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Abstract
During the reproductive stage, chilling temperatures and frost reduce the yield of chickpea and limit its adaptation. The 
adverse effects of chilling temperature and frost in terms of the threshold temperatures, impact of cold duration, and genotype-
by-environment-by-management interactions are not well quantified. Crop growth models that predict flowering time and 
yield under diverse climates can identify combinations of cultivars and sowing time to reduce frost risk in target environ-
ments. The Agricultural Production Systems Simulator (APSIM-chickpea) model uses daily temperatures to model basic 
crop growth but does not include penalties for either frost damage or cold temperatures during flowering and podding stages. 
Regression analysis overcame this limitation of the model for chickpea crops grown at 95 locations in Australia using 70 years 
of historic data incorporating three cultivars and three sowing times (early, mid, and late). We modified model parameters to 
include the effect of soil water on thermal time calculations, which significantly improved the prediction of flowering time. 
Simulated data, and data from field experiments grown in Australia (2013 to 2019), showed robust predictions for flowering 
time (n = 29; R2 = 0.97), and grain yield (n = 22; R2 = 0.63–0.70). In addition, we identified threshold cold temperatures that 
significantly affected predicted yield, and combinations of locations, variety, and sowing time where the overlap between 
peak cold temperatures and peak flowering was minimal. Our results showed that frost and/or cold temperature–induced 
yield losses are a major limitation in some unexpected Australian locations, e.g., inland, subtropical latitudes in Queensland. 
Intermediate sowing maximise yield, as it avoids cold temperature, late heat, and drought stresses potentially limiting yield 
in early and late sowing respectively.
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Introduction

Globally, chickpea (Cicer arietinum L.) production ranks 
second among the pulse crops after common beans (Phaseo-
lus vulgaris L.). It is cultivated commercially as a cool-sea-
son crop in climates ranging from the Mediterranean to sub-
tropical and tropical. Global chickpea production was about 
17.2 Mt in 2018 from 17.8 Mha (FAOSTAT 2020). In Aus-
tralia, chickpea is suited to medium rainfall (300–500 mm) 
areas, with slow growth during the cold winter months, 
accelerating in spring with warmer temperatures. Australia 
is the largest exporter of desi chickpeas in the world (www.​
pulse​aus.​com.​au). The area under chickpeas increased to 
over 1 Mha in 2018 due to higher grain prices and its use as 
a profitable option to break disease cycles in cereal rotations. 
However, the average yield of chickpea in Australia is 1.1 
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t/ha due to diseases and abiotic stresses such as moisture, 
frost, and heat stress (GRDC 2011; ABARES 2020).

Chickpea is an indeterminate dicotyledonous crop, where 
flowering is spread over a relatively long period, with leaf 
and branch production continuing while flowering and pod-
filling proceed (Unkovich et al. 2010; Peake et al. 2020). 
Chickpea plants exposed to unfavourable conditions dur-
ing the reproductive phase can abort flowers, young pods, 
or developing seeds and resume flowering when conditions 
improve (Clarke and Siddique 2004). Unfavourable condi-
tions include frosts (< 0 °C screen temperature) and/or less-
well-defined periods of cold temperatures (referred to as 
chilling) (Croser et al. 2003; Yadav et al. 2010). Chickpea 
is unlike other pulses and exhibits particular sensitivity to 
cold temperature, and improving this trait is a major target 
for breeding programs around the world (Abbo et al. 2003; 
Croser et al. 2003; Yadav et al. 2010; Berger et al. 2012). 
Chickpeas can set pods when the minimum temperature 
is < 5 °C as long as the maximum day temperature is > 20 °C 
(Srinivasan et al. 1998; Singh et al. 2021). Some authors 
refer to mean day temperatures < 15 °C, not minimum tem-
perature, as sufficient to cause cold damage (Siddique and 
Sedgley 1986; Berger et al. 2004), whereas other controlled 
environment studies refer to minimum temperatures below 
15 °C as sufficient to cause cold damage (Croser et al. 2003; 
Clarke and Siddique 2004). Cold temperature sensitivity is 
less likely to manifest in controlled environment studies, but 
becomes important in field trials, particularly in the north-
ern grain-growing regions of Australia comprising parts of 
northern New South Wales and Queensland (lower latitudes) 
due to warm winter days. If chickpeas experience daytime 
temperatures below 20 °C and/or night temperatures below 
10 °C, then floral abortion may still occur, along with poor 
pod-filling. Therefore, a combination of these environmental 
conditions will lead to reduced grain yield if the plant can-
not compensate for fewer seeds by increasing seed weight 
(Srinivasan et al. 1998; Clarke and Siddique 2004; Nayyar 
et al. 2005; Kumar et al. 2010). These temperature thresh-
olds are problematic not just in Australia but also in other 
chickpea growing regions, including northern India (Clarke 
and Siddique 2004; Nayyar et al. 2005).

The reproductive phase is sensitive to abiotic stresses, 
including cold and is crucial in determining the adaptation 
of various crops, including pulses, to diverse environmental 
conditions (Lake et al. 2021). In addition to extreme tem-
peratures, the soil water status of the crop is known to affect 
flowering time (Richards et al. 2020) significantly, and this 
parameter is now included in the latest version of APSIM 
for chickpeas (Classic version 7.10). In the past, multi-
location experiments were used to fine-tune crop manage-
ment practices such as, time of sowing to minimise risk of 
abiotic stresses and screening for crop adaptation (Turner 
2004; Crespo-Herrera et  al. 2018; Gerard et  al. 2020). 

Multi-location experiments can be time-consuming and 
expensive and can lead to errors such as non-representative 
sampling of locations and years and are usually influenced 
by genotype-by-environment interactions (Chapman et al. 
2000a, b; Chapman et al. 2002). The field testing of geno-
type (G), environment (E), and management (M) interactions 
(G × E × M) experimentally is usually severely limited by 
the number of factor combinations that can realistically be 
evaluated.

