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The use of appropriate statistical methods has a key role in improving the accuracy of
selection decisions in a plant breeding program. This is particularly important in the early
stages of testing in which selections are based on data from a limited number of field
trials that include large numbers of breeding lines with minimal replication. The method
of analysis currently recommended for early-stage trials in Australia involves a linear
mixed model that includes genetic relatedness via ancestral information: non-genetic
effects that reflect the experimental design and a residual model that accommodates spa-
tial dependence. Such analyses have been widely accepted as they have been found to
produce accurate predictions of both additive and total genetic effects, the latter providing
the basis for selection decisions. In this paper, we present the results of a case study of 34
early-stage trials to demonstrate this type of analysis and to reinforce the importance of
including information on genetic relatedness. In addition to the application of a superior
method of analysis, it is also critical to ensure the use of sound experimental designs.
Recently, model-based designs have become popular in Australian plant breeding pro-
grams. Within this paradigm, the design search would ideally be based on a linear mixed
model that matches, as closely as possible, the model used for analysis. Therefore, in
this paper, we propose the use of models for design generation that include information
on genetic relatedness and also include non-genetic and residual models based on the
analysis of historic data for individual breeding programs. At present, the most com-
monly used design generation model omits genetic relatedness information and uses
non-genetic and residual models that are supplied as default models in the associated
software packages. The major reasons for this are that preexisting software is unaccept-
ably slow for designs incorporating genetic relatedness and the accuracy gains resulting
from the use of genetic relatedness have not been quantified. Both of these issues are
addressed in the current paper. An updating scheme for calculating the optimality crite-
rion in the design search is presented and is shown to afford prodigious computational
savings. An in silico study that compares three types of design function across a range of
ancillary treatments shows the gains in accuracy for the prediction of total genetic effects
(and thence selection) achieved from model-based designs using genetic relatedness and
program specific non-genetic and residual models.
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1. INTRODUCTION

Plant breeding is focused on the objective of genetic improvement, producing new vari-
eties with increased productivity and quality. Most plant breeding programs follow a method
of breeding referred to as a pedigree selection method. This method implies that programs
are structured around the grouping of breeding lines which have been derived as progeny
of a fixed number of crosses between elite parents. Different crosses are made each year,
and the cohort of breeding lines then undergoes selection through preliminary and advanced
stages of testing.

Traits of interest for selection in the preliminary stage include disease and herbicide
tolerance, phenology type and functional grain quality. Selection intensity is high, reflecting
the relatively high heritability of these traits or the ability to use marker-assisted selection
techniques for simply inherited traits.

Typically, selection in the advanced stages occurs in a sequential manner. These stages
are referred to as the S1, S2, S3 and S4 stages. The key selection trait in the advanced
stages is grain yield. Yield data for each stage are generated from a series of field trials
sown at several locations. Trials typically include the set of breeding lines of interest and
also some check varieties, which will collectively be termed entries. This paper focuses on
S1 and S2 stage trials, and we refer to these as the early-stage trials. The number of entries
which are evaluated at the S1 and S2 stages often exceeds 1,000, while at the S3 and S4
stages, the number of entries tested is generally less than 100. At the S1 and S2 stages,
resource and seed limitations reduce the numbers of locations and plots that can be used for
each breeding line. Replication within a location is often less than two, and the number of
locations is usually less than four. For the S3 and S4 stages, entries are evaluated at up to
ten locations, with between two and three replicates per location. Given the relatively low
heritability for the trait of grain yield, and the presence of variety (entry) by environment
interaction, it is critical to adopt efficient experimental designs and appropriate methods of
analysis.

In Australia, the preferred approach for the analysis of multi-environment trial (MET)
data sets is the factor analytic linear mixed model of Smith et al. (2001). Their original
approach considered modelling of the non-genetic effects within each environment using
the spatial approach advocated by Gilmour et al. (1997) and modelling the variety by envi-
ronment effects using a factor analytic model. Their approach did not include genetic relat-
edness for the variety effects for each environment. Oakey et al. (2006) addressed this for
the analysis of a single trial, and later Oakey et al. (2007) incorporated genetic relatedness
through the use of ancestral information for the models advocated by Smith et al. (2001).
More recently, Smith and Cullis (2018) developed factor analytic selection tools to assist
with selection decisions from a factor analytic linear mixed model analysis of MET data
sets. These methods are in widespread use for the analysis of MET data sets in the advanced
stages of selection in Australia.
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There is an extensive literature on the design of field trials for plant breeding programs.
Designs used for these trials fall into two broad categories: classical or optimal model-based
designs. The former include complete and incomplete block designs, row—column designs
or a-designs (see Bailey 2008; John and Williams 1995, 1998; Patterson and Williams 1976,
for example). The principle of model-based design is to search the design space for a design
function (Bailey 2008), which is near optimal under a prespecified model. The model used
for the design of field trials for plant breeding programs is usually a linear mixed model,
which is consistent with the linear mixed model used for the analysis. Early work on model-
based design for plant breeding selection trials focussed on methods to find optimal designs
for spatially dependent data (Martin 1986; Martin et al. 2006; Martin and Eccleston 1992;
Chan 1999). More recently, model-based designs have been considered for more general
linear mixed models which include spatial dependence and blocking factors (Butler et al.
2008; Coombes 2002; Williams and John 2006).

Cullis et al. (2006) introduced p-rep designs to address the problems associated with
the design of S1 and S2 stage trials where the number of plots for each breeding line in a
trial is less than two. They showed that p-rep designs improved the accuracy of selection of
breeding lines compared to so-called grid-plot designs (Kempton 1982). The p-rep designs
are in widespread use in most plant breeding programs in Australia. These designs can
be produced efficiently using statistical software such as the DiGGeR package (Coombes
2009). Williams et al. (2011) developed augmented p-rep designs by combining p-rep and
augmented check plot designs.

In order to align model-based design with current methods for the analysis of S1, S2
and S3 stage field trials, recent work has focused on the inclusion of genetic relatedness
through the use of ancestral information. Bueno Filho and Gilmour (2003) considered the
construction of non-resolvable incomplete block designs when the treatments effects are
correlated. Their study considered three choices of genetic relatedness in a simplistic setting
of six treatments in blocks of size four. Within the limited scope of their study, they concluded
that for most situations, it would be reasonable to use a design which is optimal for unrelated
treatment effects.

Piepho and Williams (2006) investigated three types of design for a simple genetic struc-
ture for the set of treatment effects. On the basis of a simulation experiment, they concluded
that the assumption of correlated treatment effects was superior to assuming fixed treatment
effects. They also recommended that an unrestricted «-design with a simple family-based
treatment structure could be used for the design of field trials in plant breeding programs.

