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Abstract.

The assessment of grain defect traits is assuming greater importance in wheat germplasm selection. Late maturity

a-amylase is one such characteristic that renders wheat unsuitable for high value end products, even though the grain may
appear sound. Phenotyping defect traits typically involves a multi-phase process, where genetic material for assay has been
affected by non-genetic sources of variation in one or more previous linked stages of experimentation or preparation. The
adoption of appropriate statistical design and analysis methods in these situations is, however, not widespread. Substantial
sources of non-genetic variation were identified in the analysis of a designed experiment to measure late maturity oi-amylase
expression, indicating the potential for improved selection decisions. A simulation study based on these results suggests that
significant gains over current methods in the accuracy of phenotyping this grain defect can be achieved with sound
multi-phase statistical design and analysis techniques. Although restricted in scope, the simulation also indicates that a
considerable increase in estimated heritability could be expected from the proposed methodology.

Introduction

The objective of plant breeding is to provide new varieties with
improved performance for several traits of economic importance.
A key trait in this regard for cereal crops is grain yield. Varietal
performance for grain yield is assessed via a series of field trials
(known as multi-environment trials, or METs), the design and
analysis of which have received substantial attention in the
literature. Increasingly, grain quality and defect traits are
having a more significant role in the selection process. The
trait we focus on here is late maturity a-amylase (LMA), a
genetic defect of wheat, which can render grain unsuitable for
many higher value end products. The frequency of lines in wheat
breeding programs which express LMA appears reasonably high,
and hence LMA has become an important trait that is now
routinely assessed in all wheat breeding programs in Australia.

In contrast to grain yield, statistical design and analysis
methods specific to the measurement of LMA expression have
been far less extensively researched. Like many grain quality
traits in wheat, phenotyping for LMA involves a complex
process. The most common procedure is based on the protocol
developed by Mrva and Mares (2001), hereafter referred to as the
MM protocol. Briefly, their approach involves growing plants
either in a glasshouse, field trial, or microclimate room. Spikes are
tagged at anthesis and subsequently, primary tillers are either
cut and placed in a refrigerated waterbath in a controlled-
environment room, or more recently whole plants are simply
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moved in situ, maintaining the temperature at 10-12°C with 12 h
of light and 12 h of darkness. After 8-10 days, plants are then
transferred to a warm glasshouse or returned to the microclimate
room for ripening. At harvest ripeness, grains are sampled at
random from the main shoot tiller of each plant. The MM protocol
assesses LMA by placing a composite sample of 5 half grains
(the half which is distal to the embryo) in tubes on a 96-place tray
rack, processing, and an aliquot from each tube is then placed
on the corresponding position of an antibody coated plate for
ELISA. Lastly, absorbance readings (optical density, OD) are
then taken from the plate. A high value of OD indicates the
presence of high isoelectric point o-amylase and therefore
high LMA.

The MM protocol for phenotyping LMA is an example of
a multi-phase experiment. The definition of a multi-phase
experiment is an experiment which involves several time
periods, and has observational units which are completely
different to those from the preceding phases. The simplest
multi-phase experiment involves 2 phases, and these were first
introduced by McIntyre (1955). A very common 2-phase
experiment in agriculture involves a field phase and a
laboratory phase. In the field phase, a field trial is carried out
on field (experimental) units and then the grain from that
experiment is taken in to the laboratory where the experiment
involves laboratory units. Phenotyping for LMA using the MM
protocol has at least 4 phases, most of which are unrandomised

10.1071/CP09124 1836-0947/09/121202



Improving accuracy of selection using multi-phase design

and linked in the sense that no additional experimental design is
used as we move from phase i to phase i+ 1, i=1,2,3.

Smith et al. (2006) present a brief review of the design and
analysis of multi-phase experiments in plant breeding. They
introduce the notion of a p/g-rep design, which is a design for
2-phase experiments aimed at reducing the number of
observational units to a manageable and economic level, but
still allowing estimation of the major sources of non-genetic
variation arising from each phase through the fitting of a
(complex) linear mixed model. They illustrate the approach
using milling yield in wheat and present evidence to suggest
that substantial gains in response to selection for milling yield
may be achieved by routine deployment of these designs in wheat
breeding programs. Despite this work, there has been little
adoption of this technology in Australia or overseas. There
was sporadic adoption in some wheat and barley breeding
programs but the rate of adoption has decreased with the
privatisation of wheat and barley breeding in Australia.