In contrast, cropping system productivity under variable 
G × E × M scenarios can be evaluated using in silico crop 
modelling tools, such as APSIM (Hall and Richards 2013; 
Grassini et al. 2015). Also, crop modelling may help identify 
gaps in existing knowledge and highlight topics worthy of 
further scientific investigation. Therefore, the main objec-
tives of this study were to (i) validate the predictive ability of 
the current APSIM-chickpea model for flowering time and 
grain yield using field-experiment data in a broader range of 
target production environments than previously attempted; 
(ii) characterise and understand chickpea flowering time and 
its interaction with frost using a yield-gap analysis approach; 
and (iii) estimate the impacts of various cold temperatures 
on the reproductive stage of chickpea and on potential grain 
yield.

Materials and methods

Field experiments

Chickpea crops were established in 29 field experiments 
in 10 locations (Table 1) across five States: South Aus-
tralia (SA), Victoria (VIC), New South Wales (NSW), and 
Queensland (QLD) using a commercial seeder, following 
the cultural practices as per National Variety Trials protocol 
(https://​www.​nvton​line.​com.​au/​nvt-​proto​cols/) for nutrition 
and control of diseases, pests and weeds. Since the experi-
ments are diverse, there was some variation in row spacing, 
sowing depth, targeted plant densities, hand-harvested area, 
sample processing, and agronomic details (see Table 1). 
Observations on flowering were made when 50% of the 
plants in a plot had at least one open flower. The yield was 
determined at plant maturity and converted into kg/ha. Daily 
meteorological data (including maximum and minimum air 
temperature (°C), rainfall (mm), and solar radiation (MJ/
m2)) for these locations were obtained from the Scientific 
Information for Land Owners website (SILO) (https://​leg-
acy.​longp​addock.​qld.​gov.​au/​silo/​about.​html; Jeffrey et al. 
(2001)). Additionally, climatic variables at some of the 
experimental sites were directly monitored in the field sepa-
rately (Table S1) from early sown and main season chickpea 
trials across seven locations. These data replaced the climate 
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data downloaded from SILO. The details of the soil proper-
ties at the experimental sites are given in Table S8.

APSIM‑chickpea model evaluation

The Agricultural Production Systems Simulator (APSIM) 
Classic version 7.10 (www.​apsim.​info/), comprising the 
APSIM-chickpea module (Robertson et al. 2002), was con-
figured to simulate the trials (Table 1) reported in this study. 
Detailed descriptions of APSIM are provided by Holzworth 
et al. (2014). The APSIM model (Holzworth et al. 2014) 
does not account for the effects of pests and diseases, pollen 
sterility, and flower/pod abortions due to extreme weather 
events, and cannot simulate grain production from second-
ary flushes of flowers (e.g., from plant compensatory growth 
after a damaging event such as frost or chilling tempera-
tures. We calibrated the APSIM-chickpea module for the 

PBA HatTrick cultivar using all the field data (Table 1). 
The thermal time from emergence to the end of the juvenile 
phase was modified to 690°Cd, and other modifications to 
the parameters are listed in Table S2 (Supplementary mate-
rial). Plant available water capacity (PAWC) was calibrated 
as the difference between the field capacity water and 15 bar 
lower limit for each soil.

To predict the flowering, the current chickpea module 
of APSIM uses a thermal time approach only. However, 
the thermal time approach deficiently predicted flower-
ing time, as we observed a discrepancy of about ± 10 
to ± 31 days between observed versus simulated flowering 
times (Anwar et al. 2019; Chauhan et al. 2019). Further-
more, the involvement of soil water in modulating flower-
ing of chickpea has recently been demonstrated (Chauhan 
et al. 2019). We therefore used a modified version of the 
APSIM to simulate chickpea flowering time by including 

Table 1   Metadata for 29 published and ongoing chickpea field exper-
iments (NSW DPI and GRDC) used to calibrate and validate the 
APSIM-chickpea module for cultivar PBA HatTrick. Location, soil 
type (Isbell 2016), plant available water holding capacity (PAWC in 
mm), date of sowing, row spacing (RS) and plant population (PP) 

are listed below. SA, South Australia; QLD,Queensland; NSW, New 
South Wales; VIC, Victoria; NSW DPI and GRDC, Grains Agron-
omy & Pathology Partnership (GAPP), between the NSW Depart-
ment of Primary Industries (DPI) and the Grains Research and Devel-
opment Corporation (GRDC) project (BLG111)

Location, State Soil type PAWC​ Sowing date Agronomic details Reference

Roseworthy, SA Sodosol (Calcic Luvisol) 126 7 Jun. 2013
7 Jun. 2013
15 Jul. 2014

Irrigated and dryland, 
RS = 24 cm; PP = 55 plants/m2

Lake and Sadras (2017)

Billa Billa, Qld Vertosol 183 27 May 2015
24 May 2016
29 May 2017

Dryland, RS = 100 cm; PP = 33 
plants/m2

Chauhan et al. (2019)

Roma, Qld Vertosol 119 19 May 2016
30 May 2017

Dryland, RS = 100 cm; PP = 33 
plants/m2

Chauhan et al. (2019)

Wagga Wagga, NSW Kandosol 110 24 Apr. 2014
12 May 2014
18 May 2015
17 May 2016
2 Jun. 2016
26 May 2017
18 May 2018
15 May 2019

