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Abstract 

Background:  The exchangeable aluminum (Al), released from the acid soils, is another addition to the environmental 
stress factors in the form of Al toxicity stress. Al stress affects the normal crop development and reduces the overall 
yield of rapeseed (Brassica napus L.). The response mechanism of plants to Al toxicity is complicated and difficult to 
understand with few QTL related studies in rapeseed under Al toxicity stress.

Result:  Using 200,510 SNPs developed by SLAF-seq (specific-locus amplified fragment sequencing) technology, we 
carried out the genome-wide association analysis (GWAS) in a population of 254 inbred lines of B. napus with large 
genetic variation and Al-tolerance differences. There were 43 SNPs significantly associated with eight Al-tolerance 
traits in the seedling stage were detected on 14 chromosomes, and 777 candidate genes were screened at the flank-
ing 100 kb region of these SNPs. Moreover, RNA-seq detected 8291 and 5341 DEGs (the differentially expressed gene) 
in the Al -tolerant line (ATL) and -sensitive line (ASL), respectively. Based on integration of GWAS and RNA-seq analysis, 
64 candidate genes from GWAS analysis differentially expressed at least once in 6 h vs 0 h or 24 h vs 0 h conditions in 
ATL or ASL. Moreover, four out of sixty-four candidate genes (BnaA03g30320D, BnaA10g11500D, BnaC03g38360D and 
BnaC06g30030D) were differentially expressed in both 6 h and 24 h compared to 0 h (control) conditions in both lines. 
The proposed model based on the candidate genes excavated in this study highlighted that Al stress disturb the 
oxidation-redox balance, causing abnormal synthesis and repair of cell wall and ABA signal transduction, ultimately 
resulting in inhibition of root elongation.

Conclusions:  The integration of GWAS and transcriptome analysis provide an effective strategy to explore the SNPs 
and candidate genes, which has a potential to develop molecular markers for breeding Al tolerant rapeseed varieties 
along with theoretical basis of molecular mechanisms for Al toxicity response of Brassica napus plants.
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Introduction
Aluminum (Al), after oxygen and silicon, is the most 
abundant metal element in the earth’s crust. Al exists in 
the form of insoluble silicates or oxides which are less 
harmful to the growth and development of crops [1, 2]. 
However, soil pH value below 5.5 promotes exponential 
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release of the exchangeable Al (mainly A13+, Al(OH)2+ 
and Al(OH)2

+) from silicates or oxides, which has a 
strong toxic effect on crop roots growth [3–5]. The free 
Al3+ ions can bind to the plasma membrane and nucleus, 
inhibiting the elongation and division of tip cells of crop 
roots, which affects the uptake of water and nutrients [6–
8]. At present, about 40% of the world’s potentially arable 
lands are acidic (pH < 5.5) [9, 10]. Al toxicity has become 
a prominent factor affecting the crop growth on these 
acidic soils.

Brassica napus is the second largest oilseed crop in the 
world, providing edible oil for humans along with other 
multiple usages in the form of vegetable, forage, orna-
mental flower, honey and fertilizer [11, 12]. In China, 
the Yangtze River region where was the high rapeseed 
producing area has major issues with acidic soils spe-
cifically Al toxicity stress limiting the growth and seed 
yield of B. napus [4, 13]. At present, Al tolerance related 
research mainly focus on model plants such as Arabi-
dopsis, rice, wheat and barley [14–16]. Previous research 
has demonstrated Al tolerance in plants as a complex 
trait controlled by multiple genes and pathways [17, 18]. 
Various genetic loci and genes involved in Al exclusion 
and tolerance mechanisms have been identified in model 
plants [18]. Success linked to a few genes (BnALMT1, 
BnALMT2, CS and WMnSOD1) in improving Al toler-
ance in transgenic plants has been studied previously 
[19–21]. However, many crucial genes linked to Al resist-
ance in other crops, such as RAL1 [22], OsFRDL2 [23], 
FeSTAR2 [24] and VuSTOP1 [25], have not been reported 
in B. napus. It limits our understanding about the genetic 
variation and molecular mechanism of Al tolerance in B. 
napus.

Genome-wide association study (GWAS) have proved 
as a powerful tool in identification of desired trait linked 
genes in plants [26–28], and been applied in mining 
gene loci and candidate genes related to Al tolerance in 
various crops such as rice, wheat, and barley [14–16]. 
Recently, for B. napus, Gao et al. [13] detected 13 SNPs 
associated with two traits of relative root length and rela-
tive dry weight during germination using GWAS analysis. 
In addition, some studies have reported more accuracy 
and efficacy in screening the candidate genes for agro-
nomic and stress-related traits by integrating GWAS and 
RNA-seq [29–32]. Zhang et al. [31] identified 16 loci sig-
nificantly associated with water stress response in Canola 
using GWAS, and then 79 candidate genes were identi-
fied by combining differentially expressed genes (DEGs) 
detected by RNA-seq with loci from GWAS. Later on 
same approach identified 24 stalk rot resistance-related 
candidate genes in 17 sites, and 33 functional candi-
date genes related to rapeseed harvest index [30, 32]. 
Therefore, a combined strategy of GWAS and RNA-seq 

analysis showed more reliable potential to identify the 
candidate genes related to complex traits of rapeseed.

