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Abstract
The effect of photosensitizationmediated by curcumin on fungal growth, physicochemical properties and nutritional composition
in Australian grown “Albion” strawberries was evaluated. Curcumin solution (1200, 1000 and 800 μM) was sprayed on the
strawberry surface, followed by illumination using blue light (420 nm) for 10 min at a dosage of 42 J/cm2 and stored at 4 ± 2 °C
for 12 days. The fruit photosensitized with 1000-μMcurcumin (10 min, followed by storage at 4 ± 2 °C) lasted up to 12 days with
a fungal infection rate of 52%, whereas untreated control fruit developed 100% fungal infection and lasted for 8 days only under
the same conditions. This treatment did not have an effect on colour, pH, moisture content, titratable acidity, ascorbic acid, total
phenolic content and anthocyanins, whereas total soluble solids (9%) and total sugar (22%) were increased (p < 0.05). These
initial results indicate that curcumin-based photosensitization could be an effective non-thermal technology to preserve the
nutritional quality as well as to extend the postharvest life of fresh strawberry fruit.
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Introduction

Strawberry (Fragaria x ananassaDuch.) is a popular fruit and
well known for its vibrant and colourful appearance as well as

sweet taste. Strawberry, depending on cultivar, growing con-
ditions, pre-and post-harvest treatment, can be a rich source of
bioactive compounds such as anthocyanins, non-anthocyanin
polyphenols and vitamin C (Nadim et al. 2015). However,
high respiration rate, susceptibility to mechanical injury and
contamination with fungi and bacteria can reduce their nutri-
tional quality and shelf life considerably (Neri et al. 2015).
Edible coating (Yan et al. 2019), gamma-radiation (Maraei
and Elsawy 2017), ultrasound (Cheng et al. 2014), ozone,
gaseous chlorine dioxide (Chiabrando et al. 2018) and modi-
fied atmosphere packaging (Matar et al. 2018) have been in-
vestigated for preserving strawberries. The use of various fun-
gicides is possibly the most commonly usedmethod to control
postharvest decay, but these are environmentally unfriendly
and some even hazardous to human health (Liu et al. 2018).
Therefore, there is a need to develop environmentally friendly
and sustainable technologies, to extend postharvest storage
life and to retain the nutritional quality of strawberry fruit.

Photosensitization is a novel environmentally friendly
treatment to inactivate microorganisms via cytotoxic reactive
oxygen species (ROS) produced by the photoactive com-
pound (photosensitizer) after visible light illumination (Jiang
et al. 2013). In the last few decades, photosensitization has
been used for treating cancer, skin diseases and endodontic
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infections, but also in different food related applications
(Strazzi Sahyon et al. 2019). Compared to other antimicrobial
“tools”, one of the most important advantages of photosensi-
tization is the absence of any microbial resistance (Brovko
et al. 2014).

Curcumin (CUR), a natural photosensitizer, has
in vitro anti-inflammatory, antimicrobial and antioxidant
properties (Penha et al. 2017). This bioactive compound
has been used as a food-grade photosensitizer to reduce
microbial growth and to increase the shelf life of fresh-
cut Hami melons (Lin et al. 2019), apples (Tao et al.
2019), date fruit (Al-Asmari et al. 2018), maize kernels
(Temba et al. 2019) and oysters (Liu et al. 2016).
Previous studies have shown that photosensitization was
successfully applied to decontaminate fungal spores (Al-
Asmari et al. 2017), Gram-positive and Gram-negative
bacteria such as Staphylococcus aureus, Escherichia coli,
Salmonella typhimurium (Penha et al. 2017) and Vibrio
parahaemolyticus (Chen et al. 2020) as well as micro-
fungi and yeasts (Rasiukevičiūtė et al. 2015). Compared
to conventional preservation technologies, photosensitiza-
tion possesses a stronger antimicrobial effect and is less
expensive. Furthermore, this novel technology may also
preserve the colour, aroma and freshness of the treated
foods (Lin et al. 2019).

The aims of the present study were to evaluate the effect of
photosensitization on visual fungal growth as well as selected
physicochemical parameters and nutritional composition in
Australian grown strawberries. The results of this study could
provide an avenue to assess the suitability of photosensitiza-
tion as a sustainable and safe preservation technology for fresh
horticultural products.