Dryland and partly irrigated, 
RS = 50 cm; PP = 50 plants/m2

Richards et al. (2020); NSW DPI 
and GRDC

Yenda, NSW Sandy Loam 165 1 May 2016
20 May 2016

Dryland, RS = 50 cm; PP = 50 
plants/m2

GRDC

Trangie, NSW Red chromosol 141 18 Apr. 2018
16 May 2018
30 Apr. 2019
15 May 2019

Dryland
Dryland
Pre and post sowing irrigation, 

RS = 40 cm; PP = 35 plants/m2

Richards et al. (2020); NSW DPI 
and GRDC

Tamworth, NSW Vertosol 245 18 Apr. 2018
24 May 2016
23 May 2017
12 Jun. 2018

Dryland and partly irrigated, 
RS = 40 cm; PP = 35 plants/m2

NSW DPI and GRDC

Leeton, NSW Brown chromosol 293 15 May 2019 Pre-sowing irrigation, 
RS = 50 cm; PP = 50 plants/m2

Richards et al. (2020); NSW DPI 
and GRDC

Breeza, NSW Vertosol 255 15 May 2019 Pre-sowing irrigation, 
RS = 40 cm; PP = 35 plants/m2

NSW DPI and GRDC

Horsham, VIC Grey cracking clay 248 16 May 2019 Dryland, RR = 35 cm; PP = 30 
plants/m2

NSW DPI and GRDC
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soil moisture interactions, in addition to temperature and 
photoperiod (Chauhan et al. 2019) using the following 
equation:

In this equation, TTm is the modified thermal time, TT 
is the thermal time as computed by the APSIM model 
without soil water modification, and FASW is fractional 
available soil water. FASW is equal to 1 when soil water 
is close to the field capacity and permanent wilting occurs 
when it reaches 0. According to this equation, the ther-
mal time was only modified when FASW was > 0.65 and 
the emergence (growth stage 3) had already been reached. 
This approach is different to the approach of Soltani et al. 
(2006) where thermal time was modified only when chick-
pea plants are acutely water-stressed. In our study, modi-
fication of TT was maximum when FASW was near the 
field capacity. FASW was computed using the following 
equation:

where sw_dept is soil water at the start of the day, 
ll15_dept is soil water at 1.5 MPa soil water potential, 
dul_dept is the soil water at the drained upper limit (i.e., 
field capacity), and n is the number of layers in the 60 cm 
soil surface used in soil parameterisation (Holzworth et al. 
2014). In addition to TTm, we assessed the impact of frost 
on yield because it causes significant yield loss (Maqbool 
et al. 2010). In chickpea, each post-flowering frost event 

(1)TTm = TT × (1.65 − FASW)(when FASW ≥ 0.65 and the chickpea stage ≥ 3)

(2)FASW(n) = Σ(sw_dept(n) − ll15_dept(n))∕Σ(dul_dept(n) − ll15_dept(n))

is estimated to cause about 5% yield loss (Chauhan et al. 
2019). Frost is defined as the minimum daily temperature 
in the Stevenson Screen at 1.5 m aboveground level ≤ 0 °C 

(Chauhan et al. 2019).
The performance of APSIM-chickpea was evaluated 

using three measures of “goodness-of-fit”, calculated 
between the observed and simulated values (flowering 
time and grain yield in this case). These are the following:

1.	 the root mean square error (RMSD) (Piñeiro et al. 2008), 
calculated as follows:

where Si is the simulated value, Mi is the measured value 
and N is the number of measurements across the 29 sites 
and seasons (Table 1). The value of RMSD closer to 
zero connotes a better model simulation.

2.	 Willmott’s index of agreement (d) (Willmott 1982; 
Loague and Green 1991) was determined by the follow-
ing:

(3)RMSD =
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Fig. 1   Growing areas of 
Australia where land suitability 
analysis (Table S5) showed 
potential for Chickpea growing 
(depicted in green) based on 
long-term climatology, soil pH 
and topography (Saaty 1980; 
Chen et al. 2010; NCI 2020). 
The dots show the 95 locations 
used in the APSIM-chickpea 
simulation study reported here 
(Table S3)
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where M is the average of Mi and best results are where 
d approaches unity.

3.	 The coefficient of determination (R2), the association 
between the measured and predicted values, was also 
evaluated.

Simulation scenario analysis

We developed a factorial simulation setup in APSIM to 
simulate the chickpea crop cycle, flowering time, and yield 
for 95 locations grown with 33 plants/m2 at a row spacing 
of 50 cm for 70 years (1950–2019). Peak flowering time was 
calculated as the mid-point between start and end of flow-
ering. The factorial design consisted of 95 locations, three 
sowing dates (early (10–30 April), mid (1 May–21 May), 
and late (22 May–11 June)), and three Desi cultivars, PBA 
HatTrick, PBA Boundary and PBA Seamer. Two cultivars 
were classified as mid maturity (PBA HatTrick and PBA 
Seamer), whereas PBA Boundary as mid-late. The culti-
var parameters used for PBA Boundary and PBA Seamer 
were described in Chauhan et al. (2019). These 95 locations 
included both National Varietal Trial sites (www.​nvton​line.​
com.​au) situated within developed commercial production 
areas and potential areas for chickpea cultivation based 
upon a detailed land suitability analysis (LSA) (Fig. 1). 
The details of how the LSA was conducted are given in the 
Supplementary Information (Table S6). Sites for simulation 
could not be chosen to cover the entire LSA-designated area 
(Fig. 1) as all the soil characteristics required for the APSIM 
model were not available at all locations.

Details of the selected 95 sites around Australia (Table S3 
(See Supplementary Information)) include the coordinates 
of sites, description of soil types with water holding capaci-
ties, and the three sowing times chosen to match the usual 
practice of local commercial sowing based on the GRDC 
winter crop sowing guide (https://​grdc.​com.​au/). Table S3 
also includes summary information about rainfall, tempera-
ture, and frost incidence.

