29.22 38.52 1000.95 56.1

Trials TS1 TS2 GAT1 GAT2

TS1 80 plots (60 genotypes) 19 genotypes 60 genotypes 36 genotypes

TS2 108 plots (93 genotypes) 30 genotypes 92 genotypes

GAT1 875 plots (650 genotypes) 70 genotypes

GAT2 912 plots (634 genotypes)

Note: photosynthetic photon flux (PPF) and relative humidity (RH); the trials in 2019 including the training set TS1 and the GWAS trial GAT1; the trials in
2020 including the training set TS2 and the GWAS trial GAT2.
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Figure 1: An example (plot 361 in training set 2) of plant canopy area (a) before and (c) after masking by (b) NDVI > 0:5; averaged plot
radiance and reflectance before and after masking by NDVI > 0:5 (d).
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on the intercellular CO2 partial pressure (Ci), the mesophyll
conductance (gm), and the demand term, which is the CO2

assimilation rate A:

Cm = Ca ×
Ci

Ca
−

A
gm

: ð4Þ

Here, the effects of the leaf boundary layer and stomatal con-
ductance are incorporated into the Ci/Ca term.

The supply of CO2 to the bundle sheath (Cs) can be lim-
ited by enzymatic capacity or chemical energy from the pho-
tosynthetic electron transport chain. For the enzyme-limited
case, Cs is given by

Cs = Cm +
Vp − A − Rm

gbs
, ð5Þ

where,

Vp = CmVpmax/ Cm + Kp
� �

, ð6Þ

where gbs is the bundle sheath conductance to CO2, Rm is
the mitochondrial respiration in the mesophyll, and Kp is
the Michaelis-Menten constant for CO2 associated with
PEP carboxylation. Equations (5) and (6) assume carboxyla-
tion of CO2 by PEP is rate limiting.

The electron transport rate limited CO2 supply is given
by the same equation structure as in (5), but with the “Vp”
term replaced:

Cs = Cm + xJt/φ − A − Rm

gbs
, ð7Þ

where,

Jt =
I2 + Jmax −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 + Jmaxð Þ2 − 4θI2 Jmax

q

2θ , ð8Þ

where x is a partitioning factor of electron transport rate
between the C4 and C3 cycles (~0.4) and φ is the ATP
requirement of the C4 cycle (~2 ATP). I2 is the photosyn-
thetically useful light absorbed by PSII
(PSabs × incident light) and θ is an empirical curvature factor
assumed as 0.3 [11].

Equations (3), (4), (7), and (8) were rearranged and fitted
to measured Ai curve to infer Jmax, θ, and PSabs, which were
fed into ACi curve fitting using Equations (2), (4), (5), and
(6). Overall, this allows prediction of the Rubisco (Vcmax),
PEP (Vpmax), and electron transport (Jmax) limited CO2

assimilation. The fitting was performed using the numerical
solver option in Excel which minimises the sum of square
errors of A between observed and predicted. The Excel
spreadsheet for calculation is shown in Table S1, which

Table 2: Summary of the equations for the set of vegetation indices associated with photosynthesis.

Acronym Indices Traits associated Equations References

Curvature
Curvature between red and

NIR
Chlorophyll content p683∧2/ p675 × p690ð Þ [50]

CVI Chlorophyll vegetation index Chlorophyll content p750/p550ð Þ × p670/p550ð Þ [31]

NDRE
Normalized difference red

edge
Chlorophyll content p750 − p710ð Þ/ p750 + p710ð Þ [30]

NDVI
Normalized difference

vegetation index
Leaf area index p800 − p670ð Þ/ p800 + p670ð Þ [28]

PRI
Photochemical reflectance

index
Photosynthetic efficiency p531 − p570ð Þ/ p531 + p570ð Þ [51]

r685_r655 Chlorophyll fluorescence p685/p655 [52]

r690_r600

Chlorophyll fluorescence

p690/p600 [52]

r740_r700 p740/p700 [52]

r760_r750 p760/p750 [52]

r760_
r750index

p760 − p750ð Þ/ p760 + p750ð Þ [53]

Red_edge
Chlorophyll content/leaf

area index
p750/p710 [54]

OSAVI
Optimized soil adjusted

vegetation index
Leaf area index 1 + 0:16ð Þ × p800 − p670ð Þ/ p800 + p670 + 0:16ð Þ [29]

r750 Vcmax p750 [34]

r760 Chlorophyll fluorescence p760 [55]

TVI Transformed vegetation index Leaf area index 0:5 × 120 × p750 − p550ð Þð Þ − 200 × p670 − p550ð ÞÞ [56]
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shows ACi and Ai fitting with predicted Vcmax, Vpmax, and
Jmax for plot 272 in TS2.

