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A B S T R A C T   

This study aimed to develop an automated technique, which is rapid, non-destructive and inexpensive, to test for 
rancidity of nuts. A visible to near infrared benchtop hyperspectral camera was used to capture images from 
blanched canarium, unblanched canarium and macadamia samples. Support vector machine classification (SVC) 
and PLSR models were developed to segregate the pooled spectra of the nuts and predict their peroxide values 
(PV) and free fatty acid (FFA) concentrations. The SVC and PLSR models were then used in a hierarchical model 
to develop an automated system for predicting PV and FFA. The automated model was then tested using a test set 
providing classification accuracy of 87% and R2 between 0.60 and 0.76 and RPD between 1.6 and 2.7 for PV and 
FFA prediction. Overall, the automated system has the potential commercial application in nut processing to 
detect rancidity of mixed nut samples non-destructively and in real-time. It is suggested to train other machine 
learning models with more samples to improve the accuracy of predictions.   

1. Introduction 

Nuts are important source of protein, nutrients, carbohydrates, un-
saturated fat, fibre and vitamins, and are therefore recommended for 
daily consumption as a part of a healthy diet (Brufau et al., 2006; Ros, 
2010). Unsaturated fats are, however, susceptible to oxidation when 
exposed to light, oxygen, heat, moisture and postharvest processing 
(Hosseini Bai et al., 2019a, 2019b). Nut oil oxidation accelerates 
rancidity and shortens shelf-life of nuts (Bai et al., 2019; Shahidi & John, 
2013). Nut rancidity is usually estimated by measuring peroxide value 
(PV) and free fatty acid (FFA) concentrations (Franklin et al., 2017; Yang 
et al., 2013). Analyses of PV and FFA in nuts using methods such as 
titration, mass spectrometry and instruments such as an OxiTester are, 
however, expensive and time-consuming. Furthermore, these methods 
are destructive and do not allow continuous monitoring of the nut 
quality during processing and storage. Rancid nuts usually remain un-
detected until they have an off-flavour and have contaminated other 
nuts in the same batch. New methods are required that can monitor the 
quality of the nuts during storage in real time, and are inexpensive, rapid 
and non-destructive. 

Laboratory-based hyperspectral imaging (HSI) is a non-destructive 
technology that measures hundreds of narrow wavelengths and gives 

spectral information over spatial dimensions (Manley, 2014). The cor-
relations between the reflectance/absorbance from the spectral dimen-
sion (wavelengths) with the concentration of the targeted material are 
used to predict concentrations of various chemicals (Sun, 2010). The 
spatial dimension gives HSI an advantage over visible-to near-infrared 
(VNIR) spectroscopy since HSI can produce a chemical map/images for 
non-homogenous surfaces (Manley, 2014). The spatial dimension in HSI 
is also an advantage for homogeneous surfaces since it uses the average 
reflectance of several pixels and therefore has higher accuracy and 
reproducibility compared with the single points used in VNIR spec-
troscopy (Manley, 2014). Moreover, HSI has the potential for simulta-
neous measurement of multiple quality attributes in a single operation 
(Sun, 2010). 