Simulations were carried out with 20 kg of N/ha applied 
at sowing as urea, following farmers’ practice and surface 
organic matter and N were reset at sowing. For a given loca-
tion the model sowed the crop on the first available opportu-
nity, i.e., when 7-day cumulative rainfall was ≥ 25 mm and 
the plant available soil water was > 80 mm. If these criteria 
are not met, sowing was assumed to occur on the last day of 
the sowing window which led to crops failing at that loca-
tion (less than < 1% of all simulations tested), due to lack of 
establishment. At the start of the summer season (1st Novem-
ber), the fractional available soil water was reset to 50% in 
the model to mimic the low available soil water left after a 
winter fallow, assuming weeds were constantly controlled 
using herbicides. From this time onward, until the start of 

the next sowing window, soils could be equilibrated with 
pre-season rainfall before sowing. Location-specific soils 
for all locations were chosen from the APSOIL database 
(Holzworth et al. 2014).

Cold temperature analysis

Cold temperatures at critical reproductive stages impact 
chickpea yield. We wanted to estimate the association 
between cold temperatures and yield; therefore, we fitted 
multiple linear regression models (Draper and Smith 1981) 
across different sowing dates and cultivars (3 cultivars × 3 
sowing dates) for all locations (Table S3). The response 
variable was the simulated frost-affected chickpea yield 
( YF ) (using a 5% loss per frost event; Chauhan et al. 2019; 
Chauhan and Ryan 2020)) in 70 years from 1950 to 2019. 
The explanatory variables were the total rainfall amount ( R ) 
during the reproductive period (RP), and the percentage of 
days (P) during RP where the minimum temperature is below 
TC. This regression approach of assessing chilling temperature 
thresholds is only one of several possibilities but we believe 
it is simple, straightforward, and easy to test. We are aiming 
to detect the threshold temperatures for each site/cultivar 
combination across all the simulation years and we might 
expect these values to vary, possibly significantly. Ideally, the 
APSIM model should be fully parameterised for chilling and 
frost damage but that is not currently available.

The modelling procedure consisted of three steps:

Step 1: Choice of possible TC values
We examined the chickpea literature which suggested that 
mean daily temperatures ˂15 °C during the reproductive 
phase can inhibit pod set, cause pod abortion, and result 
in subsequent yield losses (Croser et al. 2003; Berger 
et al. 2004). However, we defined the range of tested TC 
values from 0.0 to 19.0 °C (inclusive) because we wanted 
to ensure that any sensitivity to temperature above 15 °C 
was captured in the analysis. Therefore, P was calculated 
as follows:

In this definition P must be between 0 and 1 (or 0% to 
100%). A regression model was then fitted according to 
Eq. 5.

where t = 1950, 1951,… ..., 2019 and e
t
 is the random 

error term distributed normal with a mean of zero and a 
unit variance. The estimates and the p-values of �1 were 
recorded.
Step 2: Criteria-based selection of TC

P =
Days during RP where minimum temperature ≤ T

c

Total number of days during RP
× 100%.

(5)YF
t
= �0 + �1Pt

+ �2Rt
+ e

t
,
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The cold temperature threshold, TC, was selected through 
grid search using a step of 0.1 °C within the interval 
between 0.0 and 19.0 °C (inclusive). At each potential 
value of TC, model specified in Eq. 5 was fitted. To avoid 
having multiple TC values, only the one(s) which pro-
duced the lowest p-value of β1 in step 1 were retained. 
In case the same p-value was produced from multiple TC 
values, the maximum of these was chosen. Two criteria 
were applied. Firstly, the p-value of β1 had to be less than 
0.05. Secondly, TC had to be between the first quartile and 
the third quartile of the minimum temperatures within the 
RP period. This prevented values for P being too close 
to 0 or 1, ensuring a wide range for P. With these criteria 
in place, it is possible that for some locations and some 
years there is no TC detection.
Step 3: Quantification the effects of cold temperature
Using the selected TC based on step 2, the multiple regres-
sion model in Eq. 5 was then fitted again. The estimate 
of �1 can be interpreted as the change in YF when P is 
increased by 1%, assuming R remains the same. If the 
estimate of �1 is negative, a yield loss is expected when-
ever the minimum temperature falls below TC. The larger 
the absolute value of the estimated �1 , the larger the 
impact.

Software

Aside from ASPIM Classic version 7.10 (as parameterised 
and modified as described in the text), all other data manipu-
lation and analysis was conducted using R software (R Core 
Group, 2019) running under the RStudio Integrated Devel-
opment Environment (RStudio 2019). Within R, a number of 
add-on packages were extensively used (see Supplementary 
References). The latest available version of R was used as 
the work progressed (from 3.5.2 in 2018 through to 4.1.0 in 
2021), as were the latest package versions available from 
CRAN (Comprehensive R Archive Network, https://​cran.r-​
proje​ct.​org/​mirro​rs.​html). Some data storage was performed 
in Microsoft Excel spreadsheets.

Results

Model performance

Daily simulated aboveground biomass data was based upon 
the site-specific soils, temperature, and rainfall data recorded 
in Tamworth, Wagga Wagga, and Breeza (2018 and 2019) 
at the field experimental locations (Tables 1 and S1). The 
accumulation of simulated aboveground biomass (Fig. 2a–c) 
up to the post- flowering phase generally followed the pat-
terns of observation across the three locations. At Tamworth 

in the 2018 growing season, there was no frost event during 
the post-flowering phase (Fig. 2a), whereas there were many 
post-flowering frost events in Wagga Wagga in 2018 and 
Breeza in 2019 (Fig. 2b–c).