2.6. Association of Ground Truth Data with
Hyperspectral Measurements

2.6.1. Approach 1: Stepwise Multilinear Regression Using the
Vegetation Indices. Stepwise regression consists of iteratively
adding and removing predictors used in the predictive
model, in order to find the subset of variables in the dataset
resulting in the best performing model that lowers predic-
tion error. It has been used to select spectral wavelengths
highly related to leaf nitrogen, lignin, and cellulose concen-
trations in diverse species [57, 58]. Stepwise multilinear
regression attempts to model the relationship between two
or more explanatory variables and a response variable by fit-
ting a linear equation to observed data [59]. Input variables
(vegetation indices) are eliminated according to the Pearson
correlation coefficient with dependent variables (leaf proper-
ties and photosynthetic parameters), which should indicate
the most relevant indices to photosynthesis. However,
stepwise multilinear regression often suffers from multicol-
linearity existing in the predictors [58, 60]. In this study,
before undertaking stepwise multilinear regression, principal
component analysis (PCA) was conducted for the set of
hyperspectral vegetation indices in Table 2 to reduce collin-
earities among them. This resulted in a subset of vegetation
indices with reduced correlation between each other which
were used in stepwise multilinear regression. The wave-
lengths used to calculate all the vegetation indices in
Table 2 and involved in the subset of vegetation indices are
indicated in Figure 1(d). Stepwise multilinear regression
using the “MASS” package in R (v 4.0.3) [61] was then con-
ducted to detect the best models for photosynthetic parame-
ters (Vcmax, Vpmax, and Jmax) and key leaf properties (SLN
and LMA). The best models for each trait were selected,
based on Akaike’s Information Criteria (AIC) which is com-
monly used in model selection with lower values indicating a
more parsimonious model than a model with a higher AIC
[62]. Coefficient of determination (R2) and root mean
squared error (RMSE) were used for model assessment.

2.6.2. Approach 2: Partial Least Square Regression (PLSR)
Derived from Spectral Reflectance. In this approach, PLSR
was used to correlate the spectra reflectance of all available
wavelengths with the photosynthetic parameters (Vcmax,
Vpmax, and Jmax) and key leaf properties (SLN and LMA)
across TS1 and TS2. PLSR has been commonly used in
remote sensing spectroscopy to predict plant biochemical
and physiological parameters, being able to handle highly
correlated predictors and the case of more predictors than
observations [60, 63, 64]. The “pls” package in R (v 4.0.3)
predicted the traits of interest from reflectance of all the
272 wavelengths, via decomposing the predictor matrix into
a set of loadings and scores with the objective of maximising
covariance between the scores and response [65, 66]. This
process is repeated for a given number of latent variables
as the number of loadings and scores necessary to explain
sufficient variance in response. The optimal number of latent

variables was taken as the minimum number required to
minimise the root mean squared error of prediction while
not significantly decreasing the cross-validation error, with
a maximum of 25 latent variables being considered.

The evaluation of the PLSR models was performed by a
leave-one-out cross-validation approach, by training the
model on all but one observation and then predicting for
the remaining observations [67]. The benefit of many itera-
tions of fitting and evaluating during this cross-validation
is that it results in a more robust estimate of model perfor-
mance as each row of data is given an opportunity to repre-
sent the entirety of the test dataset, which is appropriate for a
small dataset given the computational cost [68, 69]. This
cross-validation approach has been applied in remote sens-
ing of wheat leaf area index, maize and tobacco biochemical
traits, crop yield forecasting, and poplar tree photosynthetic
capacity predicting from spectral measurements [40, 42,
70–73]. The performances of these regression models were
assessed using R2 and RMSE.

2.7. Extrapolating the PLSR Models Built across the Training
Sets to the GWAS Trials. To further test the accuracy of the
PLSR models built across the training sets, the PLSR models
for V cmax, Vpmax, Jmax, SLN, and LMA were used to estimate
these traits for each line in the GWAS trials GAT1 and
GAT2. Subsequently, GWAS analyses for the two most
important photosynthetic parameters (Vcmax and Jmax) in
GAT1 were conducted to identify the underlying genetic
loci.

2.7.1. BLUPs for the Traits of Interest in the GWAS Trials. To
minimise environmental and special effects within trials and
perform GWAS, the best linear unbiased predictors (BLUPs)
of the predicted traits in the GWAS trials were calculated
using a restricted maximum likelihood (REML) by fitting a
linear mixed model using the ASReml-R package (Equation
(9)) [74, 75].

y = Xβ + Zu + ε, ð9Þ

where the response vector y is modelled by all the fixed
effects β, random effects u, and all the residual effects ε.
The matrix X represents the design matrix for the fixed
effects, and the matrix Z is the design matrix for the random
effects. The fixed effects were composed of main effects for
each trial plus any effects associated with linear changes
along the rows and columns. The random effects contained
sources of error within each trial including replication and
any trial specific random row and column effects. The resid-
ual effects included trial specific residual effects and first
order autoregressive (AR1) effects in both the row and col-
umn directions for each trial. The model included genotype
as a random effect to predict genotype BLUPs within trials.
All possible sources of variation in the BLUPs were allowed
for in the linear mixed model [75]. A generalised measure of
heritability was calculated due to the complex variance
structure, of which the equation is given by (Equation (10)).
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H2 = 1 − SED
2/ 2σ2

g

� �
, ð10Þ

where H2 is the generalised heritability, σ2g represents the

genetic variance, and SED is the average standard error of
difference [76].

