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Abstract Herbarium records provide comprehen-
sive information on plant distribution, offering oppor-
tunities to construct invasion curves of introduced
species, estimate their rates and patterns of expansions
in novel ranges, as well as identifying lag times and
hence “sleeper weeds”, if any. Lag times especially
have rarely been determined for many introduced
species, including weeds in the State of Queensland,
Australia as the trait is thought to be unpredictable and
cannot be screened for. Using herbarium records
(1850-2010), we generated various invasiveness
indices, and developed simple invasion and standard-
ised proportion curves of changes in distribution with
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time for ~ 100 established and emerging weed
species of Queensland. Four major periods (decades)
of increased weed spread (spikes) were identified:
1850s, 1900-1920, 1950-1960 and 2000-2010, espe-
cially for grasses and trees/shrubs. Many weeds with
spikes in spread periods did so only 1-2 decadal times,
except for a few species with higher spike frequen-
cies > 6; the majority of these spikes occurred
recently (1950-1990). A significant proportion
(~ 60%) of Queensland’s weeds exhibit non-linear
increase in spread with time, and hence have lag
phases (mean: 45.9 years; range: 12—-126 years); of
these lag-phase species, 39% are “sleeper” weeds
with > 50 years of lag time (mainly trees/shrubs and
grasses). Twelve traits of invasiveness, including lag
time and species-specific/historical factors were
screened, of which frequency of invasion waves,
spread rates and residence time were the main drivers
of weeds’ distribution. The low predictive power of
lag time on weed distribution suggests that retrospec-
tive analyses offer little hope for a robust generalisa-
tion to identify weeds of tomorrow.

Keywords Herbarium-data - Invasion-and-

proportion-curves - Lag phase - Pest-risk-assessment -
Species-distribution - Weed-spread
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Introduction

Human activities and globalisation in the last
100 years have led to unprecedented exchanges of
flora and fauna between continents, countries, and
regions, resulting in near homogenisation of many
natural ecosystems (Mack et al. 2000; Pysek et al.
2011; Seebens et al. 2018). The exotic species, once in
their new environment, go through sequential periods
of adjustments involving colonisation/extinction/re-
colonization, establishment, and naturalisation (Pysek
and Hulme 2005; Aikio et al. 2010). If biotic,
environmental, and landscape conditions continue to
be favourable, a proportion (~ 10%—see Kowarik
1995) of the exotic species will increase dramatically
in abundance and geographical distribution to become
invaders with significant impact on nature conserva-
tion and agriculture (Mack et al. 2000; Cook and Dias
2006; Clements and Ditommaso 2011; van Kleunen
et al. 2018).

While the effects and proliferation of some exotics
are immediately obvious (e.g. Osunkoya and Perrett
2011; Perrett et al. 2012), some may take a consider-
able time to manifest, resulting in lag times (real or
perceived) between introduction and species becom-
ing invasive. Whether most invasions endure lag
phases and why they occur remains controversial
(Mack et al. 2000; Aikio et al. 2010; Larkin 2012;
Antunes and Schamp 2017; Coutts et al. 2017; van
Kleunen et al. 2018). A lag phase may result from
several factors and forces acting singly or in combi-
nation. These factors include: (i) the frequency and
spatial arrangement of infestations of the immigrants
(e.g., widely separated, small size infestation foci may
be ineffective for rapid population growth compared
to numerous, close by infestation foci), (ii) the time
requirement for natural selection to operate for the
evolution of new genotypes that can adapt to the novel
environment within the immigrant populations, (iii)
adjustments to the vagaries of environmental condi-
tions, and (iv) human construct arising from our
limitation to detect and make appropriate inferences of
population growth of the invaders (Mack et al. 2000;
Sakai et al. 2001; Coutts et al. 2017; van Kleunen et al.
2018).

Lags in plant invaders can last for decades, with a
mean time of ~ 50 years (Kowarik 1995; Mack et al.
2000; van Kleunen et al. 2018), making it difficult to
predict if an exotic plant species will remain low in
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abundance (i.e., naturalised) and non-threatening or is
a “sleeper weed” (sensu Cunningham et al. 2004,
Crook 2005; Coutts et al. 2017) with dire conse-
quences in the future. Sleeper weeds are a subset of
invasive plants that have been introduced into a new
area and are low abundance and distribution locally for
a period before rapidly increasing in population size.
Because the best opportunity to control an invader
comes when its population size is small, the cryptic
nature of lag phase and/or sleeper weeds is an
unfortunate paradox (Larkin 2012), but must be taken
into consideration during risk assessments and prior-
itization of exotic species. Some invasion ecologists
regard lag phases as artefacts that arise from erro-
neously distinguishing two stages of biological inva-
sion when a single process would suffice for the
dynamics (Mack et al. 2000; Williamson et al. 2005).
Others suggest that lags may result from changes in
sampling effort with time as is often the case for
herbarium records from where some of the invasion
trends are retrospectively inferred (Aikio et al. 2010;
Antunes and Schamp 2017).

Statistical methods to discriminate between single
and two-stage population dynamics of invaders have
been developed. One method uses a piecewise model
fitting approach (with at least two separate growth
functions) that objectively quantifies lag phase, rate of
increase, and asymptote value of species records after
the lag phase. The increase phase period is modelled
either as a logistic function for accelerating and
sigmoidal relationship or as a von Bertalanffy growth
function which fits linear and decelerating relation-
ships (PySek and Prach 1993; Williamson et al. 2005;
Aikio et al. 2010). The lag phase is then determined by
statistically varying lag time in sequential steps from O
(no lag) to the maximum time (years) of records of the
invader species, and finding an estimated (true) lag
time that minimises the total least square error (the
sum of the least square errors for the linear and non-
linear parts of the model). Hyndman et al. (2015)
criticized this method and presented an alternative
statistical approach that estimates the lag phase based
on annual rather than cumulative data using a gener-
alized piecewise linear splines model that incorporates
a log link function for overall collection effort. In
recent time, an algorithm for determining these indices
simultaneously (called segmented regression) has
been developed and has gained currency in the
scientific literature, especially in the medical field
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(e.g., Muggeo 2008; Kazemnejad et al. 2014). The
segmented regression approach has a higher statistical
power than the previous methods as it allows different
slopes and inflection (turning) point/s for specific
values of a continuous predictor (e.g. time) to be
generated simultaneously (see Muggeo 2008).