The model-predicted flowering time versus the meas-
ured values from 29 field experiments (Table 1) covering 
a wide range of environmental conditions were similar. 
The APSIM-chickpea module was able to explain 97% of 
the observed variability in flowering time with a RMSD 
of 3.6 days (Fig. 2d). The Willmott’s index of agreement 
(d) value of the model-predicted flowering time versus the 
measured values was 0.99 (Fig. 2d) and indicated a good 
performance of the model in terms of predicting chickpea 
flowering time. The observed and simulated chickpea grain 
yield are illustrated in Figs. 2e and 2f along with 1:1 line. 
The APSIM-chickpea module was able to explain 63% 
(R2 = 0.63) of the variance in grain yield with a RMSD of 
340 kg/ha. The fitted line diverged from the1:1 line indicat-
ing slight underestimation of grain yield (slope of the regres-
sion line = 0.76). The Willmott’s index of agreement (d) 
value for predicted chickpea grain yield (Fig. 2e) was 0.88, 
demonstrating the model’s reasonable predictive capacity. 
However, the prediction improved (R2 = 0.70, d = 0.91, and 
RMSD = 293 kg/ha) when the impact of frost was taken into 
account (Fig. 2f).

The observed yields ranged from about 700 to 2700 kg/
ha and the model adequately predicted over this range 
(Fig. 2e–f). Overall, the performance parameters indicated a 
good agreement between measured and simulated values by 
APSIM-chickpea model. This provided confidence to simu-
late biomass accumulation, flowering time, and grain yield 
over a wide range of environmental conditions and suggested 
that this model could be applied across new potential grow-
ing areas in the following analysis.

Modelling occurrence of flowering

Flowering time was significantly (p < 0.001) influenced 
by cultivar, sowing date, State (comprising 95 locations), 
PAWC (plant available water holding capacity), and yearly 
mean in-crop rainfall (Table S4). Figure 3 shows the median 
of the flowering time grouped by State and the detailed dis-
tribution of flowering time across 95 locations can be found 
in supplementary Figure S1. The flowering time ranged from 
241 day of the year for early sown PBA Seamer to 276 for 
later sown PBA HatTrick averaged across all locations. In 
general, flowering time is influenced by temperature, pho-
toperiod, and soil water interactions. Within a location, 
flowering time is affected in the same way as later sowing 
experience higher or lower temperature and in-season rain 
prior to flowering (building soil water storage) or its loss 
due to evaporation (where it does not rain much as in the 
subtropical environment.
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There were differences in flowering time due to sow-
ing date, with early sowing resulting in earlier flower-
ing for all the three cultivars. Comparing the five States, 
flowering was largely early in Queensland and Western 
Australia compared to the other three States (Fig. 3). The 
average flowing time for PBA Boundary ranged from 239 
in Queensland to 279 in Victoria, for PBA HatTrick, it 
ranged from 241 in Queensland to 281 in Victoria and 
for PBA Seamer, it ranged from 238 in Queensland to 
276 in Victoria. For the two-way interactions, there was 
cultivar-by-State and sowing date-by-State interactions, 
but no cultivar-by-sowing date interactions were observed 
(Table S4). The flowering time was predicted to be delayed 
by about 0.16 days and advanced by about 0.02 days for 
each 1 mm increase in growing season rainfall and PAWC, 
respectively. Additionally, there was huge variability in 
flowering time across the 95 locations. For example, 
Morawa (Western Australia) had variable growing season 
rainfall and low minimum temperature with high PAWC 
(Table S3). However, the dispersion in the distribution of 
flowering time was larger compared to Biloela (Queens-
land) which had less variable growing season rainfall, 
higher minimum temperature with lower PAWC (Fig. S1).

Fig. 2   Evaluation of APSIM-chickpea for PBA HatTrick showing 
observed vs. simulated a, b, and c aboveground biomass (DM), d 
flowering time, and e and f is yield at physiological maturity using 
experimental data from Table  1. The dashed diagonal line is the 
1:1 line and insets are the values of RMSD, d and linear regression 

details. In Figs. 2a, b, and c symbols with error bar of observed data 
and red line are simulated, vertical purple line is the observed flower-
ing time and blue dots are frost events in three experimental sites. A 
total of 29 experiments were utilised for flowering time whereas only 
22 were available for yield

Fig. 3   Distribution (1950–2019) of flowering time (Julian days) 
across five States comprising 95 locations (Table  S3) and the val-
ues were group by cultivars and sowing dates. The horizontal line in 
each box-plot is the median value, the lower edge of a box is the 25th 
percentile and the upper edge, 75th. The whiskers reach to 1.5 times 
the interquartile range (between the 25th and 75th percentiles) or to 
the most extreme observed value, whichever is smallest; dots below 
or above the whiskers represent individual values beyond this range. 
NSW, New South Wales; QLD, Queensland; SA, South Australia; 
VIC, Victoria; WA, Western Australia
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Risk of frost during reproductive phase

The vulnerability to frost damage during peak flowering is 
shown as the degree of overlap of the two density curves, as 
a snapshot of seven locations (Fig. 4), with data for the 95 
locations provided in the supplementary material (Fig. S2). 
Across the 95 locations, the peak flowering ranged from 
200 Julian day in early sowing at Duaringa (Queensland) 
to 318 Julian day in late sowing at St Arnaud (Victoria). In 

some locations, there were no frosts (absence of a blue line), 
while in others, the red and blue lines are well separated 
indicating a lower risk of frost damage. However, for other 
locations, the red and blue lines closely follow each other 
showing maximum frost risk during the reproductive stage. 
For instance, when PBA HatTrick was sown later at these 
seven locations, it did not encounter frost incidents, while 
the later sown PBA Boundary was at risk of frost at Ouyen 
(Victoria) only (Fig. 4). Additionally, especially at Pindar 

Fig. 4   Example of a density estimates of frost events (blue line) and peak flowering time (red line) for 70 years (1950–2019). The plots were 
group by cultivars and sowing dates across seven locations, the same figures for rest of locations are in supplementary (Fig. S2)
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(Western Australia), all three cultivars did not encounter 
frost incidents when mid sown, whereas at Ouyen, all cul-
tivars except the later sown PBA HatTrick were at risk of 
exposure to frost damage.