2.7.2. GWAS for Vcmax and Jmax in the GWAS Trial GAT1.
All genotypes from the diversity panel used in the GWAS
trial GAT1 were resequenced by Diversity Arrays Technol-
ogy Pty Ltd (http://www.diversityarrays.com). The sequence
data was aligned to version v3.1 of the sorghum reference
genome sequence [77] to identify SNPs (Single Nucleotide
Polymorphisms), resulting in 414,899 SNPs. GWAS analyses
were conducted using BLUPs of Vcmax and Jmax predicted
by extrapolating the PLSR models from the training sets
to the GWAS trial GAT1. Software FarmCPU [78] was
used to conduct GWAS, using 302,631 filtered SNPs
(minor allele frequency ðMAFÞ > 0:01). A significant thresh-
old was set as Bonferroni-corrected 0.05/number of effective
SNPs [79, 80], resulting in a threshold of p value < 1.6e-7.

2.7.3. Pathway Enrichment Analyses Based on Genes within
200 kb from the QTL of Vcmax and Jmax. To further evaluate
the reliability of extrapolating the PLSR models for Vcmax
and Jmax from the training sets to the GWAS trials, pathways
enriched for genes around the QTL of Vcmax and Jmax were
analysed using PhytoMine of Phytozome v13 (https://
phytozome-next.jgi.doe.gov/phytomine/begin.do), by input-
ting genes within 200 kb of each QTL detected from the Sor-
ghum_bicolor.Sorghum_bicolor_NCBIv3.47.chr.gff3. Genes
identified as enriched in the pathways via PhytoMine were
defined as candidate genes.

3. Results

3.1. Variation in Ground Truth Vcmax, Vpmax , Jmax, SLN, and
LMA across the Two Training Sets. Substantial variation for
all traits measured by ground truthing was observed in the
two training sets (Figure 2). In the training set in 2019
(TS1), plot values of Vcmax had an average of 51.1 μmol m-

2s-1 and ranged from 40.3 to 65.5 μmol m-2s-1, Vpmax varied
between 123 and 922 μmol m-2s-1 with a mean of 408 μmol
m-2s-1, and Jmax had an average of 409 with a range of 280 to
773 μmol m-2s-1. In the training set in 2020 (TS2), Vcmax
varied from 36.8 to 85.6 μmol m-2s-1 with a mean of 50.9
μmol m-2s-1, Vpmax had an average of 410 μmol m-2s-1 and
ranged from 105 to 952 μmol m-2s-1, and Jmax ranged from
227 to 673 μmol m-2s-1 with a mean of 383. No significant
differences were observed in the photosynthetic parameters
between the training sets in two years (ANOVA, p > 0:05),
and pooled data of observations from individual plots across
TS1 and TS2 were used to enrich the results. With the
pooled data, a total of 75 ACi and 75 Ai curves were used
for fitting Vcmax,Vpmax, and Jmax. However, eight ACi
curves could not be fitted sensibly with the C4 photosyn-
thesis model, possibly due to low data quality caused by
high air temperature (> 38°C, Table 1). Given the possible
errors from confounding environmental factors in the

fittings of Vcmax, Vpmax, and Jmax, extreme values
(Vcmax > 65, Vpmax > 750, and Jmax > 700 μmolm−2s−1) were
treated as outliers and excluded from further analyses as
shown in Figures 2(a)–2(c), based on their average values.
In total, 67 Vcmax, 60 Vpmax, and 74 Jmax plot observations
were effective for further analyses.

SLN varied from 1.6 to 2.4 gm-2 with a mean of 2.0 gm-2

in TS1 and ranged from 1.3 to 2.5 gm-2 with a mean of
1.9 gm-2 in TS2 (Figure 2(d)). Pooled data across the two
training sets was used for the estimation of SLN (n = 129
plots) (Table 1). LMA ranged from 36.0 to 63.5 gm-2

(n = 169 plots) and did not significantly differ between TS1
and TS2 (Figure 2(e)), and data from the two trials were
pooled together. No outliers of SLN or LMA were removed
from the following analyses, given no extreme values were
observed (Figures 2(d) and 2(e)). Thus, in total, 129 SLN
and 169 LMA observations were used for association with
hyperspectral data.

3.2. Approach 1: Stepwise Multilinear Regression Using the
Vegetation Indices. The first two components of the PCA
captured about 80% of the variation in the set of indices,
showing strong collinearities among them (Figure 3). For
example, strong correlations were observed among NDRE,
Red_edge, and r740_r700, as indicated by large positive
loadings on component 1. Similarly, NDVI highly correlated
with several indices, such as r760_r750, r760_r750index, and
CVI, indicated by large negative loadings on component 1.
To reduce the collinearities, a subset of vegetation indices
(Red_edge, CVI, OSAVI, r760, curvature, and PRI) was
selected as predictors for the traits of interest in the stepwise
multilinear regression models, based on the correlations
among the indices and their loadings on the first two princi-
pal components (Figure 3).