Material and Methods

Materials

Fresh strawberries (13 kg) of “Albion” variety were collected
from a local supermarket in Brisbane (QLD, Australia). Fruits
of uniform size (diameter 30 ± 2 mm) and colour were select-
ed and stored at 4 ± 2 °C prior to photosensitization carried out
within 6 h of collection.

Preparation of Photosensitizer Solution

A stock solution of 2000-μM CUR was freshly prepared in
propylene glycol and water (30:70). The stock solution was
kept at 4 °C in a dark place and used within 6 h. Serial dilu-
tions of 1200, 1000 and 800 μM (pH 5.3) were prepared from
the stock solution.

Light Source and Sample Treatment

A xenon arc lamp (Polilight 500®, Rofin Australia Pty Ltd.,
Dingley, VIC, Australia) emitting visible light in the region of
400 to 700 nm, equipped with an optical fibre light guide was
used as a light source for photosensitization. The maximum
absorbance wavelength (λmax) of CUR (420 nm) was deter-
mined from the absorption spectrum measured using a spec-
trophotometer (Infinite M200, Tecan, Grödig, Austria). The
light dosage on the surface of the samples was 42 J/cm2.

Strawberry (fresh) fruit was sprayed with approximately
1 mL of 1000 μM CUR solution, followed by air-drying for
about 15 min at room temperature in the dark (Fig. 1). Each
fruit was placed in an “in-house built” continuous rotator
moving at a very slow speed (2 rpm) for 10 min at a 10-cm
distance from the light source. It was ensured that the whole
surface of the fruit was illuminated uniformly during this
period.

Visual Inspection of Fruit

For visual inspection of fungal growth, fruits were divided
into 6 groups. The treated five groups were L− C+, no light
but only CUR; L+ C−, only light but no CUR; L+ C+(1200),
light and CUR (1200 μM); L+ C+(1000), light and CUR
(1000μM); L+C+(800), light and CUR (800μM) and control
(untreated). Three replicates each containing eighteen fruits
were prepared for each individual group (n = 54). The straw-
berries were examined for fungal growth and surface colour
changes during 0, 4, 8 and 12 days of storage at 4 ± 2 °C. As
fungal growth on fruit surface is a vital index for quality and
shelf life, any growth (slight, moderate or severe) that
emerged on the fruit surface was considered fungal infection
(rotten) and treated as the end of shelf life (Al-Asmari et al.
2018). The results were expressed as percentage of infected
fruit.

Fig. 1 Schematic diagram of photosensitization
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Determination of Physicochemical Parameters

For the determination of physicochemical parameters, the first
group (n = 54) were photosensitized with light (420 nm) and
1000-μM CUR. The second group (54 fruits) were untreated
strawberry, labelled as the control and stored at room temper-
ature in the dark. After photosensitization, fruits were packed
into sterile clear polyethylene terephthalate (PET) punnet box
and all samples (including control) stored at 4 ± 2 °C for 1 day.

After 1 day, both control and photosensitized samples were
evaluated for tristimulus colour, moisture content, titratable
acidity, total soluble solids and pH. The rest of the strawberry
fruits (whole or cut) were freeze-dried and stored in airtight
container at − 20 °C until further analysis. Six fruit samples
were evaluated for tristimulus colour using a Minolta
colourimeter (Minolta Co. Ltd., Osaka, Japan). L*, C* and h°
values were recorded. L* is the lightness and corresponds to a
black-white scale, h° is the hue angle on the colour wheel and
C* is the chroma, a measure of the intensity of colour. Colour
was determined in triplicate.

After colour determination, each strawberry was longi-
tudinally cut into four identical segments. All sub-samples
were individually blended into puree using a hand blender
(Braun 600 watt, Braun, London, UK) and divided into 2
sub-samples. One sub-sample of strawberry puree was
used for determining titratable acidity (TA), pH using an
automated titration system (Metrohm 795 Karl Fischer
Titrator System, Metrohm, Herisau, Switzerland) and
moisture content. TA was expressed as g citric acid equiv-
alents (CAE)/100 g fresh weight (fw). Another sub-sample
was used for measuring total soluble solids (TSS) content
using a Pal-1 hand refractometer (ATAGO, Co. Ltd.,
Osaka, Japan) and the maturity index was calculated as
the ratio between TSS and TA.

DPPH Radical Scavenging Capacity

The DPPH (1,1-diphenyl-2-picrylhydrazyl) assay was per-
formed in a 96-well microtiter plate as described by Musa et al.
(2013). Trolox (6-hydroxy-2, 5, 7, 8 tetramethylchroman-2-
carboxylic acid) was used as standard and concentrations be-
tween 5 and 50 μM were used for calibration. Results were
expressed as μM Trolox equivalents (TE)/100 g fw.