In the recent years, HSI has been successfully adopted in the VNIR 
region (400–1700 nm) for food quality assessment, food safety control 
and classification (Bai et al., 2018; Calvini et al., 2015; Gowen et al., 
2007; Kämper et al., 2020; Qin et al., 2020). HSI has also been suc-
cessfully used in nut quality assessment (Cheng et al., 2018; Gama et al., 
2018; Jiang et al., 2016; Yang et al., 2013). For example, HSI has been 
used for analysing moisture content and textural characteristics of pis-
tachio (Mohammadi-Moghaddam et al., 2018), detecting aflatoxin and 
deoxynivalenol in hazelnuts and wheat kernels (Kalkan et al., 2011; 
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Liang et al., 2020) and classifying internally damaged almond nuts 
(Nakariyakul & Casasent, 2011). HSI has been used to investigate pro-
tein, oil concentration, nutrient concentration, moisture content and 
fungal contamination in peanut, almond and canarium samples (Cheng 
et al., 2018; Gama et al., 2018; Jiang et al., 2016; Jin et al., 2015; Qiao 
et al., 2017; Sun et al., 2020). In our complementary study, the con-
centrations of PV in canarium nuts (blanched) have been successfully 
predicted using HSI and partial least squares regression (PLSR) models 
(Bai et al., 2018). However, nuts are often packaged and sold in mix-
tures. Therefore, identifying and segregating the spectral signatures of 
various nut species are important for predicting rancidity of each nut 
where the samples are mixed. Nut identification using HSI can then be 
used to develop an automated system for predicting nut rancidity. To the 
best of our knowledge, this is the first study using HSI for simultaneous 
classification and prediction of PV and FFA in a pooled spectra of nuts 
(blanched and unblanched canarium and macadamia) using an auto-
mated system. 

This study aimed to 1) investigate the capabilities of a VNIR HSI 
system for segregating the pooled spectra of mixed samples including 
blanched canarium, unblanched canarium and macadamia samples; 2) 
assess the potential of the HSI for predicting PV and FFA in the blanched 
and unblanched samples; and also 3) develop an automated system that 
can predict both PV and FFA using the pooled spectra of nut samples. We 
hypothesised that the differences among HSI reflectance data from 
various nuts samples could be used to segregate the pooled spectra. We 
also hypothesised that the HSI reflectance data could be used to predict 
PV and FFA in the classified samples using PLSR models correlating the 
spectral data with the PV and FFA concentrations. 

2. Material and methods 

2.1. Sample collection and preparation 

The canarium fruits were sourced from a canarium factory in Kere-
vat, Papua New Guinea. The canarium factory received freshly collected 
fruits from various villages and plantations across East New Britain over 
a fruit season in 2017. The fruits were carefully assessed for high quality 
at the factory gate to ensure all fruits were fresh. The fruits were then 
pooled and mixed in the factory before processing to ensure samples 
collected for this experiment would be randomised. The fruit pulps were 
removed manually from the canarium shells, before cracking (Walton 
et al., 2017). The canarium shells were cracked and samples were then 
blanched in hot water (100 ◦C) for 90 s. The testa of the blanched 
samples was then manually removed. The remaining samples were kept 
as unblanched canarium. All canarium samples were oven dried at 40 ◦C 
until the moisture content of the samples reached 4.50%. In total, 190 
blanched and 70 unblanched canarium samples were prepared 
(Table 1). Macadamia samples were sourced from two orchards located 
in Queensland and New South Wales. The macadamia fruits were 
dehusked and placed in ovens to dry within the first 24 h of collecting as 
described in Gama et al. (2020) to ensure the initials quality of kernels 
were not compromised. In total, 130 macadamia samples were prepared 
(Table 1). 

Both canarium and macadamia samples were subject to accelerate 

ageing at 45 ◦C for 24 days to increase the variation in PV and FFA data 
(Bai et al., 2018; Gama et al., 2020). Each nut group was divided into 
two sub-groups. One sub-group of samples was stored at room temper-
ature and one sub-group of samples was stored at 45 ◦C for 24 days. 

2.2. PV and FFA determination 

The samples were then crushed using a garlic crusher and added to 
80 mL of pentane and stirred for 20 min. The pentane was then removed 
from the oil using an air-tight vacuum rotator, (BÜCHI Labortechnik AG, 
Switzerland). The extracted oil was collected and stored at 4 ◦C for 
further analyses. 

An OxiTester Touch Analyser (Olive OxiTtester, Sw version 1.22, 
CDR, Ginestra, Fiorentina, Florence, Italy) was used to measure PV and 
FFA at day 24 following the incubation. 5 μL and 2.5 μL oil were placed 
in glass cuvettes containing relevant reagents to test PV and FFA, 
respectively. The intensity of the colour developed after adding oils to 
reagents was measured at 505 nm and 630 nm for PV and FFA samples, 
respectively. The PV and FFA were expressed as meq O2/kg and per-
centage of oleic acid, respectively. 