The best models based on the AIC criteria are given in
Table 3. All models were significant (p < 0:05) for estimating
the photosynthetic parameters, despite the low R2 of around
0.20 (Table 3). The RMSEs for predicting Vcmax, Vpmax, and
Jmax were 9%, 35%, and 18% of the mean, respectively,
suggesting a modest accuracy in estimations of the photo-
synthetic parameters from the proximal hyperspectral
vegetation indices. Moreover, the vegetation indices detected
in the best models for Vcmax, Vpmax, and Jmax were mostly
based on near infrared (~800 nm), red edge (~710-
750 nm), and green (~550nm) portions of the spectrum
(Figure 1(d)), such as CVI, curvature, and OSAVI, which
have previously mostly been used as indicators for variation
in nitrogen status and canopy size [28–31, 52]. Interestingly,
significant association of Vpmax and Jmax with an oxygen-A
band based index (r760) was observed, which has been used
to predict chlorophyll fluorescence [81], suggesting sensitiv-
ity of this region to photosynthesis. An indicator of light use
efficiency, PRI (based on 531 and 570 nm), showed a high
coefficient in the estimators of Vcmax, consistent with the
physiological linkages between maximum Rubisco activity
and electron transport processes. Red_edge and curvature,
known to be sensitive to chlorophyll content [52], were com-
monly detected in the best stepwise multilinear regression
models for SLN and LMA.
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3.3. Approach 2: PLSR Derived from Reflectance at All
Available Wavelengths. Compared with the stepwise multi-
linear regression models derived from the set of indices,
PLSR using reflectance across all the available wavelengths
was much more robust for the estimations of Vcmax, Vpmax,
and Jmax, with R2 of 0.83, 0.93, and 0.76, respectively
(Figures 4(a)–4(c)). The RMSEs for estimating Vcmax,
Vpmax, and Jmax were reduced to 4%, 12%, and 10% of the
mean, respectively (Figures 4(a)–4(c)). Model loadings,
(Figures 4(d)–4(f)) which indicate the contribution of the

wavelengths in a specific PLSR model, highlighted the red
edge (685-750nm) and near infrared (a major peak around
950-960 nm) region as important regions for predicting pho-
tosynthetic capacity.

Using PLSR derived from reflectance of all wave-
lengths, the predictions of SLN and LMA improved in
both R2 and RMSE compared with the models developed
by stepwise multilinear regression using vegetation indices
(Figures 5(a) and 5(b)). For SLN and LMA, the RMSE was
reduced to 5% and 6% of the mean, respectively. The R2

reached 0.82 for SLN and 0.68 for LMA. In the models
for SLN and LMA, the wavelengths with high loadings
largely fell in the near infrared regions with peaks around
722-769 nm and 922-956 nm (Figures 5(c) and 5(d)).

3.4. Extrapolating the PLSR Models Built Using the Training
Sets to the GWAS Trials

3.4.1. Variation and Heritability of Vcmax, Vpmax, and Jmax,
and SLN and LMA in GAT1 and GAT2. When using the
PLSR models built across the two training sets to estimate
the traits in the GWAS trials, reasonable ranges and herita-
bility were observed for all the traits, especially for the two
key photosynthetic parameters Vcmax and Jmax (Table 4).
The ranges of the predicted Vcmax (46-65 μmol m-2s-1) and
Jmax (317-595 μmol m-2s-1) in GAT1 were particularly com-
parable with the ground truth measurements in the train-
ing sets (Figure 2), suggesting a reasonable accuracy of the
extrapolations. This was also supported by the high herita-
bility (around 0.90) of Vcmax and Jmax in GAT1 (Table 4).
The heritabilities of the predictions in GAT2 were lower
than in GAT1, because most of the genotypes in GAT2
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Figure 2: Boxplots showing range of maximal Rubisco carboxylation ((a)Vcmax), maximal PEP carboxylation ((b) Vpmax), maximal electron
transport ((c)Jmax), specific leaf nitrogen ((d) SLN), and leaf mass per area ((e) LMA) in training set 1 (2019) and training set 2 (2020).
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were hybrids which have less genetic diversity (Tables 1
and 4).

3.4.2. GWAS Based on the Predictions of Vcmax and Jmax in
GAT1. To further evaluate the predictivity of the PLSR
models, GWAS analyses were performed on BLUPs of
Vcmax and Jmax predictions in GAT1 (n = 649 inbred lines),
and given Vcmax and Jmax have been identified to be the

two key photosynthetic parameters for determining net rate
of canopy photosynthesis [13]. Four QTL were detected to
be associated with the variation in Vcmax (Figure 6 and
Table 5), were located on chromosome 6, 9, and 10, suggesting
likely genomic regions associated with the processes of CO2
assimilation. In terms of Jmax, two QTL located on chromo-
somes 4 and 5 were identified, providing likely chromosomal
regions relevant to the processes of electron transport.

Table 3: The best models chosen by AIC in stepwise multilinear regression for traits of interest.