Other factors affecting invaders’ success (occu-
pancy, abundance, and impact) in a novel range are
their intrinsic (inherent) traits (e.g., life form, life
cycle etc.) and historical factors (e.g., time since
introduction, pathway of introduction, nature of habi-
tat invaded etc.) (Mack et al. 2000; Castro et al. 2005;
Sutherland 2004; Osunkoya et al. 2019a; 2020).
However, there is little agreement amongst research-
ers on the generality and predictive power of these
traits (Goodwin et al. 1999; Castro et al. 2005). In
particular, time since introduction (henceforth, resi-
dence time) is controversial and there are few
empirical studies on its role in influencing an invader’s
range. Residence time is important for invaders as it
underpins greater propagule pressure and drives
seasonal or human-related spread events. These “time
required” spread events allow the operation of micro-
evolutionary process, offering chances for the exotic
invaders to: (i) escape from demographic bottlenecks
via genetic mixing thus making the invaders to cope
with varying landscape conditions in their novel
ranges, (ii) bond with mutualists, and (iii) explore
potential routes for propagule dispersal between focal
patches (Mack et al. 2000; Brandle and Brandl 2012;
Mao et al. 2019). Analyses of several pools of invader
species have shown that the more time invaders spent
in their introduced ranges, the more likely they are to
become widespread (Castro et al. 2005; Pysek and
Hume 2005; Pysek and Jarosik 2005; Osunkoya et al.
2019a; 2020).

Herbarium records provide some of the most
comprehensive information on plant distribution
available and are critical repository sources for the
construction of invasion curves (i.e., changes in
abundance and distribution with time), and in esti-
mating speeds (rates) and patterns of range expansion
(Aikio et al. 2010; Antunes and Schamp 2017).
Herbaria offer exceptionally large datasets over broad
geographic areas, often dating back centuries. How-
ever, collection biases over time due to inconsistent
collection intensities often limit the utility of such
herbarium records (Aikio et al. 2010; Lavoie et al.
2013; Mosena et al. 2018). Hence it has been

suggested that for construction of robust invasion
curves, herbarium records of invader species should be
standardised by the collection records of native
species from the same locality. Delisle et al. (2003)
developed the “proportion curve” to address incon-
sistent collection intensities (bias) by comparing the
recorded distribution of introduced and native species
in the same locality over time with the expectation that
records of both groups will be equally impacted by
variable collection intensity and hence should address
the bias. However, the correction procedure high-
lighted above may not always suffice to reduce
collection biases (Fuentes et al. 2013; Daru et al.
2018; Lang et al. 2019; Aiello-Lammens 2020).

For most invaded ecosystems, there are only
anecdotal invasion curves and lag time estimates
available for established and emerging weeds (Larkin
2012; Antunes and Schamp 2017; Sindel 2009;
Victoria Government 2010; Fleming et al. 2018).
These time-line invasion indices are also often lacking
at the regional and continental scales (e.g., Australia)
despite the usefulness of such information for policy
planning and management. To fill this knowledge gap
and to compare invasiveness indices of weeds in the
State of Queensland, Australia with those elsewhere
around the globe, we herein use herbarium records to
develop invasion and (standardised) proportion curves
of changes in distribution with time for ~ 100
established and emerging exotic weeds of the State.
The aims of this paper are to:

1. Construct invasion curves for established and
emerging weeds of the State of Queensland,
Australia based on herbarium records;

2. Explore cross-species variation in lag time, spread

rate (expansion), and range occupancy. Lag time
especially has rarely been determined for many
weed species as the trait is thought to be unpre-
dictable and hence cannot be anticipated or
screened for (Coutts et al. 2017); and

3. Determine the independent and/or interaction
effects, as well as the relative importance of
species-specific traits (e.g. plant life form, bio-
geographic origin) and historical factors (e.g.
residence time, invasion pathway) on observed
invasion patterns.
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Methods
Study area

The study location (The State of Queensland) lies in
the north-eastern part of Australia. The average
minimum annual temperature varies from

— 10.6-5.4 °C, and average maximum annual tem-
perature varies from 36.0-49.7 °C; mean precipitation
ranges from 600 to 780 mm per year (Australia
Bureau of Meteorology- http://www.bom.gov.au/).
Spanning an area of almost two million km?,
Queensland encompasses significant climatic and
environmental gradients. Consequently, Queensland’s
invasive flora, just like its native flora (Neldner 2014),
varies considerably between its regions (Osunkoya
et al. 2019a).

Data compilation from the herbarium

We initially selected 108 established and emerging
weeds of Queensland, Australia. The majority of these
species are identified as priority species (either
prohibited or restricted matter) under the Queensland
Biosecurity Act 2014 (https://www.legislation.qld.
gov.au/view/pdf/inforce/current/act-2014-007—ac-

cessed Jan. 13 2021). As a result, these species are
targeted for active management at the State, regional
and local government area levels (Osunkoya et al.
2019a, b, 2020). Data on the distribution (i.e., pres-
ence) of these species from 1850-2010 were extracted
from the Australasian Virtual Herbarium (AVH). Data
conversion and cleaning, including removal of dupli-
cate recordings of a species specimen at a given spatial
point/grid, were conducted in ArcMap (Ver. 10.7.1).
To allow for consistent comparisons across species, it
was necessary to convert the point-based herbarium
records into a grid-format. To achieve this objective,
the herbarium records were overlayed with a
0.5 x 0.5 degree grid system, which is roughly
50 km x 50 km and totals 664 grids across Queens-
land. For each species, we recorded the first mention of
a herbarium specimen in each grid; thus, grids were
assigned to a species based on the earliest year that the
species was recorded within that grid. The number of
grids occupied by each species per decade was then
calculated using the ArcMap summary statistics tool
and exported to Microsoft Excel and SPSS (Ver. 25)
for further analysis. Across Queensland, for each focal
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weed species and at 10 year intervals, the following
details were collated: (i) the year of the first mention
(presence) of a herbarium specimen in each grid, (ii)
the number of records per grid, and (iii) the total
number of occupied grid cells.