2.3. HSI system and image acquisition process 

Hyperspectral images of the samples were acquired using a 
laboratory-based VNIR hyperspectral camera in the spectral region of 
400–1000 nm in an illumination-controlled condition at the University 
of the Sunshine Coast, Australia. The HSI system comprised a 12-bit 
push-broom camera (Pika XC2, USA) with the spectral resolution of 
~1.3 nm producing 462 spectral wavelength bands, four current- 
controlled wide spectrum quartz halogen light powered by a contin-
uous current supply to avoid light flickering, a linear translation stage 
and a data acquisition software (SpectrononPro 2.94, Resonon, USA). 

The samples were placed on the moving stage and moved to the 
camera’s field of view. The exposure time and speed of the moving stage 
were set at 27.31 ms and 147 pps, respectively. The region of interest 
(ROI), which was the area covered by all the samples used in each 
replicate, were selected and the average signal intensity (R0) of all the 
ROI pixels (ca. 200,000 pixels) was extracted using the SpectrononPro 
software. To transform the signal intensities obtained from the hyper-
spectral camera to the reflectance values, image correction was con-
ducted using the dark and white reference images using Eq. (1) 
(Tahmasbian, Xu, et al., 2018; Tahmasbian, Bia, et al., 2018; Han, Liu, 
Khoshelham, & Bai, 2021).  

R = (R0 − D)/(W − D)                                                                    (1) 

where R is the reflectance at each wavelength, R0 is the average signal 
intensity of ROI at the corresponding wavelength and D and W are the 
signal intensity of the dark and white reference images, respectively. 
The dark image was captured when the lens of the camera were 
completely closed with its opaque cap and the white image was captured 
from a uniform and high white reflectance (99.9% diffuse reflectance). 

Table 1 
Descriptive analysis of canarium and macadamia kernels in both calibration and test sets.    

Calibration set Test set 

No. Mean SD CV Min Max No. Mean SD CV Min Max 

Blanched canarium PV 65 2.11 1.31 0.62 1.03 6.5 13 2.37 1.11 0.47 1.18 5.2 
Unblanched canarium PV 70 1.94 1.41 0.72 0.3 5 14 2.19 1.7 0.77 0.3 5 
Blanched canarium FFA 190 0.11 0.06 0.57 0.02 0.27 38 0.10 0.06 0.55 0.02 0.27 
Unblanched canarium FFA 70 0.08 0.03 0.40 0.03 0.16 14 0.07 0.03 0.38 0.03 0.13 
Macadamia FFA 130 0.11 0.05 0.44 0.02 0.02 26 0.11 0.05 0.48 0.02 0.2 

SD: standard deviation, CV: coefficient of variations, Min: minimum, Max: maximum, PV: peroxide value (meq O2/kg) and FFA: free fatty acid (%). 
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2.4. Data analysis and model development 

We first developed a supervised support vector machine classifica-
tion (SVC) model to segregate the spectral reflectance of the different 
samples. Then, PLSR models were developed to predict PV and FFA 
separately in blanched canarium and unblanched canarium and to 
predict FFA in macadamia samples. The SVC and the PLSR models were 
finally combined using a hierarchical model to develop an automated 
system which classifies the pooled spectral reflectance data of a test 
dataset into blanched canarium, unblanched canarium and macadamia 
and predict PV and FFA in each category (details below). 

2.4.1. Data cleaning, division and transformation 
Hotelling’s T2 test within 99% of confidence level was performed to 

identify the spectral outliers in the datasets (Tahmasbian, Xu, et al., 
2018). Then, the dataset was randomly divided into two separate 
datasets using 80% of the data (calibration set), to develop the models, 
and 20% of the data, that were not used to develop the model (test set), 
to test the developed models (Tahmasbian, Bia, et al., 2018). See Table 1 
for number of samples. There were no significant differences between 
the means in the calibration and test using a t-test (p > 0.05). 