Traits of interest No. observations Vegetation indices Coefficients R2 p value RMSE

Vcmax 67

Red_edge -34.3

0.3 <0.01 4.7CVI 2.3

PRI -521.0

Vpmax 60

OSAVI -5077.0

0.2 <0.05 143.9Curvature 6682.0

r760 3899.0

Jmax 74 r760 -1766.0 0.2 <0.05 75.5

SLN 129

Red_edge 0.6

0.2 <0.01 0.2OSAVI -6.1

Curvature -15.8

LMA 169

Red_edge 30.5

0.2 <0.01 5.0CVI -2.4

Curvature -258.1
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Figure 4: Cross-validated predictions of Vcmax (a), Vpmax (b), and Jmax (c) and corresponding loadings with principal components 1 and 2
for Vcmax (d), Vpmax (e), Jmax(f) using partial least square regression (PLSR) and reflectance values at various wavelengths between 395 and
997 nm. Note: Bottom panels (d, e, and f) show model loadings which represent the relative importance of a given spectral wavelength in
each model (a, b, and c, respectively); values in brackets indicate the percentage of variance explained by the first two principal components.
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3.4.3. Pathways Enriched for Genes within 200 kb from the
QTL of Vcmax and Jmax. To further assess the accuracy of
the PLSR models from the training sets, the genes within
200 kb [43] from the QTL detected for Vcmax and Jmax were
analysed by PhytoMine (https://phytozome-next.jgi.doe.gov/
). One pathway was enriched for five candidate genes of
Vcmax, which has been annotated to be associated with
UDPG-glucosyl transferase (Table 6). Another pathway,

enriched for four candidate genes of Jmax, was found to be
involved in metabolic processes resulting in the removal or
addition of electrons (iron ion binding).

4. Discussion

In this study, five key photosynthesis related variables were
investigated and predicted from canopy hyperspectral reflec-
tance data, providing an efficient and nondestructive tool to
screen genotypes for improved photosynthetic capacity at
large scale. Maximal Rubisco carboxylation rate (Vcmax),
PEP carboxylation rate (Vpmax), and electron transport rate
(Jmax), which are the main rate-limiting processes in C4-car-
bon assimilation, were quantified in a diverse set of sorghum
genotypes across the two training sets (n = 75 plots including
63 genotypes). To date, this is the first attempt to correlate
hyperspectral reflectance to detailed fittings of these three
parameters from both ACi and Ai curves in C4 pathway
photosynthesis. The obtained Vcmax and Vpmax values were
comparable with those reported previously in sorghum
[82]. Compared with stepwise multilinear regression, PLSR
models improved the prediction accuracy for the three pho-
tosynthetic parameters and the other two key leaf properties
(SLN and LMA, n = 169 plots including 124 genotypes),
based on R2 (~0.80) and RMSE (less than 12% of mean).
Subsequently, these PLSR models were extrapolated to two
GWAS trials (875 plots with 650 genotypes in GAT1; 912
plots with 634 genotypes in GAT2), with the resulting pre-
dictions for both photosynthetic parameters and key leaf
properties (SLN and LMA) showing medium to high
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Figure 5: Cross-validated predictions of SLN (a) and LMA (b) and corresponding loadings with principal components 1 and 2 for SLN (c)
and LMA (d) using partial least square regression (PLSR) with reflectance values at different wavelengths between 395 and 997 nm. Note:
Bottom panels (c and d) show model loadings which represent the relative importance of a given spectral wavelength in each model (a
and b, respectively); values in brackets indicate the percentage of variance explained by the first two principal components.

Table 4: Range and heritability of predicted SLN, LMA, Vcmax,
Vpmax, and Jmax in the GWAS trials.

Site Trait Max Min Mean Std.error H2

GAT1

Pred.SLN 2.6 1.4 2.0 0.1 0.85

Pred.LMA 73.1 50.3 58.8 2.0 0.69

Pred.Vcmax 64.6 45.7 53.8 1.1 0.87

Pred.Vpmax 811.4 97.7 399.8 35.3 0.89

Pred.Jmax 595.2 317.2 457.4 17.4 0.90

GAT2

Pred.SLN 2.1 1.8 1.9 0.1 0.53

Pred.LMA 65.7 58.8 61.8 1.8 0.52

Pred.Vcmax 48.6 40.2 43.2 0.9 0.73

Pred.Vpmax 579.5 258.4 406.8 37.7 0.59

Pred.Jmax 514.6 443.1 472.9 14.3 0.56

Note: Pred.: predictions for traits in the GWAS trials from the PLSR models
built using the pooled training sets; Vcmax (μmol m-2s-1): maximal Rubisco
carboxylation; Vpmax (μmol m-2s-1): maximal PEP carboxylation; Jmax
(μmol m-2s-1): maximal electron transport rate; SLN (g m-2): specific leaf
nitrogen content: LMA (g m-2): leaf mass per area; H2: generalised
heritability.
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Figure 6: Manhattan and Q-Q plots of GWAS for Vcmax and Jmax in GAT1. Note: Pred.Vcmax: maximal Rubisco carboxylation rate
predicted by the PLSR model for Vcmax using the pooled training sets; Pred.Jmax: maximal electron transport rate predicted by the PLSR
model for Jmax from the pooled training sets; in the Manhattan plots: solid black line showing Bonferroni corrected significant threshold
(p value <1.6e-7); in both Manhattan and Q-Q plots: SNPs in red passed the significant threshold.