Species-specific traits, including accepted taxo-
nomic nomenclature, growth form, life cycle, habitat
invaded and introduction pathway were compiled
through reviews of online, the grey and scientific
literature (see https://www.ipni.org/index.html—ac-
cessed Jan. 13 2021; Osunkoya et al. 2019a), and
consultation with botanists. Some invasive plant taxa
within a given genera are complex (as species delin-
eation is uncertain, and/or species are known to
hybridise easily- e.g., many invasive Sporobolus grass
species), and as such were treated as a group. We
present data for both individual species, and, wherever
possible, species-complex group.

Derivation of simple and standardised (proportion)
invasion curve

From the data aggregated, four graphs were plotted for
each species: the number of records against each
decadal time interval from 1850-2010, the cumulative
number of records against decadal time, the time-
specific and the cumulative proportion of records of
invasive to native species against decadal time (i.e.,
proportion curves—see below for justification and
further explanation).

We used the cumulative number of records (y-axis)
vs. decadal time (x-axis) to estimate various indices
relating to invasiveness: (a) speed (log) of spread for
overall dataset (slopejog-normar)> (b) speed of spread
during the lag phase (slopei,g), if any, (c) speed of
spread at the exponential (slopeexp,) phase, (d) lag
time period, (e) inflection point (year when spread is
accelerated), (f) decelerating (slowing down and/or
reaching an asymptote) rate after the exponential
phase, if any, and (g) time period at which the
decelerating phase is attained, if any. The difference
between the earliest record and first inflection point
was estimated as the lag time (in years). In the past,
these indices of invasiveness have been estimated by
simple eye-balling of the resultant graphs (e.g. Wil-
liamson and Brown 1986), or by breaking the dataset
into subsets, each reflecting the different stages of a
sigmoidal curve and estimating the indices indepen-
dently (Pysek and Prach 1993; Williamson et al. 2005;
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Aikio et al. 2010; Larkin 2012). In recent time, an
algorithm for determining these indices simultane-
ously (called segmented regression approach) has
been developed and has gained currency in the
scientific literature, and are often referred to as
“break-points, change points, transition points, thresh-
old or switch points’® analyses (Muggeo 2008;
Kazemnejad et al. 2014). At each step in the proce-
dure, every breakpoint estimate is updated through the
relevant “gap” and “difference in slope” coefficients
using permutation procedure based on likelihood ratio
test. Model fit between linear and non-linear trends are
evaluated by comparing the sum of squares of
residuals and/or changes in coefficient of determina-
tion (R? values (Muggeo 2008). Given apparent
nonlinearity in many invasion curve relationships, we
used the segmented linear regression to quantify any
abrupt change in the response variable (grid cell
occupancy), identifying specific breakpoints and/or
thresholds beyond which the slope of the relationship
significantly changes (for example, the first inflection
year gives the break point and hence time interval
between arrival and population explosion [lag time]).
The analyses were performed using the Segmented
Library in R—a package that has been designed to fit
regression models with broken-line relationships
(Muggeo 2008; R Core Team 2019).

The rate of collection in the wild for herbarium
records is not random and changes over time (Aikio
et al. 2010; Hyndman et al. 2015). We corrected for
these underlying sampling artefacts by recording, as a
baseline, the accumulation rate of native records in
herbaria from where the invasive records were derived
(in our case, Queensland). This was then followed by
scaling the number of invasive records by the number
of native records at each decadal time (Delisle et al.
2003; Aikio et al. 2010; Antunes and Schamp 2017,
Mosena et al. 2018; Pili et al. 2019). The resulting
detrended (standardised) data when plotted against
time is called “the proportion curve” (Delisle et al.
2003). In addition, in the derivation of our proportion
curve, we standardised each invasive species’ time-
specific distribution records by number of time-
specific records of the most common native species
of similar plant life form (Antunes and Schamp 2017)
[see Supplementary Data S1 for list of native species
used]. In this respect, a total of 67 common native
species were used, comprising grasses (11 species),
herbs (24 species), shrubs (14 species), trees (6

species) and vines (12 species). Delisle et al. (2003),
the originator of the methodology, stated: “If the
proportion (of exotic vs. native species) is increasing
for a particular time period, this strongly suggests that
the area occupied by the exotic species is really
expanding, because it is expanding faster than if it was
strictly the result of better spatial coverage of the
sampling for herbarium specimens”. Where the pro-
portion remains stable, the distribution of the exotic
species may indeed be increasing; however, this
increase may also have resulted from a better spatial
coverage of the sampling effort and hence neither
hypothesis can be rejected. If the proportion is
declining, the area occupied by the exotic species
may still be expanding, but at a very slow rate: in such
a case, although the knowledge of the spatial distri-
bution of plant species is improving, additional unit
grid areas occupied by the exotic species are rarely
found. The construction of proportion curves from the
detrended (standardised) data enabled us to derive two
additional invasiveness indices apart from the ones
mentioned earlier (i.e. a—g). These indices are:
(h) slopeproportiony—a measure of spread rate follow-
ing data correction, and (i) invasion wave—a measure
of the frequency of occurrence of significant increase
(spike) in spread rate at each decadal time interval
during which the proportion of the invaders relative to
natives increased more than 5% (see also Mosena et al.
2018; Pili et al. 2019). We normalised the invasion
wave frequency by residence time (year) to derive the
invasion wave probability per year.

Note that because of sparse collection rates in
1850—early 1900s (see Results), we initially explored
differences in invasion indices between the full
datasets vs. post-1930 datasets only. Minimal differ-
ences exist between the two datasets in many of the
indices, especially for invasion wave frequency, and
hence the entire datasets spanning 1850-2010 were
used in all our analyses.