In this study, a set of 254 inbred lines of B. napus with 
large genetic variation and Al-tolerance differences were 
selected. This study also had an advantage of the 200,510 
high-quality SNPs developed by SLAF-seq (specific-locus 
amplified fragment sequencing) technology [33]. GWAS 
was carried out to detect SNPs linked to the Al-tolerance 
and loci of elite allelic variation. In addition, the roots of 
two highly tolerant and susceptible rapeseed lines treated 
with Al ion stress were used to identify DEGs related to 
Al tolerance using RNA sequencing. DEGs for Al toler-
ance within the LD intervals containing significant SNP 
markers were selected as Al tolerance candidate genes 
by combining the analysis of GWAS and RNA-seq. The 
objective of this study was to identify SNP markers and 
candidate genes linked with Al tolerance in rapeseed.

Results
Phenotypic data
Eight traits for each of 254 rapeseed inbred lines were 
investigated under the stress of Al toxicity, and descrip-
tive statistical analysis was summarized in Table S1 for 
fresh weight above ground, root average diameter, root 
fresh weight, root elongation, total root surface area, 
total root tip, total root volume, total root length of 254 
rapeseed under CK and Al stress (Treatment). The coef-
ficients of variation (CV, %) in CK and Treatment were 
ranged from 17.3 to 105.3 and 17.2 to 117.8, respectively.

The CV of eight traits between CK and Treatment 
ranged from 11.3 for relative root elongation (RRE) to 
30.8 for relative root fresh weight (RRFW) (Table  1). 
RRE varied from 0.537 to 0.947 with an average of 0.750, 
and RRFW varied from 0.490 to 2.143 with an average of 
1.071. The genotypes showed extremely significant dif-
ferences with normal distribution for all the phenotypic 
traits among 254 inbred lines (Table 1; Fig. 1). This pat-
tern showed presence of a broad phenotypic mutation 
under Al stress, which could effectively be used to locate 
Al tolerance linked candidate genes by GWAS.

Furthermore, Strong positive correlations (R = 0.5–0.9) 
were observed among most of the traits, such as relative 
fresh weight above ground (RFWAG) with RRFW and 
relative total root tip (RTRT), relative total root surface 
area (RTRSA) with relative total root volume (RTRV), 
relative total root length (RTRL) and relative root average 
diameter (RRD) (Table 2).

Genome‑wide association study
A total of 200,510 SNPs were used in the GWAS analy-
sis for Al tolerance using GLM and MLM. The distri-
bution agrees of p-values have a high consistency with 
observations by the Quantile-quantile plots (Q-Q plots) 
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analysis (Fig.  2). The GLM analysis detected a total of 
43 SNPs significantly associated with eight Al tolerance 
traits. These SNPs explained the phenotypic variation 
from 8.22 to 14.36% and their distribution was detected 
on 14 of the 19 B. napus chromosomes (excluding A05, 
A07, C01, C07 and C08). Besides, the largest number of 
significant SNPs was on chromosome C02 (six SNPs) and 
RRFW trait had the most associated SNPs (eight SNPs) 
(Fig. 3; Table 3). MLM analysis detected a total of 12 sig-
nificantly associated SNPs with RRD (1), RRFW (3), RRE 
(2), RTRSA (1), RTRT (1), RTRV (2), and RTRL (1) on 
six chromosomes (A01, A03, A04, C02, C03 and C05), 
respectively, explaining phenotypic variation of 9.49 to 
14.52% (Fig. 4; Table 3). Totally, 43 significant SNPs asso-
ciated with eight Al tolerance traits were identified by 
GLM and MLM analyses.

Among these significant SNPs (Table  3), two SNPs 
for RFWAG, detected by GLM analyses, were located 
on chromosomes A04. For RRD, three SNPs were iden-
tified on two chromosomes (A01 and C03), one SNP 
detected by GLM and two SNPs by both GLM and 
MLM models. Similarly, eight SNPs for RRFW were 
detected on chromosome A03, A06, A08, A10, C02 
and C03, five of these were detected by GLM and three 
by both GLM and MLM analyses. GLM analysis was 
able to identify seven SNPs associated with RRE on 
six chromosomes (A03, A10, C02, C04, C06 and C09). 
GLM predictions were also confirmed by MLC identi-
fication of two SNPs on chromosome A03 associated 
with RRE. Six SNPs for RTRSA were detected on four 
chromosomes (A01, A02, A09 and C02) by only GLM 
analysis, however, one SNP was a shared result of both 
GLM and MLM analyses. MLM analysis detected six 
SNPs for RTRT, one SNP of which was consistent with 
GLM analysis. Five SNPs associated with RTRV were 
identified on chromosome A06, C04 and C05 by GLM 

analysis, two of which were consistent with MLM anal-
ysis. Five SNPs on   four chromosomes (A01, A06, A09 
and C02) linked to RTRL were detected by GLM, and 
two SNPs detected by both GLM and MLM models.

Furthermore, four SNP loci were linked to multiple 
traits such as locus Bn-A01-p8185115 (chromosome 
A01) was associated with three traits including RRD, 
RTRSA and RTRL. Similarly, Bn-A01-p11875598 was 
associated with RRD and RTRL, Bn-A04-p9422509 
associated with RFWAG and RTRT, Bn-C02-p26059415 
associated with RTRSA and RTRL (Table 3).

Identification of candidate genes
The candidate genes nearby the genome-wide sig-
nificant SNPs were identified by using 100 kb flank-
ing sequences of 43 SNPs (significantly associated 
with Al-tolerance) and ‘Darmor v4.1’ as the reference 
genome. This study resulted in the identification of 777 
candidate genes, most of which genes were involved 
in various functions such as amino acid transport 
and metabolism, defense mechanisms, inorganic ion 
transport and metabolism by COG annotation (Fig. 
S1). Based on the functional annotations, some genes 
were known to be related with Al tolerance, such as 
MATE family proteins, ABC transporter family pro-
tein, aquaporin, sulfate transporter family protein, 
metal tolerance protein, glutathione S-transferase, 
xyloglucan endotransglucosylase/hydrolase protein and 
antioxidant proteins. Some candidate genes, such as 
BnaC04g06050D, BnaC04g06060D, BnaA03g43560D, 
BnaA03g30320D and BnaA07g29670D, mainly partici-
pated in the pathway related to transport and metabo-
lism of inorganic ions, the transport and discharge of 
organic acids (citric acid), and oxidative stress response 
(Table S2).