The calibration data were then subjected to different data trans-
formations including standard normal variate (SNV), first derivative 
(1dv), second derivative (2dv), de-trend and multiple scatter correction 
(MSC) prior to SVC and PLSR modelling for reducing the artefacts and 
increase the signal-to noise-ratio. All the data transformations were 
conducted using the Unscrambler software package (version10.5.1, 
CAMO Software Inc., Trondheim, Norway). 

2.4.2. SVC model development 
The SVC is an emerging data classification technique which has been 

of great interest to classify high-dimensional data such as hyperspectral 
data (Xu et al., 2017). In the present study, different kernel types of SVC 
including linear, polynomial, radial bases function and sigmoid were 
used on both C-SVC and ν-SVC. A systematic grid search method was 
used to selected the optimal values of C, ν and γ parameters (Xu et al., 
2017). Various types of data transformation were conducted prior to the 
SVC. The accuracy of the classification was defined by the percentage of 
the correctly classified spectra. The most accurate SVC was then selected 
for use in the hierarchical model. The SVC models were developed using 
the Unscrambler software package (version10.5.1, CAMO Software Inc., 
Trondheim, Norway). 

2.4.3. PLSR model development 
Five separate PLSR models were developed to correlate the spectra of 

samples to their corresponding value of (1) PV in blanched canarium, (2) 
PV in unblanched canarium, (3) FFA in blanched canarium, (4) FFA in 
unblanched canarium and (5) FFA in macadamia samples. The number 
of latent variables of each PLSR models was set to the lowest predicted 
residual error sum of square (PRESS) calculated using Eq. (2) (Malmir 
et al., 2019, 2020). 

PRESS=
∑n

i=1

(
Yi –Ŷi

)2
(2)  

where Yi and Ŷi are the reference and predicted values of each target 
variable in the i th sample, respectively. 

The initial PLSR models were developed using the differently 
transformed calibration data. The models providing the highest accu-
racy of prediction (high R2 and low RMSE) in the calibration and cross- 
validation sets were selected for further processes. 

The wavelengths with the lowest β coefficient in each selected initial 
model were removed and the models were re-developed using the 
remaining (informative) wavelengths (Kamruzzaman et al., 2016). The 
removed wavelengths were returned to the models in the case where the 
accuracy of the models reduced after wavelength selection. The process 

was repeated until the highest accuracy of the PLSR models were ach-
ieved (Bai et al., 2018; Malmir et al., 2019; Tahmasbian et al., 2017). 
The wavelength selection was conducted in an attempt to simplify the 
calculations and to reduce the dimensionality of the hyperspectral data 
(Wold et al., 2001). The models developed using informative wave-
lengths were selected as the final models and were used in the hierar-
chical model. The variable importance in projection (VIP) was used to 
select the most important wavelengths in the final models for further 
analysis. VIP was calculated using Eq. 3. PLSR modelling was conducted 
using the Unscrambler software package (version10.5.1, CAMO Soft-
ware Inc., Trondheim, Norway). 

VIPj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑F
f=1 w2

jf . SSYf . J
SSYt . F

√

(3)  

where, VIPj was the importance of j th wavelength in the model with F 
number of components, Wjf was the loading weight of the corresponding 
wavelength in the f th component, SSYf was the explained sum of squares 
of the target variable in the f th component, SSYt was the total sum of 
squares of the target variable and J was total number of wavelengths. 
The most common threshold set for VIP is 1, above which the wave-
lengths are considered important (Oussama et al., 2012; Williams et al., 
2012). However, we used a more strict threshold of VIP>1.5 as the most 
important wavelengths to simplify the discussion due to the large 
number of the selected bands in the current study (Kandpal et al., 2016). 