Drivers of weed invasiveness

Information on species-specific traits (life form,
biogeographic origin, and life cycle) and historical
variables (residence time, invasion pathway, type of
introduction, and habitat known to be invaded) were
compiled for all focal species (see Osunkoya et al.
2019a for details). The influence of these factors on
rates and patterns of invasion (i.e. on distribution) at
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the species level was examined using Generalised
Linear Model (GLM) and Classification And Regres-
sion Tree (CART) analyses. Residence time was based
on the date of the first appearance of the species in the
herbarium records. In Australia, the date of first
collection in herbaria has been shown to be signifi-
cantly (P = 0.0001) correlated with observed and
documented introduction date (Hamilton et al. 2005),
and hence we are confident in the approach we have
taken. Nonetheless, to reduce historical bias, we
grouped residence time into 40-year intervals (see
also Castro et al. 2005; Pysek and Jarosik 2005;
Osunkoya et al. 2019a). To explore determinants of
spread of plant invaders (a count, response variable)
across the State of Queensland, the species-specific
and historical variables were entered as predictors in
GLM-ANOVA (using negative binomial with log link
distribution as the count data exhibited over-disper-
sion). A series of bivariate (normal and partial)
correlations were also carried out between the traits
to explore relationships between them.

CART, an exploratory statistical technique is
flexible, robust, and distribution-free with capacity to
deal with both categorical and/or numeric variables
and is invariant to monotonic transformations (Brei-
man et al. 1984; Death and Fabricius 2000). CART is
useful where there are many independent variables
with complex interactions (e.g., in our case, species-
specific traits in interaction with invasion history
attributes etc.) that may influence a response variable
(in our case, the total number of grid cells occupied by
2010 or species lag time). The technique provides a
hierarchical dichotomous classification of the data set
into smaller groups in which the within-group varia-
tion has been minimized with respect to the response
variable. Regression trees make better predictions than
GLM (De’ath and Fabricus 2000). Consequently,
CART (using SPSS version 25) analysis was used to
examine the relative role of invasiveness traits,
species-specific and historical variables on lag time
and final distribution (i.e. total number of grid cells
occupied) of our focal invader species. The total
number of grid cells occupied, or lag time was the
response variable, while the species-specific traits,
historical factors, as well as indices of spread derived
from the constructed invasion curves were the
predictors.

In the SPSS software, the CART tree-growing
function of CHAID (chi-squared automatic interaction
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detector) automatically performs cross-validation (us-
ing the tenfold method- Breiman et al. 1984), and
calculates the cross-validation error rate (the expected
error rate for use of regression tree with new data).
This parameter is important as it evaluates the
performance of the resulting regression tree with
changing tree size. The optimal regression tree to
select is the one that minimises the relative cross-
validation error rate to the expected error rate. We
constrained CART splits to stop when the minimum
numbers of cases (species) in parent and child nodes
are 12 and 6, respectively and with a tree depth of four
as further splitting no longer adds value to the
prediction. CART also generates the importance value
of the independent variables, reflecting the contribu-
tion of each variable stemming from both its role as a
splitter and as a surrogate across all nodes of the tree.
In the process, traits (variables) of little explanatory
power are excluded from the tree.

Results
General trend

All life forms were fairly represented in our dataset of
plant invaders, consisting of grass (N = 16), herb
(N = 28), shrub (N = 20), succulent (N = 12), tree
(N =23) and vine (N =9) species. There were
insufficient data for 17 of our 108 (15.5%) focal
species to fit spread trends with decadal time. The final
database of 91 species has a diverse phylogeny.
However, members of the family Poaceae (16),
Fabaceae (15), Asteraceae (14) and Cactaceae (9)
made up most of the species on the list. The historical
pattern of sampling effort for our focal weed species
was similar to that of native species considered
(Fig. 1). Few herbarium specimens were collected
up until the 1930. Collection efforts accelerated
thereafter and reached its peak in 1990-2000 followed
by a precipitous drop for both native and invasive
species. The proportion (detrended) data gave a
somewhat different trend (Fig. 2a), especially in the
early collection decade (1850s) where there was a
disproportionately higher collection effort for weeds
relative to native species; after that early period,
differences in collection efforts (invasive: native)
were still apparent but no more dramatic (Fig. 2a).
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Fig. 1 Time specific collection records for (a) all plant invader species (N = 108), and (b) common native species used (N = 67) of

Queensland, Australia. Note differences in the values for each y-axis

Standard invasion and proportion (detrended)
curves

We use the standard invasion and the proportion
curves to infer speeds and periods of spread for our
focal species. Standard and proportion curves at
individual species level can be found in Supplemen-
tary Data files S2 and S3, while derived indices from
the curves are summarised in Table 1.

We defined an invasion wave as a phase of
expansion or a period of invasiveness (seen as a spike
in proportion curve) at a time interval of 5-10 years

during which the proportion (of invader relative to
native) is increasing more than 5% (see also Delisle
et al. 2003; Mosena et al. 2018; Pili et al. 2019). In
general, four major periods of weed spread (spikes)
can be distinguished in the proportion curves or
frequencies: 1850s, 1900-1920, 1950 and 2000-2010
(Fig. 2a). Invasive grasses, shrubs/trees, and vines
mirrored this general trend (Fig. 2b, d, f, g). However,
herbs and succulents did not conform to the general
trend, as these life forms only showed broad and
diffuse invasiveness patterns (Fig. 2c, e). Across
species, the general trends (using whole or post 1930
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Fig. 2 Time specific trends
in collection records of plant
invaders relative to native
species. Trends are
expressed as proportions for
(a) all species pooled, and
(b—g) for each plant life
form. Bars above the dashed
horizontal lines signify
periods of significant spikes
(indicated by asterisk, *) in
collection rates of invasive
species
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datasets) that can be inferred of periods of invasive-
ness (seen as spikes in spread rates) from these
proportion curves (Fig. 3, Table 1, and [Supplemen-
tary Data Files S3-S4]) are:

(i) Close to half of the weed species examined
(42.3%) exhibited no spike in spread pattern
with time (Fig. 3); and

(ii)) Many of those with periods of spikes in spread
occurred only 1-2 decadal times (mean spike:
1.82 £ 2.54 [SD]), except for few species with
up to 6 spikes (American rat’s tail grass
[Sporobolus jacquemontii], giant Parramatta
grass [S. fertilis], grader grass [Themeda
quadrivalvis], lantana [Lantana camaral, leu-
caena [Leucaena leucophylla], and mesquite
[Prosopis pallida]), and 7-13 spikes (calo-
trope [Caltropis procera], chinee apple [Zizi-
phus mauritiana], parkinsonia [Parkinsonia
aculeata), prickly acacia [Vachellia nilotical,
and rubber vine [Cryptostegia grandifloral)
(see also Supplementary data File S4). This
trend suggests that species with tendencies for
significant increase in spread rates with time
are mainly trees/shrubs and grasses (Table 1).