Determination of an efficient design for a multi-phase
experiment requires knowledge of the relative magnitude of
the non-genetic sources of variation. For example, non-genetic
variation for milling yield in wheat appears to be mostly due to
laboratory variation (Smith ez al. 2006), and so an efficient multi-
phase design would require sufficient replication of field plots in
the laboratory. On the other hand, Cullis et al. (2003) show that for
most barley malting traits, the non-genetic variation is dominated
by field variation, implying that sufficient replication of varieties
from the field be maintained in the laboratory phase of the
experiment.

It is well accepted that selection for LMA expression is an
imperfect process, meaning that the phenotype can often be a poor
predictor (in a statistical sense) of the genotype. Non-genetic
influences on LMA expression include temperature during grain
development (Mrva and Mares 2001) and hence, at a macro-
level, LMA expression would exhibit genotype x environment
interaction. Furthermore, on a micro-level, variation in growth
and development in glasshouses may also significantly affect
LMA expression. Mrva and Mares (2001) therefore recommend
using healthy non-diseased plants grown in optimal conditions.

There appears to have been no study undertaken to assess the
relative magnitude of the non-genetic sources of variation in
designed experiments using the MM protocol. Since phenotyping
for LMA involves at least 4 linked processes (strictly not phases),
non-genetic variation may arise from variation between plots
(or pots) within a line, between tillers within a plot (or pot) within
a line, between seeds within a tiller, and between 0D values
measured (hypothetically) on the same seed. In this paper we
propose, as a simple extension to the MM protocol, an approach
to measuring LMA expression based on multi-phase design
principles and the analysis methods in Smith ef al. (2006). We
illustrate the proposed method with data from an LMA
experiment and, using these results, undertake a simulation
study to examine the relative accuracy of the proposed method
to a method similar to the one in use.

Materials and methods

This manuscript presents a detailed description of the design and
analysis methods but limited detail on the (biological)
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experimental materials and methods. A complete account of
the latter can be found in Tan et al. (2010).

Glasshouse design

An experiment to measure LMA expression was conducted in
2007-08 at Cobbity in New South Wales. In total, 188 doubled
haploid (DH) lines derived from a cross between an advanced
breeding line WWI1842 and Whistler were used in this
experiment. In total, 440 pots were arranged in 2 microclimate
rooms with 220 in each room. The rooms were further subdivided
into 2 blocks and 2 sides within each block. This resulted in 4
subblocks of 55 pots, each arranged in an 11 X 5 rectangular
array.

Parents and DH lines were then randomised to the pots in a
restricted manner. First, replication varied between lines and
parents (hereafter simply lines). There was a total of m; =130
lines with 2 replicates, and m, = 60 lines with 3 replicates. Lines
were assigned to pots so that each room contained either one (160)
or two (30) pots of each line, randomised so that each side within
each block contained only one pot of each of 55 lines. Statistically,
therefore, the factor Room is resolvable and the model term
Room : Block : Side is binary with respect to the factor Lines,
where each term in this font represents either factors or model
terms, where the latter are explained in more detail below.

Four plants were grown in each pot and at anthesis spikes from
healthy plants were tagged and 2628 days after anthesis the
plants from each pot within an induction cohort were transferred
to a cool-temperature room maintained at 10-12°C with 12 h of
light and 12 h of darkness. After 8—10 days the plants were then
returned to their original position in the microclimate rooms until
the plants reached harvest ripeness. The term induction cohort is
used to define the group of pots that were moved into the cool-
temperature room on the same day. This is a natural blocking
factor in the sense that it is likely to explain variation in the
expression of LMA, but there is no design aspect to the allocation
of pots to each cohort. The experimental units for the cool-
temperature room are the same as the experimental units from
phase 1, although there is a re-assignment and re-positioning of
the units. The actual position within the cool-temperature room
was not recorded and so we are not able to account for variation
within the cool-temperature room.

Induction dates varied from 11/01/2008 to 28/01/2008 and
tillers from a total 0f425 pots were deemed sufficiently healthy to
produce a reliable result. For the final phase of the experiment we
aimed to assay ~20 grains from each pot, which meant that
~5 grains from each primary tiller from each plant would be
used. In total there were only 1375 tillers (out of a potential 1700)
which were used. The distribution of healthy grains (within those
tillers which had grains) varied from 1 to 62 grains, with a median
of 13. This presented challenges for the allocation of grains to the
ELISA plates according to some statistical design, described
below.