Table 1  Statistical analysis of phenotypic traits in Brassica napus 

Note: a and b mean significant difference at 0.05 and 0.01 levels respectively. RFWAG: relative fresh weight above ground; RRD: relative root average diameter; RRFW: 
relative root fresh weight; RRE: relative root elongation; RTRSA: relative total root surface area; RTRT: relative total root tip; RTRV: relative total root volume; RTRL: 
relative total root length

Trait Mean ± SD Min 50% quantile Max CV/% ANOVA

Repetition Genotype Error

RFWAG​ 0.920 ± 0.224 0.358 0.953 1.769 29.5 0.014 79.643b 1.940

RRD 1.008 ± 0.103 0.594 1.075 1.277 11.4 0.004 13.249b 4.945

RRFW 1.043 ± 0.209 0.490 1.071 2.143 30.8 0.726 111.458b 147.108

RRE 0.757 ± 0.085 0.537 0.750 0.947 11.3 0.004 7.3384b 1.0939

RTRSA 1.100 ± 0.109 0.487 1.042 1.460 15.1 0.039 25.125b 3.840

RTRT​ 1.215 ± 0.175 0.387 1.217 1.824 17.9 0.018 46.767b 6.262

RTRV 1.085 ± 0.181 0.286 1.049 1.731 21.5 0.119 51.130b 5.453

RTRL 1.082 ± 0.122 0.689 1.050 1.459 13.2 0.034 19.341b 5.273
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Fig. 1  Frequency distribution of eight phenotypic traits related to Al tolerance in Brassica napus 
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Transcriptome sequencing analysis
The transcriptomes of two breeding lines under Al 
stress were analyzed. More than 10.15 billion clean 
reads from 18 libraries of two genotypes were gener-
ated and mapped to the reference genome. The align-
ment results showed that 669 million reads of the 
clean reads were successfully mapped to the reference 
genome (Table S3).

To determine genes correlated with Al stress 
response, DEGs for 0 h, 6 h and 24 h Al stress treat-
ments for both lines were identified. In the Al-tolerant 
line, a total of 3053 genes showed up-regulation and 
3644 genes showed down-regulation under 6 h treat-
ment, whereas 655 genes showed up-regulation and 
939 genes showed down-regulation under 24 h treat-
ment compared to 0 h treatment (FDR ≤ 0.05 and 
Log2(FC) ≥ 1.0 or ≤ − 1.0). Among these DEGs, 270 
genes were up-regulated and 508 genes down-regu-
lated under both of the 6 h and 24 h Al stress durations. 
An up-regulation was observed for 33 genes under 6 h 
duration, but 24 h duration down-regulated the same 
genes compared to control. However, 10 genes were 
down-regulated under 6 h but up-regulated under 24 h 
compared to control (Fig. S2A).

In the Al-sensitive line, a total of 2248 and 2058 
genes showed up-regulation and down-regulation, 
respectively, under 6 h compared to control. 220 genes 
showed up-regulation and 815 genes showed down-
regulation under 24 h treatment duration compared 
to control. Among these DEGs, 99 genes were up-
regulated and 490 genes down-regulated, both under 
6 h and 24 h Al stress. Compared to control treatment, 
five genes were up-regulated under 6 h, but down-reg-
ulated under 24 h (Fig. S2B). We randomly selected six 
genes involved in the Al stress for expression valida-
tion by qRT-PCR, and the expression trends were simi-
lar with the RNA-seq data (Fig. S3).

DEGs of Al‑tolerant and Al‑sensitive lines
A total of 2569 DEGs under 6 h and 265 DEGs under 
24 h treatment durations were compared to control for 
Al-tolerant and Al-sensitive lines, respectively. In 6 h 
treatment, 1255 genes were up-regulated and 1306 genes 
down-regulated both in ATL and ASL. Moreover, four 
genes were up-regulated in ATL and down-regulated in 
ASL; another group of four genes down-regulated in ATL 
but up-regulated in ASL in 6 h treatment (Fig.  5). The 
24 h treatment duration compared to 0 h up-regulated 
46 genes and down-regulated 217 genes in the ATL and 
ASL, two genes were up-regulated in ATL and down-reg-
ulated in ASL (Fig. 5). Interestingly, 151 common DEGs 
were identified in ATL and ASL under both treatment 
durations (Table S4). Among these DEGs, 25 DEGs and 
124 DEGs were respectively up-regulated and down-reg-
ulated both in 6 h and 24 h of ATL and ASL, two DEGs 
were up-regulated in 6 h of ASL while down-regulated 
both in 6 h and 24 h of ATL and in 24 h of ASL.

Based on COG annotations, some genes of 151 DEGs 
were involved in carbohydrate transport and metabolism 
(20 DEGs), posttranslational modification (14 DEGs), 
Cell wall/membrane/envelope biogenesis (7 DEGs), 
signal transduction mechanisms (14 DEGs), defense 
mechanisms (13 DEGs), inorganic ion transport and 
metabolism (7 DEGs) (Fig. S4). Some of DEGs such as 
MATE family, ABC transporter family, zinc finger, glu-
tathione S-transferase, xyloglucan endotransglucosylase/
hydrolase protein and heavy-metal-associated domain 
were responsive to Al stress (Table S5).