Table 5: QTL identified for Vcmax and Jmax in GAT1.

Trait QTL Chromosome Position (bp) p value MAF

Pred.Jmax qJmax4.1 4 747956 6.86E-10 0.3

Pred.Jmax qJmax5.1 5 3363160 1.08E-07 0.1

Pred.Vcmax qVcmax6.1 6 53165713 6.76E-08 0.1

Pred.Vcmax qVcmax9.1 9 58600798 1.12E-09 0.2

Pred.Vcmax qVcmax10.1 10 5271782 2.56E-09 0.2

Pred.Vcmax qVcmax10.2 10 43584867 4.95E-08 0.1

Note: Pred.Vcmax: maximal Rubisco carboxylation rate predicted by the PLSR model for Vcmax using the pooled training sets; Pred.Jmax: maximal electron
transport rate predicted by the PLSR model for Jmax from the pooled training sets; Position (bp): the physical positions of QTL identified on the sorghum
reference genome v3.1; MAF: minor allele frequency.

Table 6: Pathway enrichment analyses for candidate genes within 200 kb from the QTL of Vcmax and Jmax.

Candidate genes Chr bp_start bp_end Distance to QTL Closest QTL Pathway GO annotation

Sobic.006G174000 6 52,994,972 52,996,405 169,308

qVcmax6.1 PWY-2902 UDPG-glucosyl transferase

Sobic.006G174300 6 53,001,457 53,004,943 160,770

Sobic.006G174400 6 53,005,433 53,007,221 158,492

Sobic.006G174500 6 53,012,401 53,014,032 151,681

Sobic.006G174600 6 53,021,800 53,023,200 142,513

Sobic.004G008300 4 733,525 734,761 13,195

qJmax4.1 PWY-5129
Iron ion binding, SUR2 and
oxidation-reduction process

Sobic.004G008800 4 763,419 764,817 15,463

Sobic.004G008900 4 769,869 771,113 21,913

Sobic.004G008200 4 724,142 725,780 22,176

Note: Chr: chromosome; bp_start: the start point of the gene in the reference genome; bp_end: the end point of the gene in the reference genome; distance to
QTL: distance of the gene to the closest QTL in bp; closest QTL: the closest QTL to the candidate gene.
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heritability. Furthermore, the genomic regions associated
with Vcmax and Jmax that were detected by GWAS in
GAT1 (n = 649 inbred lines) revealed candidate genes
involved in the pathways of UDPG-glucosyl transferase
and removal or addition of electrons, respectively.

4.1. Plot-Based Hyperspectral Reflectance Can Be Used to
Predict Leaf Photosynthetic Capacity

4.1.1. Models for Vcmax, Vpmax, and Jmax. Hyperspectral
reflectance using leaf clips has shown promise for predicting
photosynthetic capacity in a variety of plant species [42, 69,
70, 83–85]. However, measurements requiring leaf clips are
not practical for screening thousands of breeding lines. To
fully achieve high-throughput phenotyping, rather than
using handheld spectroradiometers on a leaf-by-leaf basis,
estimations of photosynthetic capacity from automated
proximal or remote sensing at the canopy level are needed.
Apart from greater throughput, canopy measurements also
better reflect the whole-plant, which integrates photosyn-
thetic activities measured at the leaf level.

Canopy hyperspectral reflectance has shown promise for
estimating Vcmax and net canopy photosynthetic rate
through different approaches, such as airborne-based model
inversion in wheat [34]. Another study using canopy hyper-
spectral reflectance also successfully predicted Vcmax and
Jmax with a ground-based phenotyping platform in tobacco
[86]. Moreover, these authors compared three different
PLSR approaches including reflectance-based, index-based,
and model inversion-based methods, indicating better per-
formance in models based on reflectance and indices than
model inversion [86]. A comparison based on leaf- and
plot-level PLSR models confirmed the capability of plot-
level hyperspectral imaging to predict photosynthetic
parameters in transgenic tobacco plants expressing C4 pho-
tosynthesis pathway genes [40]. In the present study, across
63 sorghum varieties in the training sets, Vcmax, Vpmax, and
Jmax were predicted with reasonably high accuracy (R2

around 0.80 and RMSE within 12% of mean) using PLSR
models built from canopy hyperspectral data collected via
a proximal phenotyping platform (~1.7m from canopy).
The index-based stepwise multilinear regression models for
Vcmax and Jmax could also estimate the photosynthetic
parameters with a reasonably small RMSE around 13% of
mean, although with much less percentage of variance
explained (R2 around 0.20). The results from the present
study demonstrate the promise of utilising hyperspectral
sensing at a canopy level in selective breeding for photosyn-
thetic capacity at large scale and put forward a high-
throughput tool to explore genotype by environment inter-
actions of photosynthetic capacity related traits.