Plate design

Each ELISA plate had 96 wells arranged in a 12 column X 8 row
array to which the seeds from the 425 healthy pots were ultimately
assigned. Using as many healthy seeds as possible, to a maximum
of 20, yields over 7000 experimental units (wells) requiring a
minimum of 73 plates. The number of seeds per pot actually used
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in the final design varied from 1 to 22, with 25% of pots having
less than 19 seeds. With the additional requirement of at least one
blank (actually used for positive controls (Spica) in the final
assay) per plate, the seeds for assay were ultimately distributed
over 75 plates.

The potential for trend (including autocorrelation) within
plates, the total number of experimental units, and the degree
of imbalance in treatment replication all but eliminated the use of
any standard design generator. Butler ef al. (2008) demonstrate
the role that nearest neighbour properties play in first-order
autoregressive processes and derive a computationally efficient
approximate optimality criterion that can be used to give an
optimal allocation of treatments to experimental units, or in
this case, pots to wells. The criterion actually used was an
extension of Chan and Eccleston (2003) using row and
column neighbours only. This criterion can be considered a
first-order approximation to that in Butler et al. (2008), with
the additional properties that it is faster to compute and has a
known theoretical lower bound.

Considerasingle 8 x 12 plate to which seeds from v pots are to
be allocated in some optimal way, and define v x v neighbour
concurrence matrices /V,.and V.. in the row and column directions,
respectively. The (i,j)th elements of these matrices (n,q,, "c,./.)
contain the number of times pots i and j occur as row or
column neighbours, respectively. Nearest neighbour balance
requires that the diagonal elements of N, and N, be zero
(i.e. no self neighbours) and the off-diagonal elements be
equal or differ by at most 1. Based on this we can define an
optimality criterion:

NP'= min {_/v: Z(”rzj+ nf]) | trace(N, + N,) =0

i<j

that minimises the sums of squares of the off-diagonal elements of
N, and N, subject to there being no self adjacencies.

Minimising the criterion JV is an approximation to minimising
the average pair-wise variance between treatments (Butler et al.
2008), and is used in an iterative framework to arrive at an optimal
design. Specifically, an initial design is repeatedly permuted
by pair-wise treatment swaps and N calculated at each step;
the final design is accepted when N/ reaches the lower bound.
The procedure is easily extended to multiple plates, possibly
arranged in resolvable sets.

The initial layout for the LMA experiment was established
as follows: 15 super-blocks (replicates) were defined, each of
which contained 5 plates, which could also be considered as 5
(incomplete) blocks. Notionally, each replicate appears as a 40
row X 12 column array, where plates 1, 2,. . ., 5 occupy rows 1-8,
9-16, ..., 3340, respectively. The replicates are resolvable, as
are the plates (within replicates) with respect to those pots with
multiple seeds within replicates. Pots were allocated in repeats of
5 seeds (one for each plate, subject to available seed) within
replicates in a cyclic fashion across replicates in a p-rep design
(Cullis et al. 2006). For example, pots 1-12 appear in replicate 1
no less than 5 times, at least once in each plate, while the
remaining pots appear just once, and are randomly distributed
across the 5 plates; 5 blanks were also included, one per plate.
Those pots replicated in replicate 1 appear just once in most of the
other 14 replicates to achieve the target of ~20 repeats. In replicate
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2, pots 13-26 (plus blanks) are replicated 5 times while all other
pots are replicated once, and so on. Some additional seeds of
previously duplicated pots were included in some replicates to
complete the layout, accounting for those pots with limited
healthy seed.

The final randomised design was determined iteratively,
minimising the overall criterion:

15
No= Z-/Vt
i=1

where V; is the optimality criterion for the ith super-block. The
initial design described above was permuted through a sequence
of pair-wise treatment (pots) swaps, subject to the restrictions that
treatments were not exchanged between replicates or between
plates within replicates, establishing these as pseudo strata in the
design. At each iteration, ¥, was calculated and compared with a
theoretical lower bound. In addition, only designs binary with
respect to replicate rows and columns were accepted, giving some
protection against inefficiencies in the presence of plate row and
plate column effects within replicates.