Identification of candidate genes by integrating GWAS 
and RNA‑seq analysis
The potential candidate genes were prioritized by inte-
grating DEGs obtained by GWAS and RNA-seq analy-
sis. Out of 777 candidate genes identified by GWAS, 
64 (8.24%) genes distributed on 13 of the 19 B. napus 

Table 2  The correlation in eight traits studied under Al toxicity stress

Note: a and b mean significant difference at 0.05 and 0.01 levels respectively

RFWAG​ RRD RRFW RRE RTRSA RTRT​ RTRV RTRL

RFWAG​ 1

RRD −0.109 1

RRFW 0.635b 0.058 1

RRE 0.215b −0.138a 0.140a 1

RTRSA 0.487b 0.504b 0.413b 0.147a 1

RTRT​ 0.294b −0.411b 0.179b 0.199b 0.040 1

RTRV 0.266b 0.809b 0.292b 0.017 0.865b −0.157a 1

RTRL 0.673b −0.205b 0.492b 0.261b 0.669b 0.384b 0.329b 1
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chromosomes (excluding A05, A07, C01, C07 C08 and 
C09). These candidate genes were differentially expressed 
in at least one genotype under 6 h or 24 h compared with 
0 h conditions (Fig.  6; Table S6). The largest number of 

candidate genes were on chromosome A03 (18 genes) 
in the flanking 100 kb region of four SNPs. Ten candi-
date genes were screened from three SNPs and seven 
genes from two SNPs on chromosome A06 and A10, 

Fig. 2  Quantile-quantile plots of estimated-lg (P) from association analysis of eight traits using GLM and MLM model
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respectively. Similarly, six candidate genes were screened 
from the flanking region of one SNP (Bn-A01-p8185115) 
on chromosome A01.

The candidate genes enabled us to identify several 
Al tolerance related genes in breeding lines (Fig.  6; 
Fig.  7). For example, two genes (BnaA03g30330D and 
BnaA03g30320D) were detected adjacent to SNP Bn-
A03-p14798182 and another gene (BnaA09g14730D) 
adjacent to SNP Bn-A09-p8460525 belong to the 
MATE gene family. A gene BnaC04g06210D on chro-
mosome C04 belonged to ABC transporter fam-
ily protein in the vicinity of SNP Bn-C04-p4409586. 

One gene of BnaA03g12450D involved in abscisic acid 
(ABA) signal regulation was found in the vicinity of 
SNP Bn-A03-p5766579. These genes BnaA01g15810D, 
BnaA01g15880D, BnaA03g22360D, BnaA06g18630D, 
BnaA10g06710D, BnaA10g11500D, BnaC04g05980D 
were located adjacent to SNP Bn-A01-p8185115, Bn-
A03-p10703126, Bn-A06-p10959923, Bn-A10-p5162750, 
Bn-A10-p9658437 and Bn-C04-p4409586 on their 
respective chromosomes and participated in cell wall 
development. Besides, two genes (BnaA03g22680D and 
BnaA03g33540D) on chromosome A03 involved in ion 
transport process.

Fig. 3  Manhattan plots for eight phenotypic traits related to Al tolerance in Brassica napus by GLM model. Note: The blue horizontal line represents 
that the extreme significance threshold -log10(P) value is approximately equal to 5.3
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Among these 64 candidate genes, four were simul-
taneously detected by GWAS and the common DEGs 
between 6 h vs 0 h and 24 h vs 0 h in ATL and ASL. These 

four genes include those encoding a MATE family pro-
tein (BnaA03g30320D), xyloglucan endotransglucosy-
lase/hydrolase (BnaA10g11500D), a DnaJ domain protein 

Table 3  SNP loci significantly associated with eight traits of Brassica napus under Al toxicity stress

Note: R2 is the percentage of phenotypic variance explained by the SNP. ● indicates the GLM model detecting the significantly associated-trait SNP locus. ○ indicates 
the MLM model detecting the significantly associated-trait SNP locus

Traits SNP Chromosome Position P value R2/% Allele GLM MLM

RFWAG​ Bn-A04-p2852490 A04 2,852,490 2.07E-06 11.32 T/A ●
Bn-A04-p9422509 A04 9,422,509 3.86E-06 11.25 G/A ●

RRD Bn-A01-p8185115 A01 8,185,115 9.87E-08 ~ 7.34E-07 14.02 T/C ● ○
Bn-A01-p11875598 A01 11,875,598 3.18E-06 10.26 C/T ●
Bn-C03-p23403794 C03 23,403,794 4.33E-06 9.25 G/A ●

RRFW Bn-A03-p16212704 A03 16,212,704 3.81E-06 11.07 T/A ●
Bn-A06-p18721845 A06 18,721,845 4.24E-06 10.07 C/T ●
Bn-A08-p15773789 A08 15,773,789 4.21E-06 9.61 T/C ●
Bn-A10-p5162750 A10 5,162,750 3.54E-06 11.83 G/A ●
Bn-C02-p15705371 C02 15,705,371 3.97E-06 10.59 C/T ●
Bn-C02-p16911048 C02 16,911,048 3.40E-07 ~ 2.87E-08 14.00 ~ 14.36 C/T ● ○
Bn-C03-p56785277 C03 56,785,277 4.90E-06 ~ 3.86E-06 9.64 ~ 10.74 C/T ● ○
Bn-C03-p56785578 C03 56,785,578 4.57E-06 ~ 3.62E-06 9.69 ~ 10.82 A/G ● ○