4.1.2. Models of SLN and LMA. Nitrogen content has been
one of the most successfully predicted traits in crops from
both leaf and canopy spectral measurements [20, 87, 88].
In addition to the biochemical parameters, and given the
strong associations of nitrogen and LMA with photosynthe-
sis, remote sensing of the key leaf properties has also previ-
ously been explored, [16, 89, 90]. Among the estimations

from PLSR models in this study, a high coefficient of deter-
mination was consistently observed in SLN predictions
(R2 = 0:82), which also had a low RMSE in stepwise multi-
linear models (10% of mean SLN), demonstrating the effec-
tiveness and suitability of approaches applied in this study.

Another key leaf property, LMA, has been identified as a
proxy of photosynthetic capacity in maize [89]. Robust
models for predicting LMA from leaf-level hyperspectral
reflectance have been reported for wheat and soybean [18,
35, 91]. Additionally, lower RMSE at canopy level than leaf
level has been reported for LMA estimations, as multiple
scattering in the upper canopy leaf layers could strengthen
the expression of key leaf properties in a closed canopy com-
pared with leaf-level measurements [83]. A more recent
study in the C3 crop zucchini using both leaf- and canopy-
level hyperspectral reflectance and PLSR has successfully
predicted LMA with R2 of 0.91 and 0.60, respectively [92].
In the present study, low RMSE (6% of mean LMA) and
medium to high R2 of 0.68 were found in the LMA estima-
tions from canopy hyperspectral reflectance using PLSR.
This was also supported by LMA predictions from the step-
wise multilinear regression with an acceptable RMSE, 10% of
mean. These results indicate that proximally sensed and
canopy-based hyperspectral reflectance measurements pro-
vide a rapid and robust measure of key leaf properties related
to photosynthetic efficiency.

4.1.3. Potential Strategies to Train Robust Models for
Predicting Leaf Traits from Canopy-Based Sensing. When
using canopy-level hyperspectral data to train leaf-level mea-
surements, shadows, soil background, and canopy structure
could be complicating factors that affect the robustness of
the model. To address some of the issues with using canopy
reflectance, a NDVI > 0:5 mask was applied to each pixel
used in the reflectance calculation. This masked out the soil
background reflectance and thus minimising the variation in
spectral responses from effects associated with canopy het-
erogeneity (e.g., light or temperature) at the plot level. In
addition, some of the noise from canopy structural factors
was also minimised in this study by operating within one
critical growth stage. However, for future application, devel-
oping models suitable for different stages or less sensitive to
the variation of canopy structure within a time window
would improve utility of the method developed here. Addi-
tionally, an automatic thresholding technique (e.g., Otsu)
fused with canopy height from LiDAR could be applied in
canopy delineation which should be more accurate [93] in
delineating the exact canopy areas within a plot. This could
reduce spurious reflectance values and thus increase the sig-
nal measured from proximal sensing at the canopy level,
depending on agricultural contexts (e.g., species or canopy
size). Alternatively, combining relevant models that improve
the relationships between canopy hyperspectral reflectance
and leaf photosynthetic parameters could be useful [34].
Increasing the number of ground truth samples can also
improve model performance; however, simply increasing the
size of the dataset not only leads to highly complex models
but is also affected by the high costs associated with additional
measurements, especially in the case of gas exchange
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measurements which are notoriously slow to obtain [25, 94].
To date, gas exchange measurements are the only realistic
measurement of photosynthesis; however, given the con-
founding factor of variation in photosynthetic capacity within
crop canopies of the same genotype [40], this is not ideal.

Reducing the confounding environmental factors (e.g.,
light or temperature) will also improve model strength when
using canopy-based hyperspectral sensing methods to esti-
mate key leaf traits. In this study, all ground truth and sens-
ing data was collected between 9 am and 12pm, which
minimised the effects of sun angle, temperature, and light
on canopy reflectance and on photosynthetic rates. Further
improvement could be made by incorporating temperature
at the time of image capture and tentatively correcting pho-
tosynthetic parameters to a standard temperature, as it is
one of the most important environmental factors influencing
both hyperspectral reflectance and photosynthesis. This was
not considered here due to scarce documentation of temper-
ature responses of Vcmax, Vpmax and Jmax in C4 crops [39].

4.2. PLSR Derived from Entire Wavelength Spectrum
Strengthens Model Performance. Compared with the models
developed using stepwise multilinear regression, PLSR
models were more robust and demonstrated a higher cross
validated R2 and lower RMSE. This is attributed to the fact
that additional spectral information was incorporated in
the PLSR models using the complete wavelength range com-
pared with the stepwise multilinear regression models [36,
63, 83, 86]. Based on peak loadings (red edge and near infra-
red), the wavelengths that explained most of the variance in
the PLSR models aligned closely with the locations of the
wavelength bands selected to develop the best-performing
multilinear vegetation index approach. Compared with the
published indices that correlate with nitrogen content, a
strong overlap was found around the red edge (~710-
750nm) in the present study, consistent with the finding
that leaf nitrogen content is linearly correlated with the first
derivatives of reflectance at the red edge region around
730nm [20]. The most important parts of the spectrum for
predicting photosynthesis have been shown to be in the vis-
ible (400-700 nm) and red edge (710-750nm) range [83]. In
this study, the spectral loadings used to predict photosyn-
thetic parameters had similar peaks to the spectral loadings
of SLN and LMA, likely attributed to these features being
interdependent [89]. These results provide useful informa-
tion for selecting relevant wavelengths to predict the traits
of interest in further studies.

