
Predictive models incorporating environmental covariates for genotype × 

environment × management (G×E×M) interactions applied to sorghum 

agronomy trials 

Michael Mumford1, Clayton Forknall1, Daniel Rodriguez2, Joseph Eyre2, Loretta Serafin3, Darren 

Aisthorpe4, Kerry Bell1, Alison Kelly1,5 

1 Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, QLD 4350, Email: 
Michael.Mumford@daf.qld.gov.au
2 Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton Campus, QLD 4343 
3 New South Wales Department of Primary Industries, Tamworth, NSW, 2340 
4 Department of Agriculture and Fisheries, Emerald, QLD, 4720 
5 Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Hermitage Research Facility, Warwick, 
QLD 4370 

Abstract 

Researching the management (M) of genotypes (G) in agronomic experimentation is essential to help 

farmers maximise grain yield, though the approach is complicated by interactions emerging from changing 

environmental (E) factors across sites and seasons.  Available statistical methods for modelling the G×E 

interaction are limited as they do not provide a functional understanding of how environmental factors 

influence the G×E interaction, nor assess how different management practices (M) influence the G×E 

interaction. 

A predictive linear mixed model is proposed that incorporates site/season-specific environmental covariates 

into a standard G×E interaction framework. The model is extended to include continuously varying 

agronomic management practices whilst allowing for non-linear trait responses and complex variance 

structures. The methodology was applied to a multi-environment data set associated with GRDC’s 

optimising sorghum agronomy program. The analysis identified key environmental drivers and 

management strategies that explained the G×E×M interaction, enhancing the biological understanding of 

the analysis results and allowing for the development of more robust recommendations for agronomic 

practices. 
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Introduction 

It is well established that genotype (G) performance is strongly influenced by the environment (E), resulting 

in the common practice of assessing genotype adaptation in trials across different seasons and geographic 

locations (Cooper and Hammer 1996). Data collected from such a set of trials is referred to as a multi-

environment trial (MET) data set and facilitates the modelling of the genotype by environment (G×E) 

interaction. Statistical methods for the estimation and exploration of the G×E interaction are well 

documented (Smith et al. 2001), however these approaches are limited due to their inability to provide a 

functional understanding of which environmental factors are driving the interaction pattern. 

Predictive models that provide a better understanding of the environmental drivers influencing the G×E 

interaction can be built through the inclusion of environmental covariate (ECs) in the modelling framework 

(Heslot et al. 2014). These approaches also facilitate the prediction of genotype performance in a ‘new’, 

untested environments (Malosetti et al. 2016).  

However, the development of statistical methods to model the G×E interaction using ECs has mostly 

occurred within the context of plant improvement (Crossa et al. 2010). When working in an agronomic 

setting, measuring the impact of management practice (M) on genotype performance is also a key objective 

(Rodriguez et al. 2018). This induces additional potential sources of interaction; genotype by management, 

management by environment and genotype by environment by management (G×E×M).  

The objective of this study is to present a statistical method for modelling the G×E×M interaction with an 

extension to enable the incorporation of ECs into this framework. This will enable the identification of the 

key environmental drivers influencing the effectiveness of management practices on genotype performance. 
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Moreover, it facilitates the prediction of genotype performance for untested combinations of management 

practice and environment. 

Methods 

Motivating data 

The motivating MET data set consists of six sorghum agronomy trial sites, with the locations ranging from 

northern New South Wales to central Queensland. All sites contained a consistent set of three treatments in 

factorial combination; time of sowing (TOS), genotype (G) and target plant population (M). All sites had a 

total of three replicate blocks and were planted in the 2018/19 sorghum growing season, with time of sowing 

treatments spanning the winter, spring and summer growing periods (Table 1).  For the purposes of this 

study, ‘environment’ is defined as the combination of site and TOS, resulting in a total of 17 environments.  

Table 1. Summary of the treatment structure and experimental design for each of the sorghum agronomy sites. 

Site TOS 1 TOS 2 TOS 3 # Hybrids 

Target 

plant 

population 

(plants/m2) 

Experimental 

Design 

Breeza (Dryland) 6/09/2018 17/09/2018 23/10/2018 6 3,6,9 & 12 Split-split plot 

Breeza (Irrigated) 3/09/2018 18/09/2018 16/10/2018 8 3,6,9 & 12 Split-split plot 

Ponjola 8/08/2018 12/09/2018 27/09/2018 8 3,6,9 & 12 Split-split plot 

Warra 27/07/2018 19/10/2018 9/11/2018 9 3,6,9 & 12 Split-plot 

Surat 8/08/2018 28/08/2018 24/01/2019 9 3,6,9 & 12 Split-plot 

Emerald 26/07/2018 16/08/2018 8 3,6,9 & 12 Split-split plot 

Environmental covariates 

Weather data for each site was obtained from local weather stations and consisted of information on rainfall, 

radiation, air temperature, soil temperature and evapotranspiration. Measurements related to the phenology 

of each genotype, being days to i) emergence ii) flowering and iii) maturity, were also recorded. By 

combining the phenology measurements and weather data, a total of 19 ECs were derived for each 

environment and 17 of these ECs varied for each genotype in each environment. The 2 remaining ECs did 

not vary between genotypes or sowing times within a site. 