RRE Bn-A03-p10703126 A03 10,703,126 7.74E-07 ~ 3.62E-06 10.51 ~ 10.63 G/C ● ○
Bn-A03-p10703167 A03 10,703,167 7.03E-07 ~ 3.35E-06 10.57 ~ 10.70 T/C ● ○
Bn-A10-p9658437 A10 9,658,437 4.09E-06 11.63 A/T ●
Bn-C02-p18429273 C02 18,429,273 2.57E-06 11.14 T/G ●
Bn-C04-p17161440 C04 17,161,440 4.72E-06 10.91 G/A ●
Bn-C06-p30829548 C06 30,829,548 3.77E-06 10.17 C/T ●
Bn-C09-p13036538 C09 13,036,538 2.84E-06 9.97 G/A ●

RTRSA Bn-A01-p8185115 A01 8,185,115 2.16E-06 12 T/C ●
Bn-A02-p18627325 A02 18,627,325 2.38E-06 11.42 A/C ●
Bn-A02-p18627333 A02 18,627,333 2.50E-06 11.64 A/T ●
Bn-A02-p18627380 A02 18,627,380 1.10E-06 12.1 C/T ●
Bn-A09-p6718215 A09 6,718,215 3.98E-06 8.22 C/T ●
Bn-C02-p12430774 C02 12,430,774 3.61E-06 9.73 T/C ●
Bn-C02-p26059415 C02 26,059,415 2.31E-07 ~ 2.16E-06 11.11 ~ 11.70 G/C ● ○

RTRT​ Bn-A03-p5766579 A03 5,766,579 4.56E-06 11.34 T/C ●
Bn-A03-p14798182 A03 14,798,182 4.23E-06 10.92 A/C ●
Bn-A04-p9422509 A04 9,422,509 8.05E-07 ~ 1.72E-07 13.83 ~ 14.07 G/A ● ○
Bn-A08-p3750050 A08 3,750,050 4.54E-06 10.46 T/G ●
Bn-A08-p3750315 A08 3,750,315 3.78E-06 10.67 A/G ●
Bn-C03-p16673270 C03 16,673,270 1.01E-06 12.68 C/A ●

RTRV Bn-A06-p17634684 A06 17,634,684 4.12E-06 9.23% G/T ●
Bn-A06-p17634738 A06 17,634,738 4.92E-06 9.07% A/T ●
Bn-C04-p4409586 C04 4,409,586 3.39E-06 9.15 G/A ●
Bn-C05-p15402975 C05 15,402,975 4.41E-06 ~ 2.46E-06 9.49 ~ 9.98 G/A ● ○
Bn-C05-p15403018 C05 15,403,018 3.94E-06 ~ 2.79E-06 9.40 ~ 10.08 A/C ● ○

RTRL Bn-A01-p8185115 A01 8,185,115 2.97E-07 ~ 1.18E-06 13.63 ~ 14.52 T/C ● ○
Bn-A01-p11875598 A01 11,875,598 4.27E-06 10.21% C/T ●
Bn-A06-p10959923 A06 10,959,923 4.35E-06 9.60% C/T ●
Bn-A09-p8460525 A09 8,460,525 2.43E-06 9.95% C/T ●
Bn-C02-p26059415 C02 26,059,415 7.20E-08 ~ 4.05E-07 12.33 ~ 12.49 G/C ● ○
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(BnaC03g38360D), and an unknown function protein 
(BnaC06g30030D) (Table 4).

Discussion
Detection of novel SNP loci significantly associated with Al 
tolerance in B. napus
Al toxicity stress limits the crop growth and yield by 
affecting root meristem, cell mitosis and root growth 
in crops [8, 34]. Al toxicity has been reported in vari-
ous crops targeting root related traits such as longest 
and primary root growth, total root growth and rela-
tive root elongation for discovering genes involved in Al 

tolerance by GWAS approach [13, 35, 36]. For example, 
Famoso et  al. [16] identified 48 regions associated with 
three root growth parameters in rice seedlings; later on 
this finding helped in identification of 23 and 43 signifi-
cant loci associated with relative root elongation in rice 
[35, 36]. Previously, 13 SNPs significantly associated 
with relative root length and relative dry weight during 
germination period detected in 169 rapeseed cultivars 
(lines) using 60 K Brassica Illumina Infinium SNP array 
[13]. In this research, we investigated eight traits related 
to Al tolerance (RFWAG, RRD, RRFW, RRE, RTRSA, 
RTRT, RTRV and RTRL) for 254 rapeseed accessions 

Fig. 4  Manhattan plots for eight phenotypic traits related to Al tolerance in Brassica napus by MLM model. Note: The blue horizontal line represents 
that the extreme significance threshold -log10(P) value is approximately equal to 5.3
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and detected 43 associated SNP loci on 14 chromosomes 
by GWAS using SLAF-Seq as detailed in our previous 
studies [33, 37], which explained the phenotypic varia-
tion from 8.22 to 14.36% (Fig. 2; Table 3). Among these 
SNP loci, Bn-A04-p9422509 and Bn-A09-p8460525 were 
respectively in the range 1 Mb of Bn-A04-p7776319 and 
Bn-A09-p9030563 which were significantly associated 
with Al tolerance at germination stage of B. napus in pre-
vious study [13]. In addition, there were 41 novel SNP 
loci discovered on 12 chromosomes (Table  3), and four 
SNPs of which (Bn-A01-p8185115, Bn-A01-p11875598, 
Bn-A04-p9422509 and Bn-C02-p26059415) were signifi-
cantly associated with more than one trait, which might 
be caused by linkage or pleiotropy [38]. In previous stud-
ies, the RRE were used to evaluate the Al resistance [35, 
39, 40], in this study, the RTRL were positive correlations 
with RRE, and five SNP loci were significantly associ-
ated with RTRL, three of five SNP loci were significantly 
associated with multiple traits. Therefore, RRE and RTRL 
can be used to evaluate the Al resistance of B. napus. Our 
results provide insights into the significantly association 
of SNPs with Al tolerance traits, which could be a poten-
tial marker for improving the Al tolerance breeding in B. 
napus.