4.3. PLSR Models Built across the Training Sets Can Be
Extrapolated to the GWAS Trials. In this study, the PLSR
models were extrapolated to the GWAS trials, demonstrat-
ing comparable variation and high heritability (~0.80) for
the predicted biochemical (Vcmax, Vpmax, and Jmax) and key
leaf properties (SLN and LMA) in the GWAS trial (GAT1),
including predominantly inbred lines. Based on the predic-
tions for these traits in the GWAS trial (GAT2), comprising
mostly hybrid lines, relatively lower heritability (~0.5) was
observed, as expected, due to similarity among the hybrids

both at the molecular and phenotypic level. This suggests
hyperspectral sensing is a promising avenue to screen large
populations for such traits that have previously been out of
reach of crop breeding programs [34, 42, 95]. However, the
capacity of green leaves to convert CO2 into biomass varies
throughout the season mainly due to interactions among
genotypes, plant phenological stage and environment [13,
96]. This is likely to further influence predictive skill espe-
cially in cases where there is a high within-population varia-
tion as a result of the genotype by environment interactions.

The models built across the training sets show sufficient
skill to estimate key determinants of photosynthesis in large
sorghum mapping populations, grown adjacent to these
ground-truth trials, despite potential challenges of predicting
leaf photosynthetic capacity from canopy-based hyperspec-
tral sensing. This would not only enable the screening for
materials with improved photosynthetic capacity, following
identification of genetic loci and potential candidate genes
for photosynthetic capacity in the C4 crop sorghum but also
benefit the quantification of the association between photo-
synthetic capacity and ultimate biomass improvement in
crops. In further applications, it is important to select the
best phenology stage for data collection, when the degree
of canopy development expressed by leaf area index has
more consistent levels of pigment concentration per unit
area and more similar spectral response for reducing the
impact of such confounding effects associated with plant
growth processes (e.g., canopy structure and nitrogen sta-
tus), [31]. Additionally, further studies to test temporal sta-
bility of relationships between canopy reflectance spectra
and leaf photosynthetic capacity are needed before extrapo-
lated associations from a specific hyperspectral measure-
ment through the growing season can be made in other
crops or agricultural contexts.

Here, GWAS analyses for the two photosynthetic
parameters, Vcmax and Jmax, provided useful information
for further fine mapping to identify potential candidate
genes controlling CO2 assimilation and electron transport
in sorghum. This is one of the significant and novel out-
comes from this study, as this is the first attempt to quantify
the genetic basis of the key photosynthetic parameters using
hyperspectral sensing in hundreds of lines. Additionally,
pathway enrichment analysis for genes within 200 kb from
Jmax QTL detected four candidate genes involved in the pro-
cess of electron transport and light signalling [97]. This
means the PLSR model for Jmax built across the training sets
was able to capture the genomic loci associated with its phe-
notypic variation in the sorghum diversity panel. The path-
way enriched for genes within 200 kb from the Vcmax QTL
is known to catalyse the transfer of a hexosyl group from
one compound to another, as well as function in nitrogen
storage [98]. While this is not directly associated with
Rubisco activity per se, plant nitrogen status is closely associ-
ated with Rubisco and leaf photosynthetic rates [18–20].
Additionally, the photosynthetic capacity is colimited by
Rubisco activity (Vcmax) and RuBP regeneration, which
depends on electron transport (Jmax) and the coordination
of Calvin cycle enzymes [11, 93]. Enzyme interactions in
the Calvin cycle are highly complex [92], and further studies
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are needed to explore the relevance of the Vcmax QTL
detected here.

5. Conclusions

Being able to map crop traits associated with improved
resource use efficiency (e.g., nitrogen, light, and water) will
contribute to further understanding of the natural variation
in photosynthetic processes and enable the exploration of
opportunities to modify photosynthesis. This study devel-
oped a model using PLSR to estimate maximal Rubisco
activities (Vcmax, R

2 = 0:83), maximal PEP activities (Vpmax,
R2 = 0:93), maximal electron transport activities (Jmax, R

2

= 0:76), specific leaf nitrogen (SLN, R2 = 0:82), and leaf
mass per leaf area (LMA, R2 = 0:68) from proximal hyper-
spectral sensing using two combined training sets (n = 169
plots). Further, extrapolating the PLSR models built across
the training sets to the GWAS trials including hundreds of
lines demonstrates that the predictions of the traits of inter-
est are heritable. GWAS analyses for Jmax in the inbred lines
detected genomic regions comprising candidate genes con-
trolling the process of electron transport. While the Vcmax
candidate genes identified here are not associated directly
with Rubisco activity per se, they are involved in nitrogen
storage which is closely associated with Rubisco. These
results suggest that the PLSR models from the training sets
were able to capture the phenotypic variation in the photo-
synthetic parameters allowing the discovery of the underly-
ing genetic basis of these important traits.
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