Statistical methods 

The analysed variable was hand harvested total grain yield (t/ha) which was adjusted to 0% moisture for all 

sites. Established plant population was included in the model as a continuous variable, enabling prediction of 

grain yield across an observed range of established plant populations.  All models were implemented in a 

linear mixed model framework via residual maximum likelihood, allowing for complex variances structures 

to be captured in the model including, but not limited to, heterogeneity of residual variance, experimental 

design terms and spatial field trend.  

The ECs were introduced into the model as fixed effect covariates. Interactions between an EC and genotype 

or established plant population were also fitted as fixed effects. Random regression (Laird & Ware 1982) 

was employed to capture the genotype by established plant population interaction. A non-linear yield 

response to i) an EC and ii) established plant population was captured via natural cubic smoothing splines 

(Verbyla et al. 1999). Furthermore, the non-linear interaction effect between an EC and established plant 

population was captured through the use of tensor cubic-smoothing splines (Verbyla et al. 2018). Due to the 

small number of environments with respect to the ‘population’ of environments, the interaction between pair-

wise combinations of ECs was not considered, thus the inclusion of additional ECs into the model is 

additive.  

A forward selection procedure for the identification of ECs was completed such that at each iteration, the 

model was run 19 times (1 for each EC considered from the motivating data set). Once an important EC was 

identified, a backwards selection procedure testing for non-significant EC terms was performed to achieve a 

parsimonious model. The forward-backward selection procedure was then repeated until ECs were no longer 

significant. 

Once the final model for the set of ECs was determined, a leave-one-out cross validation scheme was 

performed where the final model was re-run without one of the six sites and then predictions were obtained 
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for the ‘left out’ site. The process was repeated for all six sites, to obtain a set of predictions in a ‘quasi-

untested’ environment to assess for overfitting in the final model. 

Results 

From the analysis of the sorghum agronomy MET data set, three significant ECs were identified; i) post-

flowering rainfall (mm) ii) pre-flowering rainfall (mm) and iii) post-flowering minimum temperature (°C). 

For post-flowering rainfall there was a significant linear interaction effect with genotype but no significant 

interaction with established plant population (Figure 1).  

Figure 1) Yield predictions for the a) genotype × post-flowering rainfall interaction (significant) interaction and 

b) established plant population × post-flowering rainfall interaction (non-significant).

Additionally, pre-flowering rainfall had a significant linear interaction with established plant population, but 

no significant interaction with genotype. Finally, there was a significant non-linear interaction effect between 

post-flowering minimum temperature and established plant population.  There were no significant three-way 

interaction effects for any of the three ECs. 

Yield predictions from the final model that incorporates the three ECs as a surrogate for the environment 

term are displayed in Figure 2 for a subset of two genotypes and four environments. The predicted responses 

demonstrate that the three ECs do a reasonable job of explaining the differences between the high and low 

yielding environments (Figure 2a). Moreover, the model retains most of its predictive performance after 

leave-one-out cross validation (Figure 2b) providing evidence that the model is not overfitting and 

demonstrating how the proposed method can be used to predict genotype performance in an untested 

environment, under differential management practices. 

Figure 2) Predictions (coloured line) of the yield response to plant population for a subset of two genotypes and 

four environments in both a) a tested and b) an untested environment via 6-fold leave-one- -out cross validation. 

The shaded regions denote the 95% prediction intervals. Raw yield (black points) were adjusted for 

experimental design and field trend effects in the baseline model.  

_____________________________________________________________________________________________________ 
© Proceedings of the 20th Agronomy Australia Conference, 2022 Toowoomba Qld www.agronomyaustraliaproceedings.org 



Conclusion 

A new methodology has been presented that incorporates ECs into the analysis of G×E×M data, accounting 

for complex variance structures and non-linear trait responses to ECs. Results from the model indicated that 

grain yield performance of sorghum genotypes would be optimised in environments that have i) high pre-

flowering rainfall, ii) high post-flowering rainfall and which saw genotypes flowering under iii) an optimal 

post-flowering temperature. Under this set of optimal G×E conditions, a high established plant population 

further optimised grain yield. This study is the first step towards developing one-stage statistical models that 

can identify key environmental drivers of G×E×M interactions and, by providing the ability to predict the 

performance of genotypes in an untested environment under differential management practices, can be 

utilised by crop modellers to refine model predictions. 
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