Analysis

Fitting of the linear mixed model involves residual maximum
likelihood (REML) estimation of the variance parameters. Given
these estimates, we obtain empirical best linear unbiased
estimates (E-BLUEs) of the fixed effects, and empirical best
linear unbiased predictions (E-BLUPs) of the random effects. All
analyses presented here have been conducted using the mixed
model software ASReml-R (Butler ez al. 2009).

Linear mixed models can be succinctly represented in text (and
in software such as ASReml-R) by extending the symbolic model
formulae of Wilkinson and Rogers (1973). The full linear mixed
model has at least 2 formula objects, one to specify the fixed
effects, the other to specify the random effects. These formulae
contain model terms separated by a ‘+’ operator.

The analysis of the data is dictated largely by the
randomisation processes which were used in each phase of the
experiment. The linear mixed model for the LMA experiment is
therefore given by

fixed = od ~1,

random =~ ID + GoP + Plate + Room + Room : Block +
Room : Block : Side + Induction + Pot + Pot : Tiller 4
Plate : PlateRow + Plate : PlateCol

rcov =~units

.

where the operator forms interactions between terms, and
factor names (e.g. GoP denoting Group of Plates) are capitalised
to distinguish them from variates (e.g. od). The fixed formulahas 3
components: the dependent variable od, the ‘~’ symbol, meaning
is modelled by, and the terms in the fixed part of the model (where
1 represents the overall mean). The random formula specifies
those terms which are to be fitted as random effects, and the rcov
formula specifies the variance model for the residuals. In this
case we assume that the residuals are independent and follow
a Gaussian distribution with mean zero and variance 6°. The
factors have obvious meaning, in the sense that Room,
Block, Side, Pot, and Tiller define the blocking structure



Improving accuracy of selection using multi-phase design

and plants within pot with (2, 2, 2, 425, 4) levels respectively for
the glasshouse phase of the experiment. The blocking structure
for the ELISA phase of the experiment is described by the factors
GoP, Plate, PlateRow,andPlateCol,eachwith(15,75,8,12)
levels, respectively. Note that defining Plate with 75 levels
obviates the need to fit the model term GoP : Plate. Lastly,
Induction is included as a blocking factor with 14 levels for
the cool-room phase of the experiment.

We assume that the random effects for each of the model terms
in the random formula are independent and follow a Gaussian
distribution with mean zero and variance denoted by yjcz where
j=1,..., 11 indexes the model terms in the order presented in
the random formula. If the aim of the analysis was to estimate
variation between DH lines alone, as a precursor to QTL
identification, say, then we would define an additional factor
with 3 levels, taking value 1 and 2 for the parents and 3 for the DH
lines, and include this factor in the linear mixed model as a fixed
effect. The focus of this analysis, however, is the estimation of the
non-genetic sources of variation with a view to exploring the
efficiency of LMA screening based on the MM protocol, and for
simplicity we chose to omit this term.

Relative efficiency of MM protocol
and multi-phase designs

The performance of the multi-phase design approach used here
relative to a protocol similar to the MM protocol was assessed
using a simulation study for a case similar to that described above.
An experiment with 110 genotypes was considered, where the
glasshouse experiment comprised 220 pots, each pot containing
2 plants. In each pot it was assumed that grain was harvested from
one primary tiller, and that for each genotype, there were 10,
10, 20, and 40 grains for each of the 4 pot x tiller combinations
(i.e. 2 pots per genotype x 2 plants per pot). For simplicity, the
glasshouse design was considered a randomised block design
with 2 complete blocks, and induction cool-room effects were
assumed negligible (consistent with the results discussed below).

For the ELISA plate phase of the simulated experiment, the
following two approaches to design and analysis were
considered.

Multi-phase design: Two grains were sampled for each
genotype, pot, and plant combination, giving a total of 8
grains per genotype. The design protocol described above
was followed by defining 440 phase 2 samples (110 genotypes
by 2 pots by 2 tillers) and assigning these to 10 ELISA
plates according to a resolvable nested row—column design,
except that only columns 1-11 were used on each plate for
compatibility with the MM design described below. This
design required a total of 10 plates, with plates 1-5 being
duplicate 1 and plates 610 duplicate 2. Rows 1—4 and rows
5-8 in column 12 were assigned to blank or positive controls,
respectively.