Spread rates and patterns

Using segmented regression analysis, 54 of the 91
species (59%) with sufficient time-recorded datasets
have at least one inflection point. Thus, these weeds
showed evidence of non-linear increase in cumulative
distribution with decadal time and hence exhibited lag
phases (Table 1, [Supplementary Data File S2]). 41%
(37 of 91 species) indicated no lag phase, and hence
straight lines on log-arithmetic plots are apparent. As
expected, for both species with linear (N = 37) and
non-linear (N = 54) spread patterns, invasion indices
derived from the herbarium records differ significantly
amongst species (Table 1).

The identity of species with linear (no lag) and non-
linear (lag) spread patterns was significantly
(P < 0.05) influenced by residence time (many
invaders with no lag phase are of recent origin—
Tables 1 and 2), by species-specific traits of life cycle
(species lacking a lag phase are more likely to be
perennials rather than annuals) and introduction
pathway (non-lag phase species are more likely to
come into the novel range via waterways of aquacul-
ture and ballast ships) (Osunkoya OO, unpublished
data). In contrast, life form, biogeographic origin and
the nature of habitat invaded played no significant role
in the dichotomy between species with and without a
lag phase period (Table 2).

No. of weed species
N
w
1

m [

2 3 4 5 6 7 8 9 10 11 12 13 14

No. of invasion waves (Spikes)

Fig. 3 Frequency distribution of invasion waves inferred from
proportion curves. An invasion wave was defined as a phase of
expansion or a period of invasiveness (seen as a spike in

@ Springer

proportion curve) at a time interval of 5-10 years during which
the proportion (of invader relative to native) is increasing more
than 5%
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Typical examples of species with linear (no lag)
and non-linear (lag) spread patterns (with inflection
years) are shown in Fig. 4. Of the 37 species with no
lag phase, majority are of recent introduction with
mean year of arrival of 1965.28 £ 27.10 yr (SD)
compared to species with lag phase of mean year of
arrival of 1928.42 4 29.14 yr (SD). The top ten
species in this group of no lag phase have represen-
tatives of all the plant life forms, except the vine group
(Table 1). Species exhibiting linear (no lag) spread
pattern have a significantly (P < 0.05) lower spread
rate (0.43 £ 0.08 (SE) of 50 x 50 km per year) than
species with non-linear (lag) spread patterns at their

exponential stage (1.94 £ 0.11 (SE)) of 50 x 50 km
per year). Spread rates of linear (no-lag) and non-
linear (lag) expansion species are both influenced by
life form (grass > tree and succulent > herb and
vine > shrub) (Table 2; Fig. 5a).

Lag phase versus exponential phase

Very few species (6/91 = 7%) showed evidence of
two inflection years (Table 1, Fig. 4). After the
expansion phase, two of these six species (water
hyacinth [Eichhornia crassipes]) and annual ragweed
[Ambrosia artemisiifolia]) exhibited asymptotes with
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Fig. 5 Effects of plant life form of invader species on (a) spread rates of species exhibiting linear (non-lag phase) (N = 37) and non-
linear (lag phase) (N = 54) expansion patterns, and (b) lag phase period of invader species exhibiting non-linear expansion patterns

time in their accumulated spread patterns, while four
species indicated evidence of further increase (Bath-
urst burr [Xanthium spinosum], African love grass
[Eragrostis curvula], rubber vine [Cryptostegia gran-
diflora], and lantana [Lantana camara]) (Table 1,
Fig. 4; Supplementary Data File S2).

Within the lag phase period, spread rate as indicated
by slope values differed amongst species (Table 1).
The lag phase ranged between 12-126 years with a
mean of 45.9 & 22.0 yr (SD). The lag phase period of
species of different life forms differed significantly
(P < 0.05) and was of the order: tree (54.3 yrs) >
shrub (52.3 yrs) > grass (51.6 yrs) > vine (40.8
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yrs) > herb (35.2 yrs) > succulent (22.0 yrs) (Fig. 5b;
Table 2). Lag phase was also influenced by residence
time (Table 2), with later arrival (i.e., shorter residence
time) species showing shorter lag phases (Fig. 6a). Of
the six intrinsic and extrinsic traits explored, the
spread rate during the lag phase (slope,,) was
influenced only by residence time (recent
arrival > earlier arrival) and life cycle (spread rate

of perennial > annual) (Table 2). In contrast, spread
rate at the exponential phase (slope,,,,) differed
between life forms (grass > vine = tree > succu-
lent = herb > shrub) (P = 0.03; Fig. 5a), by biogeo-
graphic origin of the weed
(Africa > Asia > America > Europe) (P = 0.001),
by habitat invaded (multiple habitats > ripar-
ian = agricultural

(@ 1g0 .
160 -
140 -
120 -
100 -
80 -
60 -

Residence time (Years)

40 - 000
20 -

0 -

y =1.05x + 33.20
R?=0.64, P < 0.001

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Lag phase period (Years

(b)
2.5 -
=
(1]
()]
>
—~ @ 2.0 - o
S,JQ.
el
S0
[T
w2 1.5 -
3£
g}
= w10 -
TS
¥
58
0.5
s
o
£
0.0 -

y =0.075 + 7.445(1/x)
R?=0.12, P =0.008

0 10 20 30 40 50 60 70 80 90 100 110120 130 140
Lag phase period (Year)

Fig. 6 Bivariate relationships between (a) lag time and residence time, and (b) lag time and spread rates at the lag phase

@ Springer



Lag times and invasion dynamics of established and emerging weeds: insights from herbarium...