2.5. Model evaluation 

The classification accuracy was evaluated by calculating the per-
centage of the correctly classified samples and the prediction accuracies 
were evaluated by R2 and RMSE in both calibration and cross-validation 
sets. The cross-validation method was a k-fold (k = 10) method (Kohavi, 
1995). The ratio of performance to deviation (RPD) was also calculated 
using Eq. 4 to further evaluate the reliability of the predictions (Bel-
lon-Maurel et al., 2010). The models with 1.4 < RPD <2 were consid-
ered as reliable and those with RPD >2 were considered as highly 
reliable (Bellon-Maurel et al., 2010). The RPD was calculated using 
Microsoft Excel 365 ProPlus.  

RPD = SDt / RMSEt                                                                        (4) 

where SDt and RMSEt are the standard deviation of the reference and 
root mean square error of prediction in the test set, respectively. 

3. Results 

3.1. Descriptive analysis 

The spectra of the blanched canarium and macadamia showed an 
approximately similar trend in the studied region of 400–1000 nm 
(Fig. 1). The average reflectance of unblanched canarium was lower 
than those of blanched canarium and macadamia. There was an obvious 
difference in the spectral signature of the unblanched canarium 
compared with those of blanched canarium and macadamia. However, 
spectra of the all three types of kernels overlapped in the spectral region 
of 950–1000 nm (Fig. 1). 

3.2. SVC descriptions 

The best classification (90% accuracy in calibration and cross- 
validation sets) was obtained using a ν-SVC with a 3-degree poly-
nomial kernel, ν of 0.44 and γ of 0.01, developed using the MSC + 1dv 
transformed data. The MSC + 1dv improved the accuracy of prediction 
by 4% compared with that of raw data (86% of accuracy in the cross- 
validation set). The confusion matrix showed that most of the mis-
classifications occurred between blanched canarium and macadamia, 
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resulting in 80% accuracy, whereas all the unblanched canarium and macadamia samples were classified correctly—100% accuracy 
(Table 2). The transformation reduced the overlaps in the spectra be-
tween the raw and transformed spectral signature of the blanched 
canarium and macadamia (Fig. 1a vs. Fig. 1b). 

3.3. PLSR model descriptions 

The best initial models for PV in blanched canarium (R2
c = 0.76 and 

R2
cv = 0.58) and unblanched canarium (R2

c = 0.94 and R2
cv = 0.89) were 

developed using 2dv-transformed data and raw data, respectively 
(Table 3). The best initial models for FFA in blanched canarium (R2

c =

0.68 and R2
cv = 0.55), unblanched canarium (R2

c = 0.64 and R2
cv = 0.40) 

and macadamia (R2
c = 0.50 and R2

cv = 0.33) were developed using OSC- 
transformed data, 2dv-transformed data and raw data, respectively 
(Table 3). The prediction accuracy of the models improved after 
removing the uninformative wavelengths from the models. The accu-
racy of the final models (with only informative wavelengths) were R2

c =

0.76 and R2
cv = 0.60 for PV prediction in blanched canarium, R2

c = 0.95 
and R2

cv = 0.89 for PV in unblanched canarium, R2
c = 0.75 and R2

cv = 0.67 
for FFA prediction in blanched canarium, R2

c = 0.72 and R2
cv = 0.54 for 

FFA in unblanched canarium and R2
c = 0.88 and R2

cv = 0.70 for FFA in 

Fig. 1. The (a) raw spectra and (b) transformed spectra of blanched canarium, unblanched canarium and macadamia.  

Table 2 
Confusion matrix of support vector machine classification (SVC) representing 
the number of nuts predicted correctly versus those predicted incorrectly using 
SVC.    

Blanched 
canarium 
(Reference) 

Unblanched 
canarium 
(Reference) 

Macadamia 
(Reference) 

Calibration Blanched 
canarium 

152 0 1 

Unblanched 
canarium 

5 70 0 

Macadamia 33 0 129 
Test set Blanched 

canarium 
28 0 0 

Unblanched 
canarium 

1 14 0 

Macadamia 9 0 26 

Sum of the numbers in each column represents the actual number of samples of 
that specific nut (in calibration or test sets), while the number in each raw 
represents the number of classified nuts for that specific class. Higher number in 
the matched column and raw shows better prediction. 
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macadamia (Table 3). The final models were included in the hierarchical 
models to automatically predict the PV and FFA values using the spectra 
of blanched canarium, unblanched canarium and macadamia classified 
using SVC. 