Butler et al. (2014) presented a more general approach for the design of field trials in a
plant breeding program. Their approach was based on finding designs which were (near)
optimal under a linear mixed model which partitioned the total genetic variance into additive
and non-additive effects for inbred crops or simpler models for non-inbred crops which only
included additive effects. Models for plot effects (Bailey 2008) were either classical (using
fixed or random block effects) or based on spatial dependence or a mixture of both. Butler
et al. (2014) illustrated their methods using two examples from S1 and S2 stage trials from
a canola and sorghum breeding program, respectively. Their designs were generated using
the OD-V1 statistical software package (Butler 2013).
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There remain at least two issues which hinder the adoption of the Butler et al. (2014)
designs for selection experiments in plant breeding programs. Firstly, there is a lack of
empirical evidence regarding the improvement in accuracy relative to other classical or
model-based designs which are currently in use. Secondly, the computational load for the
design search is prohibitive for trials with a larger number of entries. The aim of this paper
is to therefore address these issues. The issue of computational burden is addressed by
development of an updating algorithm for evaluation of the optimality criterion, which is
an extension of the algorithm described by Martin and Eccleston (1992) and Chan (1999),
to allow for correlated treatment effects. Secondly, the empirical advantage of model-based
designs with correlated effects is compared to two other commonly used designs using an
in silico study, based on a large set of field trials from a plant breeding program based in
Australia.

The paper is arranged as follows. In Sect. 2, we present a detailed analysis of a case study
based on a set of early stage trials grown in 2018 by the four publicly funded pulse breeding
programs in Australia. In Sect. 3, we present an approach to model-based design, including
derivation of the updating formula for correlated treatment effects which addresses the com-
putational burden associated with calculating the optimality criterion for each interchange
in the design search. In this section, we also demonstrate how to obtain a near-optimal
design using the R package OD-V2 (Butler and Cullis 2018) and provide some results on
the reduction in computing time using the updating formula. We conclude in Sect. 4 with
an in silico experiment designed to assess the performance of model-based designs using
genetic relatedness and specific non-genetic models.

2. CASE STUDY

Given that the model used for model-based design is “usually chosen to be as close
as possible to that expected for the analysis” (Butler et al. 2014), a case study involving
the analysis of 34 early stage trials was conducted. Further, the case study is fundamentally
important to providing unequivocable evidence of the need to incorporate genetic relatedness
in the design of field trials for plant breeding programs. Cullis et al. (2006) developed p-rep
designs with the use of genetic relatedness in mind. However, they stated that pedigree
information was not used for the analysis of early generation variety trials at that time.
Further extensions of p-rep designs do not consider the use of genetic relatedness (Williams
etal. 2011), while many other recent approaches to the design of field trials for plant breeding
programmes have also ignored the use of pedigree information (see, for example, Piepho
etal. 2018, 2016; Williams and Piepho 2018). This is despite the widespread adoption of the
approaches of Oakey et al. (2007) for the analysis of both single-site and multi-environment
trial plant breeding data sets.

The trials comprised S1 and S2 stage trials from four Australian public pulse breeding
programs in 2018. The case study was used to highlight the importance of including infor-
mation on genetic relatedness in the analysis and to summarize models used for non-genetic
effects.
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Table 1. Summary of numerator relationship matrices for each crop in the case study: information includes the
minimum, mean and maximum inbreeding coefficient and genetic relatedness

Crop Inbreeding Relatedness Entries in

Min Mean Max Min Mean Max Pedigree Data
Chickpea 0.50 0.809 0.998 0.091 0.532 0.915 1307 872
Fababean 0.50 0.934 0.999 0.000 0.305 0.490 712 564
Field pea 0.75 0.900 0.998 0.000 0.244 0.389 1717 1209
Lentil 0.75 0.881 0.997 0.000 0.278 0.421 2459 2005

Final columns give the total number of entries in the pedigree and the number of entries with phenotypic data

2.1. GENETIC MATERIAL, EXPERIMENTAL DESIGNS AND PHENOTYPING

Comprehensive ancestral information was provided for all four programs, and this was
used to form numerator relationship matrices (Meuwissen and Luo 1992) that are summa-
rized in Table 1. The median generation number was 8, 5, 10 and 6 for chickpeas, fababeans,
field peas and lentils, respectively. The median inbreeding coefficient for entries in all pro-
grams is consistent with the high level of inbreeding achieved prior to inclusion in yield
evaluation trials. The average genetic relatedness (Dunner et al. 1998) is also high, reflecting
the strong familial structure of the breeding lines in each of the programs. It is important
to note, however, that there is substantial heterogeneity of the genetic relatedness within
each program. Those entries with low genetic relatedness were predominantly older com-
mercial varieties which have not been used as parents in recent crosses, while those entries
with high genetic relatedness were either recently released commercial varieties which have
been used as parents in many crosses or breeding lines from (full sib) families with a large
representation in trials.

Table 2 presents a summary of key features of the 34 trials. All trials were laid out in
rectangular arrays of plots, indexed by field columns and field rows. Plot dimensions were
long and thin, with columns longer than rows. The trait of interest here is grain yield (t/ha).
The mean yield varied substantially between trials, with some trials being severely affected
by drought. Generally, S1 stage trials had more entries than S2 stage trials but fewer plots per
entry. Partially replicated designs (Cullis et al. 2006) were used for ten out of the 12 S1 stage
trials and four out of the 22 S2 stage trials. These so-called p-rep designs were resolvable
(or near resolvable) with respect to the entries with more than one plot. The remaining
trials were designed as resolvable two or three replicate block designs. In most cases, there
were also additional plots of commercially important varieties. The resolvable blocks were
aligned either with columns (referred to as column replicate blocks: CRep), aligned with
rows (referred to as row replicate blocks: RRep) or in both directions (trials 12 and 13). In
all cases, the resolvable column or row replicate blocks spanned multiple columns or rows,
respectively. Most designs were constructed by staff within each breeding program using
either DiGGeR (Coombes 2009), with default parameter settings, or Agrobase (Mulitze
1990). Pedigree information was not used in the design process for these trials. Designs for
trials 1, 11, 14, 15, 22, 27 and 29 were constructed using the methods to be described in the
current paper using OD-V2 (Butler and Cullis 2018).
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Table 2. Summary of trials in the case study: information includes the number of plots, columns, rows and entries;
the number of entries with specified levels of replication (1, 2, 3-4, >5); and the number of columns
per column replicate and the number of rows per row replicate where applicable

Crop Trial Stage Plots Cols Rows Entries Entry replication CRep RRep Mean yield NAs yield