125
W (a): Lag time period
e
< 100 A
o
(o]
g 751
o
g 50 -
g
= 25 o
]
=
0 -
@ = £ o H H ® o o o c >
Q s £ a b b = © - 9 5 2
g F s £ £ 2 E 2 % % 2 :
= o o = = o 2 o o E
% ° 8 = = € 'y > o £ e 2 | 4
N = = ] c N 8 - & =
E E-!'? € € a g 0T ® ] € 2 5
b - ® L 2 - T & 5 8 B ]
8 ® T a ] 3 o 1 = - & S 5
5 s £ a v B8 e . () ]
3 “E s £ 3 5% 3 g £
4 5 ® S 3 ae ° @ £
< . O B o 5 -
oo - o c b=
) e o <] £ “
- = - o
- ° £ © o
3 - H 2
& = 8
"
125
(b) Spatial grid cell occupancy (range size)
Q
e
S 100
T
(e}
g 75 -
3
N 50 1
Té’
= 4
5 25
=
0 -
- - 5 - = - — - = _ - -
g £ 2 $ T §T ¥ P 8 % § § =8
2 ) ey -] o = 3 2 o= [ ° > 5
> 2 b - Z ® a @ z 2 s =
g o g ® s @ = < £ T v 2
c o o N o o o = S - SN <] £
(7} b ] o T £ c o @ € a © © 5 = o
3 = v _. &= s o + o H ae e = o ©
o - - 0 = g = 1 o - ®© Q Y
o 53 ° 8 S . & [ © ® T © s
= '] 55 - € c = ‘U" bt = [T £ o
© K] € o @ © o ° S o o 58 E by
> c gga 2% 3T g =z = at % o
H 5 €@ 5= 5 = ‘g c c 9 S
2 S o ot 4] c w ©° ] 5 ©
= o ] I3 - [ E=] - -
s £ 3F % : g ¥
g [ - s o % = =
© o a c
2 T 0w e © -
£ o e S =
g 2
o ©°
o8
Q.
wv

Independent variable

Fig. 7 The relative contribution of factors to the optimal
regression tree generated via CHAID for (a) lag time of 54
invader species exhibiting non-linear spread pattern and (b) final
number of occupied grid cells (i.e., occupancy or range size) for

lands > grasslands > woodland/forests > wetlands)
(P = 0.03) and residence time (P = 0.001) (Table 2).
Lag time itself appeared to have a non-linear, inverse

all species (N =91) studied. The most important variable
always has a relative importance of 100%, and other traits are
ranked in relation to this most important trait

relationship with the slope of spread during this
quiescent period (Fig. 6b). In other words, propensity
to spread decreased non-linearly and precipitously to a

@ Springer



O. O. Osunkoya et al.

minimum with increasing lag time up until 50 years
and changed little thereafter (RZ =0.12, P = 0.008).
In contrast, at the expansion phase, no significant trend
(R2 = 0.01, P = 0.25) was detected between lag time
and spread rate.

We define sleeper weeds as species with lag phase
periods of more than 50 years (sensu Cunningham
2004; Groves 2006). This is a threshold value that is
close to the mean lag phase period of 45.9 £+ 22.0
(SD) years inferred from this study. Minimal spread
rate for lag phase species was also observed beyond
this threshold year in our data set (Fig. 6b). In this
respect, 21/54 (39%) of identified lag phase species (or
21/91 = 23% of all species considered) will fall into
this category. Majority of the categorised sleeper
weeds are trees and shrubs (60%) and occasionally
grasses (20%) or herbs (10%) (Table 1); vines and
succulents are absent. Within species exhibiting lag
phases, sleeper weed species are not significantly
different from their non-sleeper weed counterparts in
spread rate (using raw data, slope;g: 0.29 £ 0.08 vs.
0.34 & 0.06; P =0.12; slope,y,,: 1.17 £ 0.18 vs.
0.97 £ 0.14; P =0.37), nor in terms of species-
specific and historical traits (Table 2). In summary,
using CART analyses to explore the relative influence
of the traits considered, the main determinants of
variation in lag phase period, in decreasing order, are
residence time, overall spread rate (SIOP€;og_normar)s
and plant life form (Fig. 7a; see Supplementary Data
File S6 for the regression tree).

Relative contribution of species-specific
and historical factors on weed spread

CART analyses indicated that the optimal regression
tree for weed spread (as modelled by total number of
grid cells infested, i.e. range size) has six terminal
nodes and four depths (Fig. 8), and explained 94% of
the variation in the dataset. Invasion wave frequency
was responsible for the main split (depth I). Expansion
rate of linear spread (i.e. non-lag phase) species and,
again, invasion wave frequency were the main
discriminators for depth II, and from which three
independent nodes (groupings) are produced. Depth
IIT of the regression tree was driven primarily by the
expansion rate of linear spread (non-lag phase) species
and generated one independent node. The lowest tree
branch (i.e. depth IV with two independent nodes) has
species’ residence time as the main discriminator. The
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Fig. 8 The optimal regression tree model with four depths (I-»
IV) and six terminal nodes (labelled nodes 4, 5, 6, 8, 9, and 10)
for 91 weed species of Queensland, Australia. Range size (total
number of grid cells occupied) was the dependent variable. The
species-specific traits and historical factors, as well as indices of
spread (invasiveness) derived from the constructed proportion
and invasion curves were the predictors. Boxes at the nodes and
leaves showed mean range size (average grid cells occupied)
and n, is the number of species for each group formed. Each split
is labelled with the invasiveness trait and its values that
determine the split. Histogram within a node box provides the
frequency distribution of total grid cells occupied by species
within the group. Species membership of each node can be
found in the last column in Table 1

relative influence of the 12 traits (both as splitter and
surrogate variables) used in building the regression
tree are shown in Figs. 7b. Overall, the relative roles of
factors considered as main determinants of final weed
distribution (grid occupancy) are of the order: Inva-
sion wave frequency > spread rate of non-lag phase
(linear-spread) species > spread rate of lag phase
species at their exponential period (slope,yp,)
> spread rate from proportion data (slope, oporsion)
> residence time. Other traits of moderate importance
are introduction pathway > spread rate at the lag
phase period (slope,,,) of non-linear spread species >
plant life form > and break point (inflection) year.
Habitat invaded, lag time, bio-geographic origin, and
life cycle played little or no role in the total number of
grid cells infested (i.e., range size), and hence in
defining invasiveness (spread).