Total Phenolic Content (TPC)

TPC was determined using a micro-plate absorbance reader
(Infinite M200, Tecan, Mannedorf, Switzerland) following
the method of Netzel et al. (2012). Gallic acid was used as
standard and results were expressed as mg gallic acid equiva-
lents (GAE)/100 g fw.

Analysis of Anthocyanins

Anthocyanins were analyzed using an Agilent 1290 Infinity
UHPLC-PDA System (Agilent Technologies, Santa Clara,
CA, USA), following the methods of Gasperotti et al.
(2015). Pelargonidin 3-glucoside, cyanidin 3-glucoside and
pelargonidin 3-rutinoside were identified by LCMS (data not
shown) and quantified using an external calibration of
pelargonidin-3-glucoside. Results were expressed as mg/
100 g fw.

Analysis of Ascorbic Acid

Ascorbic acid was analyzed as previously reported by Phan
et al. (2019). Results were expressed as mg/100 g fw.

Analysis of Sugars

Sugar was analyzed as previously reported by Phan et al.
(2019). Glucose, fructose and sucrose were quantified using
external calibrations. The results were expressed as total sugar
g/100 g fw (sum of glucose, fructose and sucrose).

Statistical Analysis

Results are presented as the mean ± standard deviation (SD) of
three replicates. Statistical significance was determined using
Student’s t test when comparing two groups or using one or
two-way ANOVA followed by Tukey’s multiple comparisons
when comparing three or more groups. The difference be-
tween the means was considered statistically significant when
p < 0.05. All statistical calculations were performed using
GraphPad Prism 8.0.1 (GraphPad software, San Diego, CA,
USA).

Results and Discussion

Effect of Photosensitization on Visual Observation of
Fungal Growth

In the present study, among the three different CUR concen-
trations used, 1000 μM was found to be more effective (p <
0.05) in reducing fungal growth during storage than the other
two treatments (Fig. 2). After 12 days of storage, 52% of the
photosensitized strawberry samples (using CUR 1000 μM)
were infected in comparison to 100% in the untreated control
after only 8 days of storage. On the other hand, samples
photosensitized with 1200 and 800 μM, the fungal infection
was 86% and 79%, respectively, after 12 days of storage.
Strawberry samples, treated with only light (no CUR) and
only CUR (no light), showed a fungal infection rate of
100% after 12 days and 8 days, respectively. These results
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indicate that neither light alone nor CUR alone has any effect
on strawberry shelf life. Based on these findings, the physico-
chemical and nutritional analysis were performed on the sam-
ples photosensitized with 1000-μM CUR and 10-min expo-
sure to blue xenon light (420 nm).

The most important requirement of any preservation tech-
nology is the ability to extend the shelf life of food. In this
study, the combination of 1000-μMCUR and light resulted in
a significant (p < 0.05) extension of the shelf life and quality
retention of “Albion” strawberries (Fig. 2). We have hypoth-
esized that the extension of shelf life might have been
achieved via the following mechanism. Free CUR molecules
in the mixture get excited and produce ROS, and these reac-
tive chemical species target the fungal/spores/cells causing
perforation of the cell membranes, which in turn increased
the permeability and allowed the photosensitizer to penetrate
into the cell, causing cell component oxidation after illumina-
tion and leading to cell death (Priyadarsini 2014). The alter-
ations caused in the fungal cell membrane by ROS can be
cross-linking, lipid peroxidation, enzyme and protein inacti-
vation and membrane leakage, leading to lysis of cell mem-
branes (Al-Asmari et al. 2017).

Similar results were reported by Al-Asmari et al. (2018)
where date fruit photosensitized using 1400 μM CUR for
10 min, stored at 30 °C lasted for 14 days in comparison to
the 7 days for the control. Paskeviciute et al. (2018) reported
that chlorophyllin-based photosensitization at a light dose of
3 J/cm2 prolonged the shelf life of cherry tomatoes by 4 days.
In another report by Liu et al. (2016), an extension of shelf life
of oyster of up to 12 days after treatment using 10-μMCUR at
a light dose of 5.4 J/cm2 could be observed.