Mining of candidate genes to uncover the Al tolerance 
gene network by integrating GWAS and transcriptome
Two main strategies have been found to deal with Al 
toxicity in acidic soils, including external exclusion and 

internal tolerance [17, 18, 41]. The external exclusion 
prevents plant roots absorbing a large amount of Al 
(Al3+) to reduce toxicity [17, 42]. The internal tolerance 
mechanism detoxify internal Al in plant cells by chelat-
ing with organic acids and converting the absorbed ionic 
Al into combined Al [17, 43]. Among these strategies, 
secretion of Al-induced root organic acid to chelate Al 
for protecting cell wall from Al binding is the well-doc-
umented mechanism [17, 44, 45]. Previously, map-based 
cloning found MATE gene family to resist Al toxicity 
stress in barley (HvAACT​) and sorghum (SbMATE) [46, 
47]. It was followed by MATE homologs to promote cit-
rate excretion into the rhizosphere to protect roots from 
Al toxicity in maize (ZmMATE1) [48], rice (OsFRDL4 
and OsFRDL2) [23, 49] and soybean (GmMATE75, 
GmMATE79 and GmMATE87) [50]. In current study, 
five genes belonging to MATE gene family were detected 
by GWAS, three candidate genes (BnaA03g30320D and 
BnaA03g30330D adjacent to SNP Bn-A03-p14798182, 
BnaA09g14730D adjacent to SNP Bn-A09-p8460525) 
were differentially expressed by RNA-seq (Fig.  7A). The 
expression of the gene BnaA03g30320D was more down-
regulated in ASL than ATL under both 6 h vs 0 h and 24 h 
vs 0 h conditions. Our results are consistent with a previ-
ous detection of MATE family genes at germination stage 
under Al toxicity stress [13], which contribute in Al toler-
ance in B. napus.

The root cell wall becomes the next site of Al interac-
tion after traversing the organic acid barrier in the root 

Fig. 5  The number of up and down –regulation genes between ATL and ASL under Al toxicity
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Fig. 6  Distribution of candidate genes and their corresponding SNP loci associated with Al tolerance. Note: The blue as SNP loci, red as the gene 
differentially expressed both in 6 h vs 0 h and 24 h vs 0 h of ATL and ASL. The numeric values represent the relative distances in the genome, 1 = 1 kb
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rhizosphere [18]. Even with a complex structure of cell 
wall, the negatively charged carboxyl groups in pec-
tin and uncharged hemicellulose binding, resulted in 
the distortion of cell wall extension under Al stress [51, 

52]. In the present study, one ABC transporter gene 
on chromosome C04 (BnaC04g06210D) was identi-
fied, which is involved in abscisic acid (ABA) transport 
and responses [53]. ABC transporter could regulate 

Fig. 7  The possible metabolic pathway for candidate gens under Al stress (A) and the possible model for rapeseed in response to Al stress (B). 
Note: 1-P-G, glucose 1-phosphate; 6-P-Fru, fructose 6-phosphate; GDP-G, GDP-glucose; UDP-G, UDP-glucose; GDP-L Ga, galactose GDP-L; L-1-P Ga, 
galactose L-1-phosphate; 3-PG, 3-phosphoglycerate; PEP, phosphoenolpyruvate; ICP, ion channel protein; STOP1, sensitive to proton rhizotoxicity 1; 
MATE, MATE efflux family protein; ABA, abscisic acid; TCA, tricarboxylic acid cycle; EMP pathway, glycolysis pathway

Table 4  The gene differentially expressed both in 6 h vs 0 h and 24 h vs 0 h of ATL and ASL

Gene ID Chr SNP Relative expression level Function description

6 h vs 0 h in ATL 24 h vs 0 h in ATL 6 h vs 0 h in ASL 24 h vs 0 h in ASL

BnaA03g30320D A03 Bn-A03-p14798182 −2.89 −1.03 −3.49 −2.22 MATE family protein

BnaA10g11500D A10 Bn-A10-p9658437 −2.46 −2.83 −2.29 −2.96 xyloglucan endotrans-
glucosylase/hydrolase