1 2 34 >5
Chickpea 1 Sl1 720 10 72 359 0 358 1 0 36 1.861 4
Chickpea 2SI 360 10 36 180 0 180 0 O 18 2.611 1
Chickpea 3  Sl1 468 18 26 389 332 52 4 1 9 3.133 6
Chickpea 4  S1 408 12 34 336 274 57 5 0 6 1.558 1
Chickpea 5 S2 288 8 36 144 0 144 0 O 18 1.565 0
Chickpea 6 S2 252 9 28 126 0 126 0 O 14 2.624 0
Chickpea 7 S2 288 6 48 145 10 134 0 0 3 1.637 11
Chickpea 8 S2 288 6 48 145 4 140 0 O 3 1.077 5
Chickpea 9 S2 288 6 48 144 0 144 0 O 24 1.195 7
Chickpea 10 S2 288 6 48 144 0 144 0 O 24 1.976 1
Fababean 11 Sl 240 12 20 159 8 67 2 2 6 1.607 1
Fababean 12 S2 144 12 12 45 0 0 42 3 6 6 1.442 0
Fababean 13  S2 144 12 12 45 0 0 42 3 6 6 1.014 0
Fababean 14  S1 360 12 30 261 178 79 0 4 6 0.935 0
Fababean 15 Sl 360 12 30 255 166 8 0 4 6 1.214 1
Fababean 16  S2 144 6 24 68 0 64 4 0 3 4.831 0
Fababean 17 S2 240 12 20 109 0 105 0 4 o6 1.147 1
Fababean 18  S2 168 12 14 80 0 76 4 0 7 3.201 5
Fababean 19 S2 240 12 20 109 0 105 0 4 o6 1.200 1
Fababean 20  S2 168 12 14 80 0 76 4 0 6 1.545 0
Fababean 21  S2 168 12 14 80 0 76 4 0 7 3.036 0
Fieldpea 22 Sl 960 12 80 797 637 159 0 1 6 2.336 2
Fieldpea 23 S2 840 12 70 409 1 407 0 1 6 0.819 1
Fieldpea 24 S2 840 12 70 411 4 405 0 1 6 2.506 5
Fieldpea 25 S2 840 12 70 410 2 407 0 1 6 1.847 0
Fieldpea 26 S2 840 12 70 420 0 420 0 0 o6 1.159 2
Lentil 27 Sl 960 12 80 788 616 172 0 O 40 1.479 0
Lentil 28 Sl 168 12 14 128 93 34 0 1 7 0.871 2
Lentil 29 S22 600 12 50 499 398 99 1 0 6 0.219 1
Lentil 30 S22 600 12 50 498 396 100 1 0 6 1.682 1
Lentil 31 82 600 12 50 499 398 101 0 0 6 0.981 0
Lentil 32 82 600 12 50 498 397 100 1 0 6 1.142 1
Lentil 33 S1 636 12 53 521 406 115 0 0 6 2.287 5
Lentil 34 S1 120 12 10 88 58 29 1 0 1.643 2

Final columns give the mean yield (t/ha) and the number of plots with missing yield values

2.2. STATISTICAL MODELS FOR ANALYSIS

The approach used for the analysis is similar to that proposed by Oakey et al. (2006). They
considered two linear mixed models with differing assumptions regarding the distribution
of the (random) genetic effects. They referred to these models as the standard and pedigree
models. In both cases, the non-genetic effects are modelled according to the approach devised
by Gilmour et al. (1997), who allowed for three possible sources of variation, namely global,
extraneous and local. The linear mixed models considered in this paper also include, by
default, random terms which respect the design construction process. These included terms
for resolvable or near-resolvable column or row replicate blocks for all designs (either one
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or both as required) and terms for columns and rows when the designs were constructed
using model-based approaches. Low-order polynomials in columns and/or rows were not
considered. The residual vector was modelled as a separable first-order auto-regressive
process (Gilmour et al. 1997).
Following Oakey et al. (2006), the vector of genetic effects is partitioned into additive
and non-additive effects given by
Ug =Ug + U, (D)

)

where A is the v X v numerator relationship matrix and v is the number of entries in

where it is assumed that

the pedigree. The pedigree model estimates oaz and 03 by fitting both terms, while the
standard model excludes the additive effects, ignoring genetic relatedness. All analyses
were conducted using Version 4 of the ASReml-R package (Butler et al. 2018).

2.3. RESULTS OF ANALYSIS

To allow for an unambiguous comparison of the fit of the two genetic models, all terms
and variance models not associated with the genetic effects were chosen while fitting the
pedigree model and thence retained for the fit of the standard model.

Table 3 presents a summary of the residual maximum likelihood (REML) estimates
of the variance parameters associated with the non-genetic terms in the random model
and the variance model for the residual. Random terms associated with resolvable blocks
were always included in the model, while random terms which were non-resolvable, namely
columns and rows, were only included as required. The major source of non-genetic variation
in the random model terms is due to the (long) columns, being fitted on 33/34 occasions. This
result supports the findings in Oakey et al. (2006), who also fitted terms associated with
columns on most occasions (11/14 trials). This has important implications for choosing
terms to be included in the random model for construction of near-optimal model-based
designs (see Sect.3.5.1).

The REML estimates of the row and column autoregressive parameters are moderate to
high for all programs with the estimates for the row dimension being greater than that for the
column dimension (which is consistent with the shape of the plots). The REML estimates of
these parameters vary between crops but are somewhat lower than those reported by Oakey
et al. (2006), since they fitted a measurement error component.

Table 4 presents a summary of the REML estimates of the genetic variance parameters
and the model-based reliability (Mrode 1995) of the prediction of the total genetic effects.
Additive genetic variance is the dominant source of genetic variance in all programs, though
the percent additive genetic variance does vary considerably between programs. These
findings are consistent with those of Oakey et al. (2006) who reported a median percentage
additive genetic variance of 84 for the 14 S3 stage wheat trials. The reliability of the predicted
total genetic effects is typical of these trials.



B. R. CULLIS ET AL.

Table 3. Summary of median of the REML estimates of the non-genetic variance parameters for each crop in the
case study (x 104 for all parameters except autoregressive correlations)

Crop Trials Random terms
Resolvable Non-resolvable Residual
CRep RRep Col Row Col AR Row AR Var

Med Ni Med

Z,

i Med Ni Med Ni Med NI Med Nl  Med

Chickpea 10 55 4 26 6 89 10 23 1 0.053 4 0374 10 285
Fababean 11 307 9 101 4 183 11 172 3 0.171 6 0482 10 568
Field pea 5 0 5 0 47 5 0 0.192 5 0.499 5 347
Lentil 8 4 5 71 2 33 7 6 1 0244 6 0.440 6 441

The column labelled Ni for the random terms is the number of trials which included the term. The column labelled
NI for the residual autoregressive correlations (Col AR and Row AR) is the number of trials where the ratio of the
REML estimate to its asymptotic standard error exceeded 1.5

Table 4. Summary of analysis results for the case study: median of the REML estimates of the genetic variance
parameters (X 10%), the percent additive genetic variance relative to the total genetic variance and the
reliability of the prediction of the total genetic effect for entries with a single replicate

Crop Additive Non-Additive Total %Additive Reliability
Chickpea 165 15 306 97.6 0.606
Fababean 133 45 455 84.3 0.575
Field pea 110 45 279 75.1 0.593
Lentil 269 45 648 90.4 0.662

Figure 1 presents a scatter plot of the log base 10 of the REML likelihood ratio test to
test the hypothesis of zero additive genetic variance against the log base 10 of the num-
ber of entries with data for 33 trials (one trial was removed due to a near-zero estimate of
genetic variance). Critical values for the REML likelihood ratio test were obtained from
the 1rt.asreml method within ASReml-R (Butler et al. 2018), which implements the
approach described in Self and Liang (1987). The hypothesis of zero additive genetic vari-
ance was strongly rejected for the majority of the trials, with the exceptions associated with
trials with low values of genetic variance or small numbers of entries. These results are
again consistent with those of Oakey et al. (2006).