Reduction of fungal growth was reported with CUR con-
centrations from 600 to 1000 μM. The fungal species, includ-
ing A. niger, A. flavus, P. griseofulvum, P. chrysogenum and

Z. bailii, were significantly reduced by 1.98 log, 0.95 log, 0.66
log, 2.49 log and 2.09 log CFU/g, respectively, when
photosensitized with a light dose of 96 J/cm2 (Al-Asmari
et al. 2017). Luksiene and Paskeviciute (2011) found that
photosensitization-based treatment can decontaminate straw-
berry from the surface inoculated Listeria by 98%,mesophylls
naturally distributed on the surface of strawberries by 97%,
yeasts and fungi by 86%. Meanwhile, in our study, the overall
reduction ofmicrobial contamination resulted in extending the
storage life of treated strawberries by 4 days in comparison to
the control (Fig. 2). Hence, photosensitization can be consid-
ered a clean green technology in preserving strawberry fruit.

Measurements of Colour

Colour is one of the most important factors that can affect
consumer perception of strawberries (Nunes et al. 1995). No
colour changes (p > 0.05) were detected in treated straw-
berries in comparison with the control (Table 1) after 24 h of
storage at 4 °C. This is supported by a previous study that
showed photosensitization mediated by chlorophyllin had no
impact on strawberry colour (Rasiukevičiūtė et al. 2016).

TSS, TA, pH and Moisture Content

TSS increased significantly (p < 0.05) in the treated samples
compared to the control after 1 day of storage. Both pH and
TA of photosensitized fruits did not change (p > 0.05) when
compared to the control fruit. In our study, TSS and maturity
index (TSS/TA ratio) increased (p < 0.05) in the treated sam-
ples compared to the untreated control (Table 1). In this study,
the moisture contents were 88.8% and 88.5% in the control
and treated samples, respectively.

Fig. 2 Effect of
photosensitization (light dosage
42 J/cm2) mediated by CUR at
various concentrations and light
or CUR treatment alone on fungal
growth on strawberry surface
stored at 4 ± 2 °C L− C+ = no
light only CUR; L+ C− = only
light no CUR; L+ C+(1200) =
both light and CUR(1200 μM),
L+ C+(1000) = both light and
CUR(1000 μM), L+ C+(800) =
both light and CUR(800 μM);
control = untreated. *p < 0.05
compared to the control group
without CUR and light treatment.
Data represent mean ± SD (n = 3)

Food Anal. Methods



TPC and DPPH Radical Scavenging Capacity

This study showed that photosensitization mediated by CUR
“preserved” TPC (241.79 vs. 246.47 mg GAE/100 g fw) after
1 day of storage (Table 2). In contrast, Luksiene and
Paskeviciute (2011) found that TPC in strawberries treated
with chlorophyllin-based photosensitization stored at 6 °C de-
creased (20%) during 24 h. However, Tao et al. (2019) report-
ed that CUR- based photosensitization increased TPC in treat-
ed fresh-cut apple slices up to day 4 of storage at 4 °C, which
could be caused by oxidative stress (Sikora and Swieca 2018).

According to the results shown in Table 2, photosensitiza-
tion mediated by CUR had no adverse effect on the DPPH
radical scavenging capacity in the treated samples. On the
other hand, Xu et al. (2014) found that blue light (470 nm)
increased DPPH radical scavenging capacity in strawberries
after 4 days of storage, which could be associated with en-
hanced cellular capacity to detoxify ROS and increased total
phenolic content. In this study, photosensitization did not af-
fect TPC and DPPH radical scavenging capacity of the treated
samples could be due to the superficial action of the treatment
(Paskeviciute et al. 2018).

Anthocyanins Content

In this study, the total anthocyanin content in control straw-
berry was 22.49mg/100 g fw, which is within the range of 15–
84 mg/100 g fw reported in previous studies for commercial
strawberry cultivars (Fredericks et al. 2013). Total

anthocyanin content after photosensitization remained similar
to the control (Fig. 3). Pelargonidin-3-glucoside (Pg3G),
cyanidin-3-glucoside (Cy3G) and pelargonidin-3-rutinoside
(Pg3R) were unaffected by photosensitization. In contrast,
Luksiene and Paskeviciute (2011) found that anthocyanins
in strawberry samples treated with chlorophyllin-based pho-
tosensitization stored at 6 °C decreased (14%) during 24 h.