BnaC03g38360D C03 Bn-C03-p23403794 2.22 1.06 1.98 1.14 DnaJ domain protein

BnaC06g30030D C06 Bn-C06-p30829548 −2.38 −1.64 −1.98 −1.41 function unknown
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the plant Al tolerance by transporting UDP-glucose, 
which affects hemicellulose metabolism by regulating 
xyloglucan endotransglucosylase/hydrolases activity 
[24, 54]. ABC transporters also play an important role 
in Al resistance mechanism [53, 55, 56], for instance, 
OsALS1, FeALS1.1 and FeALS1.2, all of the homolo-
gous gene AtALS1 encoding a half-size ABC trans-
porter, were involved in the internal detoxification of 
Al in rice and buckwheat [57, 58]. Furthermore, seven 
candidate genes (BnaA01g15810D and BnaA01g15880D 
adjacent to Bn-A01-p8185115, BnaA03g22360D adja-
cent to Bn-A03-p10703126, BnaA06g18630D adjacent 
to Bn-A06-p10955523, BnaA10g06710D adjacent to 
Bn-A10-p5162750, BnaA10g11500D adjacent to Bn-
A10-p9658437, and BnaC04g05980D adjacent to Bn-
C04-p4409586) involved in cell wall components were 
also detected in this study (Fig. 7A). Two of seven genes 
encoding xyloglucan endotransglucosylase/hydrolase 
(BnaA06g18630D and BnaA10g11500D) were detected 
on chromosome A06 and A10, respectively. Previously, 
Zhu et al. [51] reported that XTH31 encoding a xyloglu-
can endotransglucosylase/hydrolases regulates Al sen-
sitivity by modulating cell wall xyloglucan content and 
Al binding capacity. Both ASL and ATL showed down-
regulation of BnaA10g11500D in 6 h vs 0 h and 24 h vs 
0 h conditions. ATL also showed a down-regulation of 
BnaA10g06710D (probable pectinesterase/pectinesterase 
inhibitor) in 6 h vs 0 h and 24 h vs 0 h conditions, indicat-
ing the presence of gene specific expression pattern.

Plant hormones such as ABA, JA and SA play an 
important role in the stress related defense system [59]. 
ABA signal transduction pathways provide an addi-
tional layer of regulatory control over Al tolerance in 
plants [60–62]. Furthermore, the exogenous application 
of ABA could increase the activity of citrate synthase 
and decrease Al accumulation [60, 61]. In this study, 
three candidate genes (BnaA03g12450D in the vicinity 
of Bn-A03-p5766579, BnaA03g30670D in the vicinity of 
Bn-A03-p14798182, and BnaC04g06210D in the vicin-
ity of Bn-C04-p4409586) related to ABA signal pathway 
were identified on chromosome A03 and C04, respec-
tively (Fig.  7A). One candidate gene, BnaA03g12450D 
encodes ABA receptor PYL8 with up-regulation in 6 h vs 
0 h condition in both ASL and ATL. In addition, various 
other defense related genes were detected including Bna-
A03g12780D in the vicinity of Bn-A03-p5766579, Bna-
A08g21350D in the vicinity of Bn-A08-p15773789 and 
BnaC03g28420D in the vicinity of Bn-C03-p16673270 
which encode for F-box proteins, and BnaA06g27360D 
encodes zinc finger protein (Fig.  7A). A C2H2-type 
zinc finger protein STOP1 as the major factor regulat-
ing MATE1 expression plays a critical role in Al toler-
ance, and the F-box protein RAE1 regulates the stability 

of the Al-resistance transcription factor STOP1 [25, 63, 
64]. Further research on these genes will reveal their roles 
under Al stress in B. napus.

Conclusions
A total of 43 SNP loci significantly associated with 8 phe-
notypic traits related to Al toxicity stress were detected 
on 14 chromosomes of B. napus by GWAS. Further 
exploration of SNP flanking regions discovered 777 can-
didate genes. RNA-seq approach detected 8291 and 
5341 DEGs in ATL and ASL, respectively. Integration 
of GWAS and RNA-seq results found 64 differentially 
expressed candidate genes under 6 h and/or 24 h com-
pared to control conditions. Among candidate DEGs, 
BnaA03g30320D and BnaA10g11500D encode MATE 
family protein and xyloglucan endotransglucosylase/
hydrolase, respectively, which are responsive to Al toxic-
ity stress. In addition, the proposed model showed that 
the oxidation-redox balance was perturbed under Al 
stress, causing abnormal cell wall repair and ABA sig-
nal transduction, ultimately leading to inhibition of root 
elongation. These exploratory analyses of Al toxicity 
linked candidate genes by integrating GWAS and RNA-
seq showed a great power in uncovering genetic varia-
tion in Al toxicity stress in rapeseed. This strategy would 
be useful in understanding the molecular mechanisms 
responding Al toxicity. Furthermore, knowledge on the 
level of Al tolerance in rapeseed along with the associ-
ated SNPs from this research, would be useful for breed-
ing future Al tolerant varieties.

Materials and methods
Plant materials and growth conditions
In this study, 254 oilseed rapeseed inbred lines were 
collected and preserved in the Key Laboratory of Crop 
Physiology, Ecology and Genetic Breeding (Jiangxi Agri-
cultural University), Ministry of Education/Jiangxi Prov-
ince. Of these oilseed rapeseed inbred lines, 220 lines 
were Semi-winter types, 15 lines were Spring types and 
19 lines were Winter types. In total, 237 lines were col-
lected from China, seven lines from Europe, five lines 
from Japan and five lines from Canada. The pertinent 
information for all accessions is shown in Table S7. These 
lines were grown under controlled conditions using 
growth chambers with 14 h light at 25 °C/20 °C (day/
night) temperature.

Phenotyping for Al stress
Seeds of uniform size were selected from 254 accessions 
and separately surface sterilized in 1% hydrogen peroxide 
for 30 min [65]. Then, seeds were washed with ultrapure 
water for three times before spreading on the gauze cloth. 
In order to adapt the seedlings to total nutrient solution 
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environment betterly, the uniform and healthy rapeseed 
seedlings before the lateral roots differentiation from 
the main roots were sequentially transferred into 1/4, 
1/2 and total Hoagland’s nutrient solutions without Al 
treatment gradully. Each nutrient solution was cultured 
for 3 days. After transplanted into 0.5 mmol·L− 1 CaCl2 
solution (pH 4.5) for 12 h, the seedlings were exposed to 
the nutrient solution (pH 4.5) containing 100 μmol·L− 1 
AlCl3 for 28 days for Al stress treatment. The seedlings 
exposed to the total Hoagland’s nutrient solution (pH 4.5) 
with 0 μmol·L− 1 AlCl3 were used as a control. The pH of 
the solution was adjusted every 2 days and was kept 4.5 
with NaOH or HCl. Each treatment had four biological 
replicates.