Variability of water‑limited yield potential

Chickpea yield varied (Figs. 5 and S3) according to the tem-
perature, radiation, rainfall patterns, and soil type of each 
environment (Table S3) across 95 locations. Figure 5 shows 
the mean of the annual yield within the 70-year simulation, 
grouped by State that comprises 95 locations and its inter-
action with growing season rainfall. As an example, when 

cultivar PBA Boundary was planted early, the highest mean 
yield (3556 kg/ha; less variability compared to other loca-
tions, standard deviation = 328 kg/ha) was at Badgingarra 
(Western Australia), where the growing season rainfall is 
more than 455 mm (Fig. 5). This was followed by Apsley 
in Victoria (2580 kg/ha; standard deviation = 420 kg/ha), 
where the growing season rainfall was about 367 mm, when 
cultivar PBA Seamer was planted late. However, in Bodallin 
(Western Australia), which received 182-mm growing sea-
son rainfall and lower soil PAWC (101 mm), cultivar PBA 
HatTrick had an average yield of 1223 kg/ha when sown 
late. Across all cultivars and sowing time, Tamworth (New 
South Wales) and Hermitage (Queensland) were some of the 

Fig. 5   Variability of simulated chickpea yield (1950–2019) across 
five States comprising 95 locations (Table  S3). Yield values were 
group by growing season rainfall, cultivars and sowing dates. As 
an example, six locations names are highlighted, and the details are 

shown in the supplementary (Fig.  S3). NSW, New South Wales; 
QLD, Queensland; SA, South Australia; VIC, Victoria; WA, Western 
Australia; GSR, growing season rainfall
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mid yielding locations (1925 kg/ha and 2168 kg/ha, respec-
tively). In contrast, lower growing season rainfall (about 
102 mm) and the lowest yielding location with high annual 
variability was Clermont in Queensland (about 1333 kg/ha; 
standard deviation ≥ 998–1154 kg/ha). The detailed distribu-
tion of chickpea yield across 95 locations can be found in 
supplementary Figure S3.

Additionally, the yearly yield was statistically fitted 
on cultivar, sowing date, locations, soil type (plant avail-
able water holding capacity (PAWC in mm)), and yearly 
mean growing season rain using a linear model. Second-
order interactions between cultivar, sowing date, and loca-
tions were included in the model. We found the analysis of 
variance had statistically significant effects for all variables 
and interactions (Table S5). Also, yield was moderated by 
PAWC and sowing date. However, the influence of PAWC 
was fairly small, especially across locations, indicating that 
growing season rainfall had the strongest influence on yield. 
The final yield was predicted to increase by 2.80 kg/ha and 
5.79 kg/ha for each 1 mm increase in PAWC and growing 
season rainfall, respectively. Cultivar PBA Boundary pro-
vided the highest yield, in general, compared to PBA Hat-
Trick and PBA Seamer. Later, sowing was found to be the 
least advantageous across all States and cultivars. Early sow-
ing was found to work the best for cultivar PBA Boundary 
but the differences between sowing period were less obvious 
for other cultivars.

Variability of cold temperature index

Figure 6 summarises the detection of cold temperatures 
(TC) across the 95 locations (by cultivar and sowing date). 
There were some locations (cultivar × sowing date) where 
TC was not detected under our approach. In general, the 
frequency of TC detection declined with later sowing dates 
(Fig. 6). Specifically, TC was detected at locations in Cun-
derdin (Western Australia), Roseworthy (South Australia), 
Horsham (Victoria), Walgett (New South Wales), and Dalby 
(Queensland) as an example, when the sowing dates were 
early, mid and late, respectively. The detected TC ranged 
from 4.4 to 18.9 °C (9.4 °C on average). In general, the cold 
temperatures were higher in Northern and Eastern areas. 
Also, the cold temperature threshold appeared to be higher 
in inland areas compared to coastal areas (Fig. S4). In the 
detection of TC, there appeared to be an interaction with soil 
type, rainfall, minimum temperature, and incidence of post-
flowering frosty days. As an example, at Eradu (Western 
Australia), the soil was a loamy duplex (PAWC = 96 mm), 
had higher growing season rainfall (308 mm), and very low 
incidence of frost (May to August frost = 0.1 days yearly 
mean (Table S3)). We found the detected TC was about 
15.9 °C for mid sown cultivar PBA HatTrick. In contrast, at 
St Arnaud (Victoria), where the soil was a brown Sodosol 

(PAWC = 202 mm), with high incidence of frost (May to 
August frost = 14.9 days yearly mean), we found the detected 
TC was 4.5 °C when PBA Seamer cultivar was sown later.

The percentage of days (P) between flowering to pod-fill 
where the minimum temperature was below TC were statis-
tically significant (p < 0.05) across 95 locations, were the 
TC was detected. The effect of P on the yield loss ranged 
from − 12.3 to − 492 kg/ha across the locations where a TC 
value was detected (Figs. 6 and S4). In general, the effect of 
P on the yield loss was greater in Eastern areas than Western 
areas, with the most extreme estimated effect recorded in 
Billa Billa (Queensland) for early sown cultivar PBA Hat-
Trick. Additionally, Table S7 shows the correlation between 
TC and a set of variables including latitude and longitude, 
PAWC, annual average minimum temperature (T) during 
the reproductive and podding period (RP), annual average 
frost days during RP, annual average growing season rain-
fall, annual average April to October rainfall, annual average 
mean T during April to October, annual average minimum T 
during April to October, annual average day length (hours) 
during April to October, and yield (kg/ha), with magnitudes 
greater than 0.3 are being highlighted. On an overall basis, 
TC was more related to latitude, longitude, minimum T, and 
day length during April to October. Generally, both tempera-
ture and day length are closely related to latitude and longi-
tude and were key factors in determining a region’s climate. 
Thus, we can argue in a way that TC is spatially variable. 
We suspect that variabilities in temperature and day length 
probably reflect changes in latitude and longitude (hence the 
locations), especially latitude (latitude and day length had 
a correlation of 0.99 while latitude and temperature had a 
correlation of roughly 0.80).