3. MODEL-BASED DESIGN

Bailey (2008) defines a comparative experiment as an experiment in which we are inter-
ested only in contrasts between treatments. Early stage trials are comparative experiments
which typically have a simple treatment structure. The aim is selection of the subset of
breeding lines which are superior and hence will progress to the next stage of testing. An
experimental design has three key elements: the plot structure, the treatment structure and
the so-called design function. The design function is a function, T which allocates treat-
ments to plots. Bailey (2008) defines the treatment structure as meaningful ways of dividing



THE DESIGN OF EARLY- STAGE PLANT BREEDING TRIALS

25-

+
+
.
+t -
20- + "
+
A omy
+
15-
L]
= ® a
x ° A Crop
g A ® Chickpea
w A A © L A Fababean
10 A
E B Fieldpea
g + Lentil
A
0.5- N
A
)
0.0-
+
A
20 25

log10 number of entries with data

Figure 1. Scatter plot of the log base 10 of REML likelihood ratio statistic for the test that 03 = 0, against
log base 10 of the number of entries in the trial. One trial removed due to near-zero genetic variance. The solid
horizontal line is located at the nominal 5% critical value for the statistic.

up the set of treatments (7'), the plot structure as meaningful ways of dividing up the set of
plots (£2), ignoring treatments, and the design function as a function from 2 to 7. In clas-
sical design, the function T is chosen to satisfy certain combinatorial properties, whereas
in model-based design the function 7 is chosen to result in a design which is optimal or
near optimal for a prespecified model. The model considered in this paper is a linear mixed
model.

3.1. LINEAR MIXED MODEL

In the following, we present a linear mixed model for y, the n-vector of data, which
is suitable for the model-based design (and analysis) of a comparative experiment. Nelder
(1977) introduced the concept of two aspects of a random effect. He remarked that one kind
of random term in a linear model is a component of error, while the other kind of random
term represents those effects of interest. The latter type of random term will therefore be
in the set of treatment factors, while the former type of random term will be in the set of
plot factors. Applying this broad principle, we consider a linear mixed model with four
components given by

Yy=XoTo+ Xptp +Zouo+ Zpuy +e 2)

where 7, and 7, are vectors of fixed effects with associated design matrices X, and X , with
Cx, and ¢y » columns, respectively; u, and u, are vectors of random effects with associated
design matrices Z, and Z, with ¢;, and ¢;, columns, respectively, and e is the vector
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of residuals. The subscripts o and p identify so-called objective and peripheral fixed and
random effects, respectively. Equation (2) can be written succinctly as

y == W0ﬂ0+ Wpﬁp +e
— WB+e 3)

where Wy = [X, Z,], Wp = [Xp Zp], Bo = (TT), u“r))T’ Bp = (T-;5 u-;,)Ty W =
[Wo Wp]and B = (ﬂz, ﬂTp)T

The random effects and residuals in (2) are assumed to follow a normal distribution such
that:

o ol [G, o o
u, | ~N||[o].] 0 G, 0
e 0 0 0 R

where G,, G, and R are positive definite matrices assumed to be functions of vectors of
variance parameters g, , 0g, and o, respectively. Model-based design requires values for
these parameters so in the following they are regarded as known.

3.2. PREDICTIONS OF INTEREST

The aim is to find an optimal or near-optimal design with respect to a d-vector of estimable
functions # = D, where D is a known matrix with ¢,,, columns and ¢,,, = ¢, + ¢z, .
The vector of estimable functions, i, involves only objective effects, but may involve fixed,
random or both fixed and random effects. Gilmour et al. (2004) provide a computationally
efficient algorithm for forming predictions from the linear mixed model specified in (3). For
brevity in the following, we use the terminology of Gilmour et al. (2004) and refer to & as the
vector of predictions, which we assume are estimable. Gilmour et al. (2004) provide a simple
test of estimability of predictions which fit naturally into their prediction algorithm. Briefly,
given D, the vector of predictions and associated prediction error variance/covariance matrix
are formed by recursive absorption from an extended set of mixed model equations (see
Robinson 1991, for example). Full details can be found in Gilmour et al. (2004). The mixed
model equations (MME:s) for (3) are given by

CB=WRy (4)
where the coefficient matrix in (4) is

[W};R—lw,, +G:  WLR'W, } )

—1 —1
WL,R™'W,  WL,R™'W,+G?

with

0 0 0 o0
Gj=|:0 G;1:| and G;:|:0 G1:|
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It follows that the reduced set of MMEs for B o, are given by
CooBo =W, Ppy (©6)

where Cop = W, P,W, + G}, Py = R™' — RT'W,(W,R™'W, + G%)"W,R™" and
(W];,R_1 W, + G;)_ is any particular generalized inverse of W;R‘1 W, + G;‘,. It can be
shown that

_ y-1 -1 T -1 — T y—1

Py,=V, =V, Xp(X,V, Xp)"X,V,

where V, = Z,G pZ;, + R and (X;V;IX p)~ 1s any particular generalized inverse of

X;V;lX p- The matrix Pp has rank n — rank (X 17) and is unique, and it is the Moore—

Penrose inverse of T = M, V, M, where M, = I,, — Xp(X;,XI,)_X}. Thatis T = Pp™.
For known oyg,, og, and o,

D(B, — B,) ~N(0, A) )

where A = DC,,D" and C, is a particular generalized inverse of the coefficient matrix
of (6).

3.3. OPTIMAL DESIGN CRITERIA

In the context of early-stage trials, or more generally for comparative experiments, the
most widely used and useful optimality criterion is the A-optimality criterion (Martin 1986).
Bueno Filho and Gilmour (2007) developed a Bayesian design criterion for selection exper-
iments in plant breeding based on a utility function that minimizes the risk of an incorrect
selection. They show that this is in fact the A-optimality criterion based on the PEV matrix
for the vector of random entry effects. Bueno Filho and Gilmour (2003) and Cullis et al.
(2006) use this criterion for generating optimal or near-optimal designs for plant breeding
designs when the treatments are correlated and for so-called p-rep designs used in early-
stage trials. In this case, it can be shown that

A=2"% "pev(# —#;) /d/(d - 1)

ioj<i

where d < v is the number of varieties for which the A-value is computed and pev () refers
to the prediction error variance of its scalar (or matrix) argument. A convenient form for
computing A is given by

A=

T (A) — A La/d)

We seek a design which minimizes A over all valid design functions of the design.
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3.4. DESIGN SEARCH AND UPDATING FORMULAE

The design search process presented in Butler et al. (2014) and implemented in OD-V2
(Butler and Cullis 2018) can be summarized as follows: given an initial design, the .A-value
is optimized under the supervision of a search strategy (for example, a tabu search Glover
1989) for (pairwise) interchanges of the rows of W,,.

Each interchange requires evaluation of the .A-value, which is based on the prediction
error variance matrix A. This requires expensive matrix calculations, and hence, an exhaus-
tive search of the design space for moderate to large problems is implausible. Updating
formulae for C, can be used to significantly reduce the computational burden.

Martin and Eccleston (1992) developed an updating method for finding optimal designs
under a linear model with correlated errors. Their algorithm is extended here, but allowing
the more general setting of correlated objective effects, within the framework of a linear
mixed model. The interchange of two rows of W, is equivalent to first removing two rows
from €2, followed by adding the two units back, but in reverse order. Martin and Eccleston
(1997) suggested using a four-step approach which involves adding or removing one unit
to obtain the new C . Chan (1999) presented a two-step approach which she claims to be
simpler and easier to implement. We begin by developing a two-step approach, similar to
that proposed by Chan (1999), but a four-step approach is also presented as this has proven
to be competitive to the two-step approach in terms of computational load. The four-step
approach is also more suitable for use in the context of early-stage trials, where the presence
of so-called singleton treatments (that is, those treatments which occur on only one plot)
can cause computational problems as discussed by Coombes (2002).