3.4. Selecting the informative and the most important wavelengths 

The number of informative wavelengths selected for predicting PV in 
blanched canarium, PV in unblanched canarium, FFA in blanched 
canarium, FFA in unblanched canarium and FFA in macadamia samples 
were 292, 377, 241, 440 and 321, respectively. The number of most 
important wavelengths were 12, 6, 25, 14 and 3 for PV in blanched 
canarium, PV in unblanched canarium, FFA in blanched canarium, FFA 
in unblanched canarium and FFA in macadamia samples, respectively 
(Fig. 2). The most important wavelengths for predicting PV in blanched 
canarium were located in the spectral regions of 400–410 nm and 
925–935 nm and those of PV in unblanched canarium were located in 
the region of 773–781 nm (Fig. 2). The most important wavelengths for 
the prediction of FFA in blanched canarium were located in the spectral 
region of 737–805 nm, those for prediction of FFA in unblanched 
canarium were located in the region of 403–415 and 763–764 nm in 
addition to 791 nm (Fig. 2). For the prediction of FFA in macadamia, the 
most important wavelengths were 774 nm, 777 nm and 998 nm (Fig. 2). 

3.5. Evaluating the automated classification and prediction performance 
of the models using the test set 

The hierarchical model was tested using the test set comprising 
blanched canarium, unblanched canarium and macadamia samples. The 
results indicated that, overall, 87% of the samples were classified 
correctly. All of the unblanched canarium and macadamia were classi-
fied correctly, 100% accurate classification (Table 2). However, there 
were some misclassifications for blanched canarium which were clas-
sified as macadamia, 73.6% accurate classification (Table 2). 

The correctly classified samples were entered the PLSR models 
developed for prediction of PV and FFA in each specific class. The PVs 
were predicted in blanched canarium and unblanched canarium in the 
test set with R2

t of 0.60, RMSEt of 0.90 meq O2/kg and RPD of 1.6 and R2
t 

of 0.76, RMSE2 of 0.81 meq O2/kg and RPD of 2.0, respectively (Fig. 3a 
and b). The FFA values were predicted in blanched canarium, 
unblanched canarium and macadamia with R2

t of 0.70, RMSE2 of 0.03% 
and RPD of 2.0 and R2

t of 0.76, RMSE2 of 0.01% and RPD of 2.7 and R2
t of 

0.71, RMSE2 of 0.16% and RPD of 1.8, respectively (Fig. 2c–e). 

4. Discussion 

Our results showed that the automated system successfully segre-
gated the pooled spectral reflectance of the nut samples and predicted 

PV and FFA in unblanched canarium, blanched canarium and macad-
amia with high classification and prediction accuracy. The automatic 
detection of the nuts’ spectra in the pooled samples gives the HSI a 
potential for identifying the targeted nuts and removing impurities. The 
HSI has the capacity to analyse bulk samples in real time compared with 
destructive samples analysing only one subsample in long period of time 
(less representative results). The rapid analysis of all nuts would also 
reduce the waste by early detection and removal of the rancid nuts. 
Thus, HSI in combination with SVC and PLSR modelling has potential 
commercial applications in nut processing as an automated system that 
can detect and remove rancid nuts in mixed samples. 