Discussion

Exploring and scrutinising phases of biological inva-
sions are necessary to tease apart the factors and
processes driving colonisation, naturalisation and/or
spread of introduced species in novel ranges, and to
better predict and reduce the possible negative impact
of the phenomenon. For a significant number of our
study species (41%), the rate of spread is constant,
implying expansion in range size immediately after
introduction and establishment. It appeared that this
group of species adapt quickly to their novel environ-
ment due to habitat/climate similarity to that of their
native range (Mack et al. 2000; Lavoie et al. 2013)
and/or rapid adaptive evolution (Crook 2005; Brandle
and Brandl 2012; Winkler et al. 2019). Multiple
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introductions can also be a contributing factor as it
helps to reduce genetic bottlenecks and offer oppor-
tunities for simultaneous and random meta-population
explosion at numerous infestation foci (Crooks 2005;
Mack et al. 2000; Winkler et al. 2019). An inverse
relationship between lag phase period and number of
introduced populations and/or polyploidization has
often been reported (Brandle and Brandl 2012;
Clements and Ditommaso 2011). Thus, it would be
instructive to examine, for example, the level of
polyploidy and spatial genetic differentiation in non-
lag phase (linear spread) versus lag phase species.

Often, and as found in this study for a greater
proportion of our focal species (59%), lags in popu-
lation growth occur prior to range expansion (Pysek
and Prach 1993; Hobbs and Humphries 1995; Hastings
1996; Williamson et al. 2005; Wangen and Webster
2006; Coutts et al. 2017). The slow population growth
rates that define the lag phase varied among species,
but they are all positive. The observed lag times with
low but positive growth rates can be explained by
purely spatial dynamics such as radial expansion and/
or simple logistic population growth from a single
point (Hastings 1996; Sakai et al. 2001; Crooks 2005),
and demographic stochasticity (Parker 2004; van
Kleunen et al. 2018). Other contributing factors to
occurrence of a lag phase are ecological, including
negative density dependence (e.g. Allee effects and
evolutionary consequences of small population sizes
resulting initially in low genetic diversity, genetic drift
and bottlenecks) (Mack et al. 2000; Sakai et al. 2001;
Clemens and Ditommaso 2011), lack of mutualists
(Parker 2004), long period between reproductive
events (Wangen and Webster 2006), spatial hetero-
geneity (Hastings 1996) and variable habitat connec-
tivity (Mack et al. 2000). The observed lag time range
of 12-126 yrs and mean of 45.9 yrs, as well as the
proportion of weeds classified as having a lag phase
(59%), are similar to values reported in the literature
(Daehler 2009; Larkin 2012; Crooks 2005; Aikio et al.
2010; Hyndman et al. 2015). However, it should be
noted that longer lag times (up to 300 years) have also
been reported for weeds of temperate, Mediterranean,
and other colder (e.g., subantarctic) regions (Kowarik
1995; Weber 1998; Brandle and Brandl 2012).

For species with lag phases, we detected a positive
but non-significant relationship between spread rates
at the lag phase vs. the exponential (expansion) phase
(Supplementary Data File S5). From the trend
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observed, we argue that past or present performance
of a weed is a poor predictor of potential/future
population growth and range expansion. Conse-
quently, the use of lag phase growth to predict future
weeds will have a low explanatory power (Crooks
2005). Better knowledge of drivers of lag phases, such
as the use of a set of intrinsic traits that can reliably
predict the phenomenon, could inform on risks posed
by potential invaders. However, as seen in this study,
apart from residence time, many of the species’
intrinsic traits examined did not differentiate lag phase
from non-lag phase species. This finding echoes the
perplexing submission of many previous workers of a
paradox: the best chances for success in control or
eradication of pests occur when they are low in
abundance and in their lag phases, but lag phase
characteristics offer little information for predicting
which exotic species will eventually become weeds of
tomorrow (Crooks 2005; Aikio et al. 2010; Larkin
2012; Coutts et al. 2017).

A positive relationship between lag time and
residence time was detected. This suggests that new
introductions are spreading faster and earlier than
longer established invaders (Daehler 2009; Aikio et al.
2010). This finding supports the parsimonious asser-
tion that Queensland regions, as in many landscapes
around the globe, may have become more susceptible
to invasion in recent time (Seebens et al. 2018). The
susceptibility is exacerbated by increases in popula-
tion density and economic activities, including land
clearing—making the landscape more interconnected
and disturbed, and hence more receptive to a greater
number of invader species and foci (William and West
2000; Seebens et al. 2018).

Lag times were related to species’ life forms:
shrubs, trees and grasses have longer lag phases than
vines, succulents, and herbs. Longer lag periods are
expected for trees and shrubs as part of their inherent
property of long generation times; grasses have shorter
generation time. A similarity of long lag phases in
trees and grasses, despite differences in life form and
generation time is thus perplexing (see also Sutherland
2004). It is plausible that because members of both
groups were intensely introduced simultaneously in
late 19th and early twentieth centuries (Cook and Dias
2006; van Klinken and Friedel 2018), the subset of
introduced grass species that evolved with time to
become high impact invaders (e.g. grader grass
[Themeda quadrivalvis], hymenachne [Hymenachne
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amplexicaulis] and Aleman grass [Echinochloa poly-
stachia]) have followed similar high spread trajecto-
ries as that of the trees—seemingly encouraged by
ecological novelty (unprecedented human-mediated
changes at different ecological levels), high propagule
pressure and ability to respond to and even alter
natural disturbances of fire and inundation (van
Klinken and Friedel 2018). The subset of introduced
grasses with longer lag phases (> 50 years), and hence
are categorised as sleeper weeds (especially thatch
grass [Hyparrhenia rufa], Parramatta grasses
[Sporobolus fertilis and S. africanus], and fountain
grass [Cenchrus setaceus]), may have lower ability to
cope with recurring fires common in Queensland’s dry
tropics, experience reduced seed bank population, lack
multiple introductions, may be pollen limited, have
reduced hybridisation potential with conspecifics or
congeneric, and have been prone to greater use as
fodders compared to other life forms or weedy grasses
lacking a lag phase (Parker 2004; Poulin et al. 2005;
van Klinken and Friedel 2018).