Let the current design contain n = r 4 s units, which are referred to as plots in the
following. Consider the retention of r plots by removing s plots, and both W, and P, are
partitioned conformably with the removal of s plots as follows

W, = Wor and Pp _ Pp;rr Pp;rs
Wos Pp;sr Pp;ss

where, for example, W,, is the design matrix for the subset of the design corresponding
to the r retained plots so has r rows and c,,, columns. The matrix T is also partitioned
conformably with P,. We note that in many cases X , is null in which case P, = V,~! and
hence T' = V,,. It follows that the coefficient matrix of the reduced MME:s for the subset of
the design corresponding to the r retained plots is

Cy) =W, T Wor + G}

where T, is any particular generalized inverse of T;.,.
Using a similar argument to Martin and Eccleston (1992) and results on the inverse of
partitioned matrices (see, for example, Searle 1982), it can be shown that

Coo — Cl) = Frs Py F (®)

DiSs
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where Frg = W, P p;rs + W) P p;ss. Hence, an updating formula for C")™ can now be
derived using (8) as follows. Using Corollary 18.2.15 in Harville (1997) (p.432)

clh)=C,+ CooHrs(Ppss — H, Co,Hy)" H, C,, €))

where H,; = FrsP;;sst;ss. If P ;s is non-singular, then H,¢ = Fy,. Furthermore, if

(P p;ss — H.;C,, H ) is non-singular, then (9) becomes
r)y— _ - - T - —1lgT ~—
Coa - Coo + CooHrS(PmSS - HrsCooHrs) Hrscoo (10)

Next, we consider adding s units back to the design, but with the appropriate permutation
applied to the rows of W . In the simple case of s = 2, then provided that the interchange
is legal, the two rows of W, are interchanged. The new design matrix for the full set of
n = r + s units is therefore given by

W* — Wor
LYo
where W is the permuted design matrix associated with the s units.

Using a similar approach to the deletion of r units, we consider the coefficient matrix of
the reduced MMEs for the full, new design with r + s units which is given by

CIr+) — W p,Wk + G

It can be shown that
Cot™) =€) = Fr P o Fry (1)

psss

where F* = W, P p..s + W¥ P ... Hence, an updating formula for Ciyt™ is
Coot)™ = €)™ = L HY (P psss + HECY) ™ HY )T HYCL)™ (12)
where H}; = FF P . P p:ss. If Pp,g is non-singular, then H}, = F7}. Furthermore, if

p3ss
(P psss + HfIC,(,Z)_H:‘S) is non-singular, then (12) becomes

Coot™ ™ = C)™ — €L Hy (P s + HY Co) " HY) T HECL)™ (13)

Using the two updating formulae, one for the removal and one for the addition, allows
us to compute the new A-value from A"+ = DC E,C,H)_DT.

Setting s = 1 leads to the four-step updating scheme proposed by Martin and Eccleston
(1992). The four-step approach can have computational advantages, and additionally, it can
be implemented to handle designs in which all of the objective effects are fixed effects and
the design contains singletons. Using the updating formulae in (10) and (13), as an example,
when s = 1, we have:

ng)7 =Co+ C;ohrs(P[?;SS - hTrsC(;ahrS)ilh;sC(;o (14
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Cont) ™ = €)™ = CLd by (ppiss + b1 €L hy) T R CE)” (15)

for removal and addition of a unit, respectively, where

w P, .
Wo=| |, Wi= W:Tr and P,=| P Ppsrs
Wos Wy Ppisr  Ppiss

and

.

hes = frs= Worpp;rs + Wos Pp;ss
* _ ex _ yoT *

his = frs= Worpp;rs + WogPpiss

for ppiss — hygCophrs > 0.

The two-step approach is straightforward; however, it is useful to illustrate the four-step
approach in more detail. As a simple example of the four-step approach, consider interchange
of two units in the design, denoted by (w,, wp). The rows of the objective design matrix
W, are indexed using 2 such that W, = W, [, ], and let 2_, be the set of plots excluding
wq and Q2_;, be the set of plots excluding wyp; then, the four-step approach consists of the
following four steps:

1. Remove w,: Wy, = W,[Q2_4, ] and wzs = Wylw., ] and then use (14);
2. Add wp: Wy, = Wy[R2_4, ] and w:I = Wylwp, ] and then use (15);
3. Remove wp: Wy = WE[Q_p, ] and w); = W}[wp, ] and then use (14);
4. Add wg: Wor = WH[Q_p, ] and wi, = Wy[w,, ] and then use (15)

noting that if a singleton is included in the set (@, wp), then the steps must be arranged so
that the singleton is not removed first.

3.5. IMPLEMENTATION IN OD-V2
3.5.1. Example

The implementation of model-based design for early-stage trials is shown here via an
example based on one of the breeding programs introduced in Sect.2. This example also
forms the basis of the simulation study presented in Sect. 4. A design is required for testing
256 S1 stage entries from the field peas program with the aim of making selections for
progression to S2 stage testing. The trial will also include four check varieties, which is
standard practice in most S1 stage field trials. The predictions of interest are the total
genetic effects for each of the 260 entries. In the linear mixed model, the total genetic effects
will be partitioned into additive and non-additive effects through the use of the numerator
relationship matrix for the 260 entries. Summaries of this matrix included a mean inbreeding
coefficient of 0.941, while the minimum, mean and maximum genetic relatednesses were
0.130, 0.346 and 0.532. One of the check varieties had the highest mean genetic relatedness,
as it had been widely used as a parent of the test lines.
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A p-rep design will be constructed, with 50% of the breeding lines having two plots each.
(Note that percentage replication will be examined in Sect.4.) The check varieties will also
each have two plots so the full design involves 392 plots that will be arranged as 12 columns
by 28 rows. The linear mixed model for the design search will include terms for non-genetic
effects as determined from historic analyses of relevant trials. In the current example, this
relates to a comprehensive set of S1 and S2 stage trials from the field peas breeding program
for the years 2013 to 2017 inclusively. This led to the inclusion of random effects for a two-
level blocking factor CRep (corresponding to columns 1-6 and 7-12); random Column
and Row effects and finally a separable first-order autoregressive process for the residuals.
The design search requires values of the associated variance parameters, and these will be
taken as the median values from the historic analyses.

The design for the example can be constructed in OD-V2 (Butler and Cullis 2018) using
the following call:

example.od <- od(fixed=" 1,
random=" ric (Entry, Ainv) + CRep + Column + Row,
residual = Tarl(Column) :arl (Row),
permute=" ric (Entry, Ainv),
G.param = sv, R.param = sv, maxit=10, search="tabu",
data=data.df)

In this call, the data frame data.df has 392 rows and corresponds to an initial (user-supplied)
design. The genetic effects are specified in the term ric(Entry, Ainv) and relate to the total
genetic effects (ug). The variance function ric() indicates that the variance model for the
effects in the factor argument (that is, Entry) is given by aazA + 6221 260 Where A is the
numerator relationship matrix for the 260 entries. Note that in the form given here, the
inverse of the numerator relationship matrix, i.e. A~! is supplied rather than A as it has
been stored in sparse form (see Butler 2013). This specification for the total genetic effects
will be termed the direct formulation and is a new feature of OD-V2 (Butler and Cullis
2018) that affords computational savings over the alternative, indirect formulation. The latter
involves the inclusion of two terms in the model, associated with the additive effects (u,)
and non-additive effects (u,), so that the resultant vector of objective effects (8,) has twice
as many elements as the direct formulation. The other terms in the random model formula
are associated with random CRep, Column and Row effects, respectively. Lastly, the
residual model formula specifies that the variance model for the residuals is one associated
with a separable first order autoregressive process. The permute model formula specifies
that Entry is the factor to be permuted and the use of the direct formulation means that the
A-value will be computed for total genetic effects. The variance parameters are supplied
using the G.param and R.param arguments (also see “Appendix A’).