This is the first study that used a VNIR (400–1000 nm) HSI system for 
classification of pooled nuts spectra and automatically predicted PV and 
FFA in the nut samples. In other studies, the concentrations of PV and 
FFA in corn kernels, sunflower seeds and macadamia single nuts have 
been predicted using HSI/VNIR spectroscopy operated in various spec-
tral regions from 950 nm to 2500 nm (Canneddu et al., 2016; Cantarelli 
et al., 2009; Weinstock et al., 2006). In our study, however, HSI 
(400–1000 nm) was the system used to predict PV and FFA in canarium 
and macadamia samples. The HSI system used in this study included a 
spatial dimension, using the average of several pixels (ca. 200,000 
pixels) compared with NIR spectroscopy where only one or limited pixel 
is used (Manley, 2014). Using the average of several pixels would result 
in an increased accuracy, reliability and reproducibility of the prediction 
due to increasing signal to noise ratio, compared with NIR spectroscopy 
(Manley, 2014). Hence, using the average of several pixels of each 
hyperspectral image captured with a high resolution HSI camera may 
explain why we were able to predict PV and FFA in the nuts in a smaller 
range of spectral reflectance (400–1000 nm). 

Classification of the nuts, however, was more challenging in the 
spectral range of 400–1000 nm, due to the complete overlap of the raw 
spectra measured from blanched canarium and macadamia samples in 
this spectral range. The blanched canarium and macadamia kernels have 
similar light cream colour. The similar light colour might explain the 
overlapped spectral signature of blanched canarium and macadamia 
kernels. The data transformation, however, reduced the overlaps be-
tween blanched canarium and macadamia spectra, in the most part of 
the spectra. The effects of transformation might be attributed to 
removing baseline using MSC and 1dv, which resulted in higher signal to 
noise ratio (Manley, 2014). Other studies have also used data trans-
formation techniques to distinguish the nuts having almost similar 
spectra. For example, a combination of SNV and 2dv has been used prior 
to separating the marketable shelled macadamia nuts from those 
defected with citrus fruit borer (Ecdytolopha aurantiana) using NIR 
spectroscopy (Canneddu et al., 2016). The 1dv and 2dv have also been 
used to distinguish insect-damaged and fungal-infected chestnuts and 
almonds using NIR spectroscopy (Liang et al., 2015; Moscetti et al., 
2014). Therefore, specific data transformations are required to be 

Table 3 
Initial and final partial least squares regression (PLSR) models properties.     

TF WL No. LV No. R2
c  R2

cv  RMSEc  RMSEcv  

Initial models Blanched canarium PV 2dv 462 6 0.76 0.58 0.64 0.89 
Unblanched canarium PV Raw 462 11 0.94 0.89 0.32 0.47 
Blanched canarium FFA OSC 462 4 0.68 0.55 0.04 0.04 
Unblanched canarium FFA 2dv 462 5 0.64 0.40 0.02 0.03 
Macadamia FFA Raw 462 12 0.50 0.33 0.04 0.05 

Final models Blanched canarium PV 2dv 292 6 0.76 0.60 0.64 0.87 
Unblanched canarium PV Raw 377 11 0.95 0.89 0.32 0.47 
Blanched canarium FFA OSC 247 4 0.75 0.67 0.03 0.04 
Unblanched canarium FFA 2dv 440 5 0.72 0.54 0.02 0.02 
Macadamia FFA Raw 331 15 0.88 0.70 0.09 0.14 

PV: peroxide value, FFA: free fatty acid, TF: transformation, WL: wavelengths, LV: latent variable, 2dv: second derivative, OSC: orthogonal signal correction. R2
c : 

coefficient of determination for calibration set, R2
cv: the coefficient of determination for cross-validation set, RMSEc: root mean square error for calibration (meq O2/kg 

for PV and % for FFA), RMSEcv: root mean square error for cross-validation (meq O2/kg for PV and % for FFA). The initial models are the models developed using full 
number of wavelengths and the final models were developed using informative wavelengths. 
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considered to decrease the overlap among spectra of various nut species 
when models are developed in pool dataset. 