MM-like protocol: The actual MM protocol uses 8 wells for
each genotype, with each well being a composite sample of
5 grains. It was not possible to directly compare the multi-
phase approach with the MM protocol as the data at hand
were based on single seed samples; it is most likely that the
sampling distribution of composite samples would differ from
that described later for single seeds. The design and analysis
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approaches used for the MM protocol on simulated data were
therefore based on the characteristics estimated from the
analysis of the LMA (single seed) experiment.

In total, 8 grains per genotype were sampled, but either
completely random sampling or stratified sampling was used,
the latter ensuring that each plant within each pot was sampled
twice. The 8 wells in columns 1-11 on plate 1 were assigned the 8
grains for genotypes 1-11, 8 wells in columns 1-11 on plate 2 to
the 8 grains for genotypes 1222, and so on. Rows 14 and rows
5-8 in column 12 were assigned to blank or positive controls,
respectively.

In total, 400 datasets were simulated according to the
following scheme. For those plate wells assigned to genotypes,
genetic and non-genetic effects were included for terms for which
the percentage of variation was greater than 1% from the LMA
experiment analysis.

The symbolic representation of the model for the simulation
experiment is given by:

fixed =od ~ 1,
random =~ ID + GoP 4 Plate + Pot 4+ Pot : Tiller +
Plate : PlateRow + Plate : PlateCol

rcov =~units

noting that this model is consistent with the randomisation
processes used in the design of the simulation experiment.

Data for the wells assigned to blanks were simulated from the
regression of the E-BLUEs for the blanks on the sum of the
E-BLUPs for the GoP and Plate effects for each of the plates
which contained a blank in the LMA experiment. Additional
(residual) variation for these blanks was then added by sampling
from an independent realisation from a Gaussian distribution with
mean zero and variance 0.014. The value of 0.014 was chosen as
this was the estimate of residual (i.e. within plate) variation for a
series of ELISA experiments which contained 4 wells of blanks
for each of 12 plates (D. Mares, pers. comm.).

Three methods of analysis were applied to each of the
simulated datasets: the multi-phase approach (MP), modified
MM without stratified sampling (modMM), and modified MM
with stratified sampling (modMMS).

Results
Glasshouse phase

Figure 1 presents the histogram of the range (in days) in induction
date between pots within lines. This shows that, perhaps
unexpectedly, pots within many lines were induced on
different days. Specifically, pots from 31 lines were induced
on the same day, 132 on two different days, and 27 on three
different days, with the largest range being 11 days. Pots in
microclimate room 2 were in general slower to mature.

Analysis of LMA experiment

Due to unavailability of seeds and unexpected mishaps during the
final phase of the experiment, 19 blanks were included on 17
ELISA plates. There was at least one well on each plate assigned
to a positive control, with two plates having an additional positive
control.



1206 Crop & Pasture Science

20 B

Percent of total

o 1 [ ]

0 2 4 6 8 10 12
Range of induction (days)

Fig. 1. Histogram of range in induction (days) for each of the DH/lines.

The range of od values for the blanks was (0.050,0.077), while
for the positive control the range was (1.012, 2.168). This seems
typical of the range encountered in similar LMA phenotyping
experiments.

Initially the model was fitted to the untransformed od data.
Since the data are extensive, we followed McCullagh and Nelder
(1994) and undertook detailed examination of systematic
departures from the assumptions underlying the model.
Figure 2 shows the Q-Q plot (qgmath, R Development Core
Team 2008) of the residuals from the initial model. This
diagnostic suggests that the assumption of a Gaussian
distribution for the residuals is totally untenable. The sample
histogram (Fig. 3) of the residuals of 6 lines further illustrates this
problem. The 6 lines were selected from the final analysis as the
mostand least LMA expressive lines. The distribution of residuals
for the parental and non-expressing DH lines (WW10897,
WW12677, and WW12649) is clumped close to zero, while
the distribution of residuals for the expressing DH lines
(WW10911, WW12707, and WW10910) is strongly skewed.

A range of transformations from the power family was
considered. The scaled inverse cubed transformation given by
klod® appeared to provide a reasonable scale for the analysis.
Figures 4 and 5 present the Q-Q plot and sample histograms on the
transformed scale for the above set of DH lines and parents. The
plots indicate that the assumption of normality is reasonable for
the transformed optical density, denoted by tod.