3.5.2. Timings for Updating Schemes

Table 5 presents the elapsed time (seconds) for a full tabu search and 1000 interchanges
for OD-V2 using the direct formulation for total genetic effects: 1000 interchanges for OD-
V2 using the indirect formulation for total genetic effects and 1000 interchanges for OD-V1
using the indirect formulation for total genetic effects. The timings were conducted on eight
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Table 5. Timings for designs for eight trials (trial numbers correspond to those in Table 2): elapsed time (seconds)
for a full tabu loop (number of interchanges given in column 3) and for 1000 interchanges for OD-V2
using the direct formulation for total genetic effects; 1000 interchanges for OD-V2 using the indirect
formulation for total genetic effects and 1000 interchanges for OD-V1 using the indirect formulation
for total genetic effects

Trial Entries Tabu interchanges V2 Direct V2 Indirect V1 Indirect
Full tabu 1000 1000 1000
22 797 460,320 1887 4.101 22.731 25,000
27 788 460,320 1573 3.418 20.892 21,250
31 499 179,700 262 1.458 10.976 9050
23 409 352,380 457 1.297 10.837 6500
3 389 109,278 116 1.063 8.695 4080
15 255 64,620 27 0.432 0.717 150
5 144 41,328 29 0.703 1.118 230
17 109 28,680 10 0.350 0.120 50

Table is ordered on the number of entries

trials used in the case study (trials numbered 3, 5, 15, 17, 22, 23, 27 and 31 in Table 5).
The trials included an S1 and S2 stage trial for each of the four crops. The results illustrate
the substantial reduction in computational load by using the updating formula developed in
Sect. 3.4 and approximately agree with the total number of FLOPs involved, that is, O (cio)
without an updating scheme compared with O (c,,) with the updating scheme.

4. ACCURACY OF DESIGNS USING GENETIC RELATEDNESS

The performance of model-based designs constructed using genetic relatedness and spe-
cific non-genetic models was assessed using an in silico experiment based on the example
presented in Sect. 3.5.1. Of particular interest were comparisons with model-based designs
using specific non-genetic models but no information on genetic relatedness and with more
classical approaches to design which use neither specific non-genetic models nor genetic
relatedness. Thus, there were three key treatments under investigation, corresponding to
three design functions (DF), labelled as DF++, DF—+ and DF-— where the two final char-
acters indicate the use/nonuse of genetic relatedness and specific non-genetic models in the
design construction. Further details are provided later.

The simulation experiment was also designed to cover the range of genetic variance
parameters and levels of replication in current use for S1 and S2 stage trials in the pulse
breeding programs described in Sect. 2. This led to the construction of a total of 63 ancillary
treatments to consider, comprising the factorial combinations of the three factors described
in Table 6. These factors are labelled Prep (the percentage of breeding lines which have
two plots per trial), Padd (the proportion of additive genetic variance expressed as a ratio
of the total genetic variance) and Rsq (the baseline reliability of the data for the design with
level O of the Prep factor).

Table 7 presents summaries of the layouts for the seven basic field trial configurations
arising from the different replication levels used in the simulation experiment. Every trial
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Table 6. Summary of the ancillary treatment factors and their levels used in the simulation experiment

Factor Description Levels

Prep Percentage of breeding lines replicated p=0,5,10, 15,25, 50, 100
Padd Proportion of additive genetic variance k=10.5,0.7,09

Rsqg Baseline reliability r(% =1/3,1/2,2/3

T PrepAPaddARsqg 63=7x3x3

Table 7. Summary of the field trial layouts used in the simulation experiment

Prep Plots Cols Rows Tworep
0 264 12 22 4
5 276 12 23 16
10 288 12 24 28
15 300 12 25 40
25 324 12 27 64
50 392 12 28 132
100 520 12 27 260

The final column (Tworep) provides the number of entries, including the four check varieties, which had two plots
per trial

was assumed to be laid out in a contiguous rectangular array with 12 columns and between
22 and 28 rows. The blocking factor CRep was constructed to span two sets of contiguous
columns in each case.

The linear mixed model chosen to generate the non-genetic effects for the data sets used in
this study included terms, variance models and variance parameters as determined from the
historic analyses discussed in Sect.3.5.1. The linear mixed model also partitioned the total
genetic effects into additive and non-additive effects. Given the set of variance parameters
for the non-genetic effects, the two genetic variance parameters in the data generation model
were then chosen to be consistent with the levels of the two ancillary treatment factors Padd
and Rsq. Table 8 presents the variance parameters for all of the random and residual variance
models in the data generation linear mixed model for each level of Padd and Rsq.

Data sets were generated according to the linear mixed model given by

k k k k
Vi = Xiti + Zijug + Zijug) + ;' (16)
where i = 1,...,63 indexes the ancillary treatments, j = 1, ..., 3 indexes the design

functionsand k = 1, ..., N indexes the simulations (N = 4000). Foreachk (=1, ..., N),
[k]

a,i
ces given by craz ;A and oezil 260, respectively. Note that the genetic variance components

u; - and ugkg are sampled from a normal distribution with mean zero and variance matri-
although indexed by the level of T are constant on the levels of Padd and Rsq, with only
nine unique combinations as listed in Table 8. The vector n,[k], i=1,...,63;k=1,...,N
represents the plot effects that is the sum of all the random non-genetic effects and residuals.
These are obtained via sampling from a normal distribution with mean zero and variance
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Table 8. Variance parameters for the data generation linear mixed models in the simulation experiment

Padd Rsg Random terms Residual Genetic
CRep Column  Row Var Col AR Row AR  Additive = Non-Additive

0.5 1/3 0.0336  0.0183 0.00749  0.0682 0.214 0.392 0.00380  0.00738
0.5 172 0.0336  0.0183 0.00749  0.0682 0.214 0.392 0.01100  0.02130
0.5 2/3 0.0336  0.0183 0.00749  0.0682 0.214 0.392 0.02810  0.05450
0.7 173 0.0336  0.0183 0.00749  0.0682 0.214 0.392 0.00315  0.00262
0.7 172 0.0336  0.0183 0.00749  0.0682 0.214 0.392 0.01160  0.00969
0.7 2/3 0.0336  0.0183 0.00749  0.0682 0.214 0.392 0.03400  0.02830
0.9 1/3 0.0336  0.0183 0.00749  0.0682 0.214 0.392 0.00195  0.00042
0.9 12 0.0336  0.0183 0.00749  0.0682 0.214 0.392 0.00980  0.00211
0.9 2/3 0.0336  0.0183 0.00749  0.0682 0.214 0.392 0.03520  0.00759