We fitted a linear regression model for TC on latitude and 
longitude. The fitted equation is as follows:

Both the coefficients for latitude and longitude were sta-
tistically significant (p < 0.05). The TC was higher towards 
the North (i.e., increase in latitude) and the West (i.e., 
decrease in longitude). Figure S5 shows a scatterplot and the 
pattern is very clear for latitude but less clear for longitude, 
which agrees with the correlations. We considered cultivars 
and sowing dates separately, and TC was not significantly dif-
ferent across either cultivar (F = 0.382, p = 0.537) or sowing 
dates (F = 0.034, p = 0.854).

Discussion

The use of crop models in conjunction with field experi-
ments can improve the understanding of crop yield limi-
tations, identification of genotypes better adapted to 

T
C
= 42.823 + 0.579 × Latitude − 0.105 × Longitude
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their environment, identify gaps in model functions, and 
improve current forecasting methods to better account for 
genotype-by-environment interactions and extreme events 

(Chauhan et al. 2017; Lake et al. 2021). Prior to our study, 
the APSIM-chickpea model was calibrated and validated 
for the historical chickpea cultivar (cv. amethyst) grown in 

Fig. 6   Detected (p < 0.05) cold temperature (TC) index (blue bars) during the reproductive and podding period and the corresponding yield loss 
(red bars; if any) by cultivars and sowing date scenarios across 95 locations (Table S3)
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the northern chickpea growing region of Australia (Robert-
son et al. 2002) and chickpea commercial cultivars, such as 
PBA Boundary, PBA HatTrick, PBA Seamer, and Tyson 
(Chauhan et al. 2017, 2019) based on a limited range of 
environments conducted in the northern region. In this 
study, we further finetuned the genetic coefficient of cul-
tivar PBA HatTrick (Table S2) using 29 field experiments 
across diverse locations (Table 1). Our re-calibration showed 
good agreement between simulated and measured above-
ground biomass accumulation, flowering time, and grain 
yield (Fig. 2). For example, we obtained R2 and RMSD val-
ues between simulated and observed flowering time were 
0.97 and 3.6 days, respectively. Additionally, the coefficient 
of determination (R2) and RMSD improved further when 
the impact of frost events was incorporated into the model 
(R2 = 0.70, RMSD = 293 kg/ha) and the observed yields 
ranged from 784 to 2683 kg/ha; our model adequately pre-
dicted this range. Moreover, our coefficient of determination 
is much higher than 0.6 obtained in another study (Kaloki 
et al. 2019), and our RMSD values are less compared to 
Robertson et al. (2002) and Kaloki et al. (2019). This also 
affirms the improvements in predictions achieved in this 
study from the re-parameterised APSIM model. The differ-
ences between the values obtained in this study and those 
reported in the literature can also be explained by the differ-
ent groups of cultivars but also by differences in the experi-
mental conditions.

The current version of the chickpea module of APSIM, 
uses temperature and photoperiod to predict the flowering 
time. However, these two factors inadequately predicted 
flowering time; with a discrepancy of about ± 10 to ± 31 days 
between observed versus simulated flowering time (Anwar 
et al. 2019; Chauhan et al. 2019). To improve the prediction 
of flowering time, here we used temperature, photoperiod, 
and soil moisture interactions in a modified APSIM-chickpea 
module as reported by Chauhan et al. (2019) and Chauhan 
and Ryan (2020).

Despite the three cultivars being of similar maturity 
classification (mid for PBA Boundary, and mid-late for 
PBA Seamer, and PBA HatTrick), there were consistent 
differences in their time to flowering across different sow-
ing times. Similar maturity classification might be due to 
their related pedigree; PBA HatTrick, and PBA Boundary 
have Jimbour as a parent while PBA HatTrick is a parent 
of PBA Seamer. PBA Seamer flowered earlier than PBA 
Boundary who was earlier than PBA HatTrick regardless 
of sowing time. Large G × E interactions were reported in 
chickpea and other crops (Berger et al. 2004; Parent et al. 
2017). We observed this interaction in the form of cultivar-
by-State interaction. Early or late flowering did not offer 
yield advantages compared to ‘intermediate’ as PBA Bound-
ary generally provided the highest yield, when compared to 
the later flowering PBA HatTrick and the early flowering 

PBA Seamer. This may indicate that early flowering crops 
encounter suboptimal temperatures and frost stress while 
late flowering crops would encounter moisture and heat 
stress, which limits yield potential. Days to flowering was 
previously shown to be negatively correlated with yield 
especially at high temperatures (Devasirvatham et al. 2015). 
Risk of temperature impact can be minimised, by adjust-
ing sowing time to match flowering window to minimise 
the risk of adverse environmental conditions (Whish et al. 
2007; Maqbool et al. 2010). Additionally, short photoperi-
ods increase thermal time requirement of the crop to flower. 
Because high soil water makes crop perceive lower daily 
thermal time, it takes longer to achieve certain increased day 
degree target when there is considerable soil water (due to 
high soil water storage or rains prior to flowering) compared 
to a drought situation. Lower ambient temperatures mag-
nify this effect further by influencing the evapotranspiration 
demand. So, with same amount of soil water, the crop will 
take much longer to flower if it was growing in a cooler envi-
ronment, e.g., in southern States compared to in the Central 
Queensland where daily ambient temperatures are higher 
(Singh et al. 2021).