After 28 days, the fresh weight (g) of the above and 
below ground, and main root length (cm) were meas-
ured. Then, the root system was scanned by RhizoScan 
(Regent, Canada). The total root length (cm), root sur-
face area (cm2), average root diameter (mm), root vol-
ume (cm3) and number of root tips of each material were 
analyzed by root image analysis software WinRHIZO 
STD4800 LA2400. The relative values (ratio) of each 
trait between treatments and controls were statistically 
analyzed using Excel and DPS, including relative fresh 
weight above ground (RFWAG), relative root average 
diameter (RRD), relative root fresh weight (RRFW), rela-
tive root elongation (RRE), relative total root surface area 
(RTRSA), relative total root tip (RTRT), relative total root 
volume (RTRV) and relative total root length (RTRL). 
The relative value was calculated by following formula: 
(the data of each phenotyping under Al treatment) / (the 
data of each phenotyping in control).

GWAS analysis
Based on the 200,510 SNPs developed in our previous 
research [33, 37], GWAS analysis for eight traits was 
carried out using generalized linear models (GLM) and 
mixed linear models (MLM) in Tassel 5.0 software [66]. 
GLM was adjusted using the Q-matrix which was cal-
culated by the Admixture software package [67], MLM 
using Q-matrix and K-matrix was predicted by the 
SPAGeDi software [68]. The Quantile-Quantile plot (Q-Q 
plot) and the Manhattan plot were drawn by the GGplot2 
software [69] and QQman software [70], respectively. 
The threshold value of -log10(P), set as -log10(1/200,510 
SNPs), is approximately equal to 5.3 for significantly cor-
relating SNPs.

To screen the candidate genes related to the Al tol-
erance, significant SNPs which were closely linked to 
the eight traits were mapped to the reference rapeseed 
genome [71]. The 100 kb flanking regions on either side 
of these SNPs were used to identify candidate genes. All 
candidate genes were selected based on GO (http://​geneo​

ntolo​gy.​org/), COG (https://​www.​ncbi.​nlm.​nih.​gov/​resea​
rch/​cog-​proje​ct/), NR (ftp://​ftp.​ncbi.​nih.​gov/​blast/​db/​
FASTA/), SwissProt (http://​www.​expasy.​org/​sprot/) and 
KEGG (https://​www.​genome.​jp/​kegg/) databases.

RNA‑seq under Al stress and data analysis
For RNA-seq, the Al -tolerant (ATL, FDH188) and -sen-
sitive (ASL, FDH152) lines screened from 254 accessions 
in our previous research [72] were as the materials (Fig. 
S5). Two varieties were treated with 150 μmol·L− 1 AlCl3 
for 0 h (control), 6 h and 24 h, respectively. Then the roots 
were quickly frozen in liquid nitrogen. Each treatment 
had three biological replicates.

To detect the DEGs, the low-quality reads with an 
‘N’ percentage over 5% and more than 20% bases with 
a Q-value < 20 were removed by Perl program. The 
retained high quality reads were mapped to the reference 
rapeseed genome by Tophat [73], and then assembled 
by Cufflinks [74]. The genes expression levels were nor-
malized by The Fragments Per Kb per Million fragments 
(FPKM) values. The genes with FPKM values ≤ 0.5 of all 
libraries were removed. False discovery rate (FDR) < 0.05 
and log2(fold change (FC)) ≥ 1.0 or ≤ − 1.0 were used to 
determine the significantly DEGs. Combining the analy-
sis of GWAS and RNA-seq, DEGs for Al tolerance within 
in the 100 kb intervals containing significant SNP mark-
ers will be selected as Al tolerance candidate genes.

The raw read data reported in this study have been 
deposited in the Genome Sequence Archive (GSA) in 
the National Genomics Data Center, under submission 
ID CRA003428 (https://​ngdc.​cncb.​ac.​cn/​gsa/​browse/​
CRA00​3428).

Validation of RNA‑seq by qRT‑PCR
Total RNA of 18 samples under 150 μmol·L-1 AlCl3 for 
0 h, 6 h and 24 h between ATL and ASL were extracted 
by MiniBEST Universal RNA Extraction Kit (TaKaRa) 
followed by construction of cDNA libraries using Pri-
meScript™ RT Master Mix (TaKaRa). Expression of six 
DEGs was determined with TB Green® Premix Ex Taq™ 
II (TaKaRa) by eppendorf realplex2 (Eppendorf, Ger-
many). The primer sequences for qRT-PCR are listed in 
Table S8. The relative expression levels were calculated 
using the 2-△△Ct method based on the normalization 
to the reference genes ACT6. Three technical replicates 
were performed for DEGs and reference genes.

Abbreviations
GWAS: genome-wide association study; ATL: the Al-tolerant line; ASL: the Al-
sensitive line; B. napus: Brassica napus; DEGs: the differentially expressed genes; 
SLAF-seq: specific-locus amplified fragment sequencing; RFWAG​: relative fresh 
weight above ground; RRD: relative root average diameter; RRFW: relative root 
fresh weight; RRE: relative root elongation; RTRSA: relative total root surface 
area; RTRT​: relative total root tip; RTRV: relative total root volume; RTRL: relative 
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