All parameters are variance components except for the residual autoregressive correlations (Col AR and Row AR)

matrix given by
2 T 2 T 2 a 2
achcr,chr,l’ + o, Zc,ch,,' +o; Zr,zzr,l' + 0% (pe) @ Zyi(pr)

where X.; and X,; are scaled variance matrices of order ¢; and r; for first-order autore-
gressive processes where ¢; and r; are the numbers of columns and rows in the trial layout.
These matrices are functions of autocorrelation parameters, p. and p;, for the column and
row dimensions, respectively. The design matrices for the fixed and non-genetic random
effects are given by X;, Z¢, ;, Z.; and Z, ; where the latter correspond to the terms in the
random model formula, namely CRep, Column and Row, respectively. Values for all the
variance parameters are set out in Table 8. There is only one fixed effect associated with an
overall mean. Lastly, we consider the design matrix for the genetic effects. A separate design
matrix, Z;j,i = 1,...,63; j = 1,2, 3 is formed for each level of the design function factor
as described below

e DF++ a design function generated from (16)

e DF—4 adesign function generated from the plot effects component of (16) but with
genetic effects assumed to be fixed effects

e DF-—- a design function generated from the model of Williams et al. (2011) with
genetic effects assumed to be fixed effects

Hence, there were a total of 63 different designs for DF++ but only seven designs for DF—+
and DF--, one for each level of Prep. When forming the design function for the DF++
design, for levels 5, 10, 15, 25, 50 of Prep, we used the method of Huang et al. (2013) to
subset those breeding lines to be tested with two plots in the trial.

All design functions were obtained using OD-V2 (Butler and Cullis 2018), by varying
the model formulae for the fixed, random and residual components. The OD-V2 call for
DF++ designs was as given in Sect. 3.5.1. Details and scripts for all designs are available in
the supplementary materials.
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The correlations between the true and predicted total genetic effects for all entries were
calculated for each ancillary treatment and design function, (a total of 189 combinations),
where the predicted genetic effects were the empirical BLUPs obtained from the fitting of
the linear mixed model that corresponded to the data generation model.

4.1. SIMULATION STUDY RESULTS

The estimation of the variance parameters is considered first. Summaries of the MSEP,
simulation variance and bias (expressed as a % of the true value) for all variance parameters
in the model are available in the supplementary materials. Only the results for the additive
and total genetic variance parameters are presented here. Figures 2 and 3 present plots of the
percentage bias for the additive genetic variance and total genetic variance against the levels
of Prep. Significant bias occurs for some combinations of k and rg. There is consistent,
negative bias for k = 0.9 for the additive genetic variance, for all levels of Prep and Rsq.
This negative bias is associated with a significant positive bias for the non-additive genetic
variance for these combinations, which then results in bias for the total genetic variance,
especially for k = 0.9 and rg = 1/3. Bias for the total genetic variance is acceptable for
the four Padd and Rsq combinations of (k = 0.5,73 = 1/2), (k = 0.5,7 = 2/3),
k = 0.7, rg = 1/2) and (k = 0.7, rg = 2/3) for all levels of Prep. The remaining
combinations of Padd and Rsq all exhibit unacceptable bias for total genetic variance,
particularly for small values of Prep. Bias for the additive genetic variance is acceptable
for all levels of Prep except when k = 0.9. This latter bias is largely a result of the
significant positive bias in estimation of the non-additive genetic variance, when it is such a
small component of the total genetic variance and is so close to zero (relative to the residual
variance).

Table 9 presents the mean squared error of prediction (MSEP-CV) for the REML estimate
of the additive genetic variance expressed as a coefficient of variation (relative to the true
value) for each level of replication of the test lines, the proportion of additive genetic variance
as aratio to the total genetic variance and for baseline heritabilities of rg =1/3and rg =1/2.
The results for rg = 2/3 are similar and are omitted. The MSEP-CV for the DF++ design
function is consistently lower than the MSEP-CV for the other two design functions. Of
particular interest is the ability of the DF++ design function to achieve comparable levels of
MSEP-CV achieved by DF-+ and DF-- for much lower values of Prep. For example, the
MSEP-CV for the design functions DF-- and DF-+ for a Prep of 25% is approximately
the same as the MSEP-CV for the DF++ design function for a Prep of only 10%.

The correlations between the true and predicted entry effects are summarized in Figs. 4
and 5 for rg =1/3 and rg = 1/2, respectively. Each figure presents panel line plots of the
mean simulation-based correlations (in blue) and model-based reliability (in black) versus
the levels of Prep for each of the three design functions. The results for rg = 2/3 are
similar, with the DF++ design function superior to the other design functions for all levels
of Prep and Padd. The model-based reliability was derived from the .A-values obtained
from either the final .A-value for the DF++ design function, or the initial A-values for the
DF-+ and DF-- design functions evaluated under the (true) data model of (16), using the
approximation of Cullis et al. (2006).
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k=0.5,rsq= 1/3 k=0.5, rsq= 1/2 k=0.5, rsq=2/3

Percentage Bias

Fegqe

~20-
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Percentage of replication of breeding lines

Figure 2. Plot of the percentage bias for the additive genetic variance versus percentage of replication of test
lines. Each panel represents the combination of baseline heritability and proportion of additive genetic variance as

a ratio to the total genetic variance. Superimposed dotted lines indicate +/— 10%.

k=0.5,rsq=1/3

k=0.7, rsq= 1/3 k= 0.7, rsq= 1/2 k= 0.7, rsq=2/3

Percentage Bias

k=0.9, rsq= 1/3 k=0.9, rsq= 1/2 k=0.9, rsq= 2/3

Percentage of replication of breeding lines

Figure 3. Plot of the percentage bias for the total genetic variance versus percentage of replication of test lines.
Each panel represents the combination of baseline heritability and proportion of additive genetic variance as a ratio
to the total genetic variance. Superimposed dotted lines indicate +/— 10%.
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0.5 0.7 0.9

— DF--
===+ DF-+
== DF++

reliability: total genetic effectsc

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Percentage of replication of breeding lines

Figure 4. Line plot of the mean simulation-based correlation (in blue) and model-based reliability (in black)
versus the percentage replication of breeding lines for baseline heritability of 1/3. Each panel represents a different
proportion of additive genetic variance as a ratio to the total genetic variance.

0.5 0.7 0.9

— DF--
===+ DF-+
== DF++

reliability: total genetic effects

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Percentage of replication of breeding lines

Figure 5. Line plot of the mean simulation-based correlation (in blue) and model-based reliability (in black)
versus the percentage replication of breeding lines for baseline heritability of 1/2. Each panel represents a different
proportion of additive genetic variance as a ratio to the total genetic variance.
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Table 9. Mean squared error of prediction for the REML estimate of the additive genetic variance expressed as a
coefficient of variation (relative to the true value) for each design function, level of replication of the test
lines, the proportion of additive genetic variance as a ratio to the total genetic variance and for baseline
heritabilities of 1/3 and 1/2