Table 1 presents a summary of the REML estimates of the
variance components ?162 and residual variance 6 for tod. The
most striking feature is the substantial amount of explainable non-
genetic variation, mostly arising from variation between plates
(i.e. the sum of GoP and Plate =38.9%), although other model
terms associated with the ELISA phase of the experiment also
contribute to reducing residual variation. Importantly, the other
largest source of variation is associated with tillers between pots.

D. G. Butler et al.

2.0 0% L

1.5 ggf s
§

1.04 B

Residuals oD

0.0 B

-0.5- S s
[}
o

-4 -2 0 2 4
Normal quantile

Fig.2. Q-Qplotfortheresiduals from the linear mixed model analysis of od.
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Fig. 3. Sample histograms for six selected DH/lines and parents from the

analysis of od.

This implies that seeds from the primary tiller from the same plant
tend to be more similar (in terms of LMA expression) than those
from primary tillers from different plants. This issue is discussed
further below.

Figure 6 presents a plot of the E-BLUPs of the total effects for
plate (as the sum of the E-BLUP for GoP and Plate) against plate
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Fig. 5. Sample histograms for six selected DH/lines and parents from the
analysis of tod.

number. There is a consistent loss in activity for the plates until
plate 28, beyond which the oscillations persist but there is an arrest
in this decline. This feature is related to a temperature-dependent
decline in activity: the binding steps in the ELISA analysis for the
first 28 plates were conducted on the laboratory bench from late
summer through to early winter, while this process was conducted
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Table1l. Summary of the REML estimates of the variance components
for tod from the randomisation-based linear mixed model
Term Component Percent
D 0.0354 10.6
GoP 0.0539 16.2
Plate 0.0691 20.7
Room 0.000" 0.0
Room : Block 0.000® 0.0
Room : Block : Side 0.0008 0.2
Induction 0.0017 0.5
Pot 0.0060 1.8
Pot:Tiller 0.0192 5.8
Plate : PlateRow 0.0229 6.9
Plate :PlateCol 0.0103 3.1
Residual 0.1140 342

BValues signify that the REML estimate of the variance component has been
constrained on the boundary (i.e. zero).

E-BLUP

—-0.5 B

-1.0- s

1
0 20 40 60
Slide number

Fig. 6. Plot of E-BLUPs for plates (slides) from the analysis of tod.

in a constant-temperature incubator at 25°C for the remaining
plates (slides).

Figure 7 presents scatter plots of the E-BLUPs of the total
effects of the plate against plate mean values of tod for blank and
positive controls, respectively. There is reasonable agreement
within the subset of 19 plates with a blank, but little agreement for
the positive control for all 75 plates.

Relative efficiency of MM/protocol
and multi-phase designs

The mean squared correlation (over the 400 simulations)
between the true BLUPs and the E-BLUPs for the MP
method, and the genotypic mean of the adjusted data for the
modMM and modMMS methods, were 0.596, 0.221, and 0.229,
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Fig. 7. Plot of E-BLUPs for blank and positive controls (Spica) against the
plate mean values of tod.

respectively. The squared correlation is analogous to the
generalised heritability measure of Oakey et al. (2007).

Discussion

The use of a valid statistical design for LMA phenotyping has
clearly demonstrated that there exist substantial non-genetic
sources of variation which need to be accounted for if we are
to improve the accuracy of phenotyping. The small simulation
study has shown that the use of a multi-phase approach to design
and analysis is superior to an approach which does not use a valid
statistical design and efficient statistical analysis. It could be
then inferred that the common practice for LMA testing using
the MM protocol may lead to inferior estimates of variety
performance and thence poor selection decisions. For single
seed assays the accuracy of selection is vastly improved with
the use of a multi-phase design, with true replication at all stages
and a sound mixed model analysis in which appropriate models
are applied at both the genetic and error levels. We have not been
able to directly compare the MM protocol as this involves the use
of composite samples, although standard statistical arguments
would suggest that similar results would apply. Our simulation
study is limited in that we have not investigated the relative
accuracy for a range of design and variance parameters. Given
the substantial improvement, and the ni/ costs involved with
implementation of our approach, we see little need for such a
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comprehensive study. It would be valuable, however, to
undertake a similar study to compare a multi-phase approach
with the MM protocol using composited samples.
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