For the three cultivars, early sowing resulted in plants 
flowering earlier in the year (Julian date). Sowing date 
was shown to affect phenological development and dura-
tion of chickpea growth phases (Richards et al. 2020). It is 
commonly recognised that early sowings (e.g., in autumn) 
increase the crop’s vegetative duration due to low tempera-
tures and shorter days experienced in the period leading to 
winter. This was largely the case in our study as the risk of 
frost exposure decreased with late sowing (Fig. 4). How-
ever, the indeterminate nature of chickpea would still allow 
chickpea to yield satisfactory after stressful events such as 
frost if subsequent conditions are favourable. In addition, 
we found late sowing resulted in yield penalties across all 
States and cultivars (Fig. S3), a finding commonly observed. 
Early sowing was found to be advantageous for PBA Bound-
ary yield but the differences between sowing time were less 
obvious for the other two cultivars. Additionally, we found 
in our ongoing field trials that sowing early can decrease 
yield in some situations. Sowing early in the recommended 
window increases the risk of vegetative frost in some (more 
prostrate) cultivars. Early sowing increased winter biomass 
which significantly increased disease risk in the southern 
areas. We also confirmed that the increased water use from 
sowing early impacts on grain yield in low rainfall or short 
seasons with low starting soil water (Sadras and McDonald 
2012; Chauhan and Ryan 2020).

Comparing the locations in the five States, flowering was 
largely early in Queensland and Western Australia compared 
to the other three States. The large diversity of locations 
(Table S3) resulted in some locations encountering dif-
ferent levels/degrees of frost exposure, and this facilitated 
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understanding of optimum sowing time (early, mid, or late) 
for any of the three cultivars at the 95 locations studied here. 
As an example, PBA HatTrick and PBA Boundary would be 
suitable for late sowing as they avoided potential exposure 
to frost incidents (except at location Ouyen (Victoria) for 
PBA Boundary). Also, all the three cultivars can be sown at 
mid sowing window at Pindar (Western Australia) location.

The critical period for yield determination is centred 
around flowering (Lake and Sadras 2014), and therefore 
environmental conditions experienced during the repro-
ductive phase are major determinants of final grain yield. 
Abiotic stresses such as frost, heat, and drought limit yield 
potential through inducing flower abortion, pod drop, or fail-
ure of grain development (Maphosa et al. 2020). Ultimately, 
this results in fewer pods or high number of unfilled pods, 
and pod number was shown to be strongly related to grain 
yield (Devasirvatham et al. 2015). We observed this outcome 
where locations which experienced high likelihoods of frost 
were overall low yielding. Therefore, we demonstrated the 
importance of sowing date, and moisture availability in the 
form of PAWC and growing season rainfall on grain yield. 
The simulated yield values were similar to average yields 
reported by Dreccer et al. (2018) and in the National Variety 
Trials (https://​www.​nvton​line.​com.​au/). Overall, the influ-
ence of PAWC was fairly small (2.80 kg/ha, for each 1 mm 
increase in PAWC) and we conclude that growing season 
rainfall still has the strongest water influence on grain yield 
because it accounted for 5.79 kg/ha for each 1 mm increase.

In this study, a clear relationship between the cold temper-
ature threshold (TC) and yield loss were quantified (Fig. 6), 
where the effect of TC, on yield loss ranged from − 12.3 
to − 492 kg/ha. The differences in TC detection are a sum-
mation of the diverse climatic and environmental conditions 
at the 95 locations. Therefore, we predict a trend appears 
where cold temperature thresholds are higher in northern 
and eastern areas and in inland areas compared to coastal 
areas (Fig. S4). The TC seemed to be more related to latitude, 
longitude, temperature, and day length, but also to some 
extent to soil type, rainfall, and minimum temperature. We 
conclude that these factors can regulate and/or provide relief 
and minimise cold stress and frost-related yield losses. For 
all the three cultivars, the yield losses due to TC detection 
decreased with delayed sowing. At some locations, presum-
ably having high frost risk, such as Cunderdin (Western Aus-
tralia), Roseworthy (South Australia), Horsham (Victoria), 
Walgett (New South Wales), and Dalby (Queensland); the TC 
was detected and caused varying yield losses, while in other 
locations it was not detected. At Billa Billa in Queensland, 
early sown PBA HatTrick had the extreme TC induced yield 
loss (Fig. 6). Thus, we recommended that growers at the 
diverse locations used in this study, understand the potential 
optimum sowing time for the applicable cultivars. Breeding 

for reproductive cold tolerance should remain a priority for 
the chickpea breeding programs.

Conclusions

Our current study is consistent with the earlier finding of 
Chauhan et al. (2019) that soil moisture is a key driver of 
both flowering time and grain yield in chickpea. We dem-
onstrated the importance of sowing date, moisture availabil-
ity (PAWC), and growing season rainfall on chickpea grain 
yield. Early and late sowings were shown to result in yield 
losses, with intermediate sowing giving a yield advantage. 
Cold temperature threshold (TC) and its relationship with 
grain yield loss were quantified using data generated by 
the APSIM-chickpea model. Regions likely to experience 
high frost incidence were generally lower yielding. How-
ever, regions with relatively high TC values may be at more 
risk of chilling-induced yield loss than might be suggested 
by the other climatic and soil data. This warrants further 
investigation. Our updated model is an improvement from 
the previous APSIM-chickpea version as it incorporates soil 
moisture, in addition to temperature and day length, and has 
been adequately parameterised for the cultivar PBA Hat-
Trick. The ability of our model to simulate biomass accu-
mulation, flowering time, and grain yield over a wide range 
of environmental conditions provides confidence that it can 
be applied across Australia to identify potential new grow-
ing areas.
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