Padd Prep 5 =1/3 rg=1/2
DF++ DF—+ DF—— DF++ DF—+ DF——

0.5 0 88.5 93.4 96.3 68.6 70.6 719
0.5 5 83.6 90.0 91.2 65.4 69.1 70.0
0.5 10 84.0 86.9 87.7 67.3 68.9 68.9
0.5 15 81.8 87.7 86.1 65.0 68.8 68.6
0.5 25 78.7 85.7 84.0 65.2 68.6 67.3
0.5 50 75.8 80.2 78.7 62.9 65.7 65.0
0.5 100 715 71.7 73.5 60.8 60.8 61.9
0.7 0 85.5 94.1 97.0 59.9 62.1 62.8
0.7 5 83.3 90.1 90.6 58.1 60.3 61.1
0.7 10 80.4 84.7 85.7 56.5 58.8 585
0.7 15 77.4 85.1 83.9 55.7 58.1 58.0
0.7 25 76.1 81.6 80.2 549 573 55.7
0.7 50 68.7 74.5 73.2 52.0 53.7 53.6
0.7 100 62.9 64.6 66.5 497 50.0 50.4
0.9 0 105.0 112.8 117.3 56.9 59.8 60.4
0.9 5 98.2 108.3 107.2 55.3 573 57.6
0.9 10 90.4 99.2 100.8 533 54.4 545
0.9 15 89.3 98.4 97.6 51.0 54.0 53.8
0.9 25 84.4 92.7 91.3 49.4 52.0 50.6
0.9 50 75.9 83.8 81.7 45.6 474 46.9
0.9 100 66.7 70.5 72.9 40.4 417 422

The acronyms DF++, DF—+ and DF—— refer to a design function generated from (16), to a design function
generated from the plot effects component of (16) but with genetic effects assumed to be fixed effects and to a
design function generated from the model of Williams et al. (2011) with genetic effects assumed to be fixed effects,
respectively

It is immediately clear that there is a consistent and important increase in correlation
for DF++ designs relative to both DF—+ and DF-- designs. The advantage is larger for
higher values of k and lower values of rg. The DF++ designs are superior for all levels of
Prep, though the advantage diminishes for designs with Prep less than 10%. It is also
noteworthy that the advantage of DF++ designs for values of Prep greater than 25% is
stable, suggesting there is little impact of using the subset selection method of Huang et al.
(2013) in terms of improving the accuracy of the design.

The plots also highlight the interaction between the increase in simulation-based corre-
lation and model-based reliability due to increasing the level of replication and the value
of k. This suggests that the information coming from the data plays an important role in
improving the accuracy of the prediction of total genetic effects when the non-additive
component is present (and can be reliably estimated). The impact of variance parameter
estimation on accuracy is clear. All simulation-based correlations are significantly lower
than model-based reliabilities, but particularly so for designs with values of Prep less than
10%. This is consistent with the MSEP-CV shown in Table9.

One final remark is that across all levels of k, rg and Prep, there is no appreciable
difference between design functions DF—+ and DF--. This may be a result of the choice of
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variance parameters for the residual process which gave rise to only modest levels of spatial
dependence arising from the inclusion of spatial dependence. Chan (1999) suggested that the
optimality of a model-based design is robust to the choice of variance parameter settings as
long as the model class remains the same which is not entirely consistent with our findings.
Further work in this area is required to examine this issue in more detail.
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APPENDIX A: OD TIMING SYNTAX

Below are the calls used to obtain the timings in Table 5. The first sequence of calls
provides an estimate of the elapsed time to complete a full tabu search of the design space and
1000 interchanges using OD-V2 and the direct formulation for the total genetic effects. The
function od. ini t sets or displays various options that affect the behaviour of OD-V2. The
first call to OD returns a template from which variance parameters for each of the random and
residual terms can be specified. These are assigned in the subsequent two lines of the code,
and these are supplied in the call to OD-V2 via the R. param and G.param arguments.
The permute argument specifies that the column labelled Entry, which contains the
entry code, is to be permuted and the optimality criterion is for the total genetic effects for
those entries with data. Use of the t ime argument provides an estimate of the time for a
single tabu loop based on a set of random interchanges. If time> 0, the objective criterion
is evaluated the specified number of times prior to the optimization step. The elapsed time
is reported and used to estimate the execution time for a scavenging tabu loop.

sv <- od(fixed=" 1,
random=" ric (Entry, Ainv) + RRep + Column,
residual = “arl(Column) :arl (Row),
permute=" ric(Entry, Ainv),
start.values = TRUE, data=dat)
SV <- svSvparameters.table
svsSValue <- c(sigma.vmg,sigma.ideg, sigma.rrep, sigma.col,
sigma, colphi, rowphi)
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od.options (time=1e3)
temp.od <- od(fixed="~ 1,
random=" ric (Entry, Ainv) + RRep + Column,
residual = Tarl(Column) :arl (Row),
permute=" ric(Entry, Ainv),
R.param = sv, G.param = svVv,
search = ’'tabu’,maxit=1,data=dat)

The next sequence of calls estimates the elapsed time for 1000 random interchanges using
the indirect model, but in this call to OD-V2 the optimality criterion is based on the additive
genetic effects. OD-V2 does not allow the user to specify the calculation of the optimality
criterion for the total genetic effects using the indirect formulation for total effects. The pipe
operator (|) is used to associate the permute factor with other terms in the model that should
be permuted in parallel. The performance of the indirect formulation for the total genetic
effects was found to be substantially inferior to the direct formulation, and hence it has been
deprecated. Therefore, the elapsed times using these calls will not be exactly equivalent
to the use of the indirect formulation within the updating scheme, but trials suggest that
they are adequate to ascertain the approximate penalty associated with use of the indirect
formulation, which is the only form available in OD-V1 for total genetic effects.

sv <- od(fixed=" 1,
random=" vm(Entry, Ainv) + ide(Entry) +
RRep + Column,
residual = Tarl(Column) :arl (Row),
permute=" vm(Entry, Ainv)|ide(Entry),
start.values = TRUE, data=dat)
SV <- svSvparameters.table
sv$Value <- c(sigma.vmg,sigma.ideg, sigma.rrep, sigma.col,
sigma, colphi, rowphi)
od.options (time=1e3)

temp.od <- od(fixed=" 1, random=~" vm(Entry, Ainv) + ide(Entry) +
RRep + Column,
residual = Tarl(Column) :arl (Row),
permute=" vm(Entry, Ainv) | ide(Entry),
R.param = sv, G.param = sv,
search = ‘tabu’,maxit=1,data=dat)

The final sequence of calls using OD-V1 provides the elapsed times for the indirect formulation
for the total genetic effects. There is no option to evaluate timings within the call to OD-V1, and
so crude estimates of elapsed time were estimated from a sequence of two calls to isolate the time
for evaluating the optimality criterion for 1000 random interchanges.

sv <- od.init(’Column’=sigma.col,
'RRep’=sigma.rrep, 'ped(Entry) '=sigma.vmg,
"ide (Entry) '=sigma.ideg,
'Column:Row|Column’ = colphi,
'Column:Row|Row’ = rowphi, ‘rcov’ = sigma)

date ()

temp.od <- od(fixed=~ 1,
random=" ped (Entry) + ide(Entry) + RRep + Column,
rcov = “arl(Column) :arl(Row), ginv =list (Entry=Ainv),
geneticEffects="total", permute=~ ped(Entry) |ide (Entry),
Rstart=sv, Gstart=sv,
search = ’‘random’,maxit=1,data=dat)



THE DESIGN OF EARLY- STAGE PLANT BREEDING TRIALS

date ()

temp.od <- od(fixed="~ 1,
random=" ped (Entry) + ide(Entry) + RRep + Column,
rcov = “arl(Column) :arl(Row), ginv = list(Entry=Ainv),
geneticEffects="total", permute="~ ped(Entry)|ide(Entry),
Rstart=sv, Gstart=sv,
search = ’‘random’,maxit=1001,data=dat)

date ()
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