We were able to predict PV and FFA in blanched and unblanched 
canarium and FFA in macadamia, automatically after classification, 
with R2

t between 0.60 and 0.76 and RPD between 1.6 and 2.7. The RPD 
over 1.4 shows reliable to highly reliable prediction accuracies (Bel-
lon-Maurel et al., 2010). Little published information is available to 
compare these results with. In our complementary study, we have 
compared a push broom and a staring camera (400–1000 nm) for pre-
dicting PV in canarium nuts (blanched only) providing prediction ac-
curacies within the same range as this study (Bai et al., 2018). PV and 
FFA in unblanched canarium and macadamia have not been investigated 
in the study undertaken by Bai et al. (2018). In both the current and 
complementary studies, the accuracy of the predictions were improved 

after removing the uninformative wavelengths. The improved accu-
racies after removing the uninformative wavelengths might be due to 
the reduced inter-correlation of the wavelengths (Wold et al., 1996). 

The most important wavelengths for the prediction of PV and FFA in 
the blanched and unblanched canarium and in macadamia samples were 
observed in the spectral regions of 400–415 nm, 730–790 nm and 
926–1000 nm, while the regions of 500–700 nm and 800–900 nm were 
less important (still used in the models as informative wavelengths). 

It should be noted that the main reasons to explain why PV and FFA 
concentrations were predicted in VNIR range remain uncertain. How-
ever, previous studies have attributed the reflectance/absorbance in 
910–990 nm to C–H third overtone associated with protein and oil 
contents and O–H first and second overtones related to water and starch 
contents (Curran 1989). Both PV and FFA have O–H and C–H groups and 

Fig. 2. The most important wavelengths for the prediction of a: PV in blanched canarium (BlaC), b: PV in unblanched canarium (UBlaC), c: FFA in BlaC, d: FFA in 
UBlaC and e: FFA in macadamia. VIP is variable importance in projection. Wavelengths with VIP larger than 1.5 (red line) are the most important wavelengths. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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are associated with oil oxidation which may explain the mechanisms 
behind the results achieved in this study. Nut rancidity which occurs 
with PV and FFA accumulation may lead to subtle nut colour changes 
which may not be visible. The variations in the nut colour, affected by 
varying concentrations of PV and FFA, might be another reason for the 
successful prediction of PV and FFA in VNIR range. Previous studies 
measured oil and fatty acid concentrations using NIR spectroscopy, in 
sunflower, perilla and Brassica seeds, reported that the best wavelengths 
are located in 1600 nm–1800 nm and around 2310 nm (Kaur et al., 
2016; Kim et al., 2007; Sen et al., 2018; Velasco et al., 1999). Therefore, 
more studies are recommended to investigate the mechanisms whereby 
the predictions of PV and FFA in canarium and macadamia were possible 
using HSI in VNIR spectral range. 

Prediction of the PV and FFA contents of canarium and macadamia in 
the VNIR range would help to reduce the cost of equipment as HSI 
cameras operated in the VNIR range are more affordable than SWIR 
(1000–2500 nm) HSI cameras. Further, selecting the important spectral 
regions for prediction of PV and FFA enhances the producing/selecting 
lower cost multispectral cameras that cover the region of interest only 
and produces less inter-correlated wavelengths. The HSI system used in 
this study also has potential to be calibrated for rapid and inexpensive 
monitoring the quality of other nuts and foods. 

5. Conclusions 

An automated system was designed and used to segregate the pooled 
spectra of different nut samples, including blanched and unblanched 

canarium and macadamia, and to predict PV and FFA in the nuts clas-
sified nuts. The SVC classification of the spectra provided 90% and 87% 
accuracy in the calibration and the test sets respectively. The PLSR 
models showed acceptable predictions with R2 between 0.6 and 0.76 
and RPD between 1.6 and 2.7. The results indicated that the HSI com-
bined with SVC and PLSR can be used to detect rancidity of mixed nut 
samples rapidly and non-destructively and has potential commercial 
applications in nut storage and processing. There is also potential 
application for the HSI system developed in this study to be calibrated 
for identifying/classifying other nuts/foods and predicting various 
properties. More studies are recommended to improve the calibration 
using more samples and training other machine learning algorithms and 
to investigate the mechanisms enabled prediction of PV and FFA in VNIR 
spectral range. 
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