The observed precipitous decline in herbarium
records of recent time (i.e. this century) for both native
and exotic species (Fig. 1) has also been documented
in Europe and North America, and attributed to
declines in the number of funded floristic projects,
dwindling of trained and amateur plant collectors or
societal perception that herbarium collection is no
longer necessary (Prather et al. 2004; Renner and
Rockinger 2020). Overall, we found four periods of
significant spread (spikes) of weed species (mainly
grasses and trees): 1850s, early 1900s, 1950s, early
2000—with increasing intensity of these spikes from
1950 onward (Fig.2). Note that pre-1930, the
observed spikes in weed spread may not be a robust
finding due to sparse collection efforts at these periods,
thus there is a need for further verification (Aiello-
Lammens 2020). Spikes observed in mid 1950s are in
line with major introduction periods (1930-1960) of
many exotic grasses and trees (62 and 137 species,
respectively) into Australia for agricultural and live-
stock production, including into Queensland, chiefly
through the work of Commonwealth Scientific and
Industrial Research Organisation (CSIRO) and the
State’s Department of Agriculture (Cook and Dias
2006). Land clearing from 1990 onward has encour-
aged the proliferation of weed species seen in
2000-2010 (Neldner 2014). Spikes in weed spread at
the turn of this century have also been linked to

increasing anthropogenic disturbance resulting from
human population growth and commerce (Seebens
et al. 2018; Lang et al. 2019).

The role of residence time in the ecology of
invaders has been widely debated but now recognised
(e.g., Mack et al. 2000; Castro et al. 2005; Pysek and
Jarosik 2005; Wilson et al. 2007; Brandle and Brandl
2012; Schmidt et al. 2017), and was apparent in this
work, especially for lag phase species. Residence time
on its own correlated positively with lag time for an
obvious fact that plants introduced very recently will,
if at all, show only short time lags, while those
introduced a longer time ago, can show both short and
long time lags. Consequently, one expects a decrease
in time lag with decreasing time since introduction
(Brandle and Brandl 2012; Larkin 2012; Aikio et al.
2010). Hence some scholars have downplayed the role
of residence time as a determinant of the spread of
invaders (Aikio et al. 2010; Larkin 2012). However,
the CART analyses of lag phase period and range size
indicated the prominent role residence time plays in
the classification of our focal species (see also Wilson
et al. 2007; Schmidt et al. 2017). Nonetheless, it
should be noted that residence time is less important
than spread rates (a proxy for the complex effect of all
factors related to invasions) in determining range size
of weed species in our study (see also Pysek and
Jarosik 2005). Lastly, apart from plant life form, many
species-specific and historical traits (life cycle, bio-
geographic origin, introduction pathway, and habitat
invaded) played minor or no roles in spread patterns
and rates of invaders in our study. This observation is
in line with previous studies (e.g. Goodwin et al. 1999;
Castro et al. 2005; Sakai et al. 2001; Osunkoya et al.
2019a).

Conclusions

We have demonstrated that herbarium records can
provide valuable information on patterns and spread
rates of introduced species. We are aware of limita-
tions of the use of such repository records, including
biases arising from opportunistic collection. As rec-
ommended (Delisle et al. 2003; Antunes and Schamps
2017), we have standardised the dataset with native
species data collected at the same period in Queens-
land and used the ensuing proportion curve to validate
many of the findings. However, collection biases
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between invaders and native species in the same
locality cannot be completely dismissed (Fuentes et al.
2013; Lang et al. 2019). It is heartening to note that
robust methods (e.g. simulated vs. real data, and
rarefaction analyses) are being developed to address
the challenge (Lavoie 2013; Aiello-Lammens 2020).

Like in many studies, we showed that lag phase is a
common phenomenon for many (but not all) weeds,
though our reported values are not as high as those of
some previous work (e.g., Kowarik 1995; Weber
1998). Our use of segmented regression method (see
Muggeo 2008) to estimate spread rate and inflection
years is an improvement over techniques used in the
past (i.e., eye-balling and/or piecewise model fittings).
Segmented regression procedure has a higher statis-
tical power, generating and evaluating different slopes
simultaneously for specific values of our continuous
predictor (i.e., time). We advocate the use of such
techniques in future biological invasion work.

The low predictive power of lag time on range size,
or our inability to identify a set of species-specific and
historical factors to link with lag time, will suggest that
retrospective analyses like the one done here offer us
little hope in the development of robust generalisation
to identify weeds of tomorrow. Lag time reflects
genetic, demographic, habitat and climatic challenges.
Hence, disentangling the relative power of these non-
mutually exclusive processes on lag time is fraught
with difficulty (Brandle and Brandl 2012; Coutts et al.
2017). Nonetheless, we have identified a group of
species that exhibit lag periods > 50 years prior to
exponential population growth (sleeper weeds; see
Table 1). While many of these lag phase weeds are
listed in the State of Queensland Biosecurity Act 2014
and are being proactively managed either for eradica-
tion and/or integrated weed management (e.g. lantana
[Lantana camara], rat’s tail grasses [Sporobolus
complex], and water hyacinth [Eichhornia crassipes]),
others in the same category are not formally listed
(specifically, lippia [Phyla canescens], calotrope
[Caltropis procera], thatch grass [Hyparrhenia rufal,
and Chinese violet [Asystasia gangetical). We hope
the afore-mentioned, unlisted weeds attract attention
for policy and necessary management actions, espe-
cially because many are still confined to few regions or
local government areas (see Osunkoya et al. 2020).
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