The anthocyanin content is responsible for the red colour of
ripe strawberries. Several reports have indicated that ultra-
violet (UV) light exposure promotes anthocyanin synthesis
in strawberries and sweet cherries (Wang et al. 2009). Some
previous reports showed that blue light increased the produc-
tion of polyphenols, mainly flavonoids, which are UV-
absorbing compounds with antioxidant capacity, and act as
UV filters (Agati and Tattini 2010). One of the key enzymes
in the synthesis of phenolic compounds is phenylalanine
ammonia-lyase (PAL) and its activity is correlated with the
content of phenolic compounds (Lemoine et al. 2010).
Preservation of phenolic compounds and particularly antho-
cyanins in the present study could be the consequence of a
combined effect of CUR and visible light induction of PAL
(Xu et al. 2014). This indicates that photosensitization not
only extends shelf life but also preserves bioactive compounds
such as anthocyanins in strawberry fruit.

Ascorbic Acid Content

In this study, ascorbic acid in control strawberry was 46.98 mg/
100 g fw which is within the reported range of 32–112 mg/

Table 2 Effect of photosensitization on quality parameters of Albion strawberries

TPC (mg GAE/100 g fw) DPPH radical scavenging
capacity (μM TE/100 g fw)

Total anthocyanins
(mg/100 g fw)

Ascorbic acid (mg/100 g fw) Total sugar (g/100 g fw)

Control 241.79 ± 0.17 198.09 ± 0.09 22.49 ± 0.17 46.98 ± 0.58 4.49 ± 0.06

Treated 246.47 ± 0.61 204.16 ± 0.02 23.60 ± 0.25 46.60 ± 0.26 5.50 ± 0.06

TPC total phenolic content (Folin-Ciocalteu assay)

Total sugar: sum of fructose, glucose and sucrose

Total anthocyanins: sum of pelargonidin-3-glucoside (Pg3G), cyanidin-3-glucoside (Cy3G) and pelargonidin-3-rutinoside (Pg3R).Data are mean ± SD
(n = 3). Treated samples: 1000-μMCUR and 10-min exposure to light (light dosage 42 J/cm2 ). p > 0.05 compared to the control group without CUR and
light treatment

Table 1 Effect of photosensitization on physicochemical properties of Albion strawberries

Colour TSS (0Brix) TA (g CAE/100 g fw) TSS/TA ratio pH Moisture (%)

L* C* h°

Control 35.72 ± 0.61 40.22 ± 0.44 34.53 ± 0.25 7.20 ± 0.09 0.84 ± 0.00 8.54 ± 0.09 3.56 ± 0.02 88.79 ± 0.17

Treated 35.61 ± 0.42 40.36 ± 0.66 34.57 ± 0.15 7.82 ± 0.24 a 0.83 ± 0.01 9.36 ± 0.29 a 3.55 ± 0.01 88.51 ± 0.73

Data are mean ± SD (n = 3). Treated samples: 1000-μM CUR and 10 min exposure to light (light dosage 42 J/cm2 ). a p < 0.05 compared to the control
group. L* , lightness; C* , chroma; h° , hue angle

Food Anal. Methods



100 g fw (Fredericks et al. 2013). Photosensitization had no
impact on ascorbic acid (46.98 vs. 46.60 mg/100 g fw)
(Table 2). A previous study by Rasiukevičiūtė et al. (2016)
found that photosensitization mediated by chlorophyllin deriv-
ative did not alter the ascorbic acid content. This is a clear
indication that photosensitization has no impact on ascorbic
acid, an important natural antioxidant and vitamin in
strawberry.

Sugar Content

Total sugar content in photosensitized strawberry fruit in-
creased by 22% compared to the control (Table 2). The in-
crease in fructose, glucose and sucrose in photosensitized
strawberry fruit was 31%, 22% and 11%, respectively, com-
pared to the untreated control fruit (Fig. 4). The results are
supported by refractometer analysis of TSS which showed a
9% increase (p < 0.05) in photosensitized fruits compared to
the control (Table 1). Aurum and Nguyen (2019) reported an
increase in TSS in grapes treated with curcumin-based photo-
sensitization at a light dose of 36.3 J/cm2 up to 4 days of
storage at 37 °C. This increase could be caused by dehydration
(Valverde et al. 2005) and activity of hydrolytic enzymes
(Nabifarkhani et al. 2015). Moreover, Baka et al. (1999)
found that strawberries treated with UV-C (doses 0.25 and
1.0 kJ/m2) and stored at 4 °C increased free sugar content
up to 6 days. This accumulation of sugars could be related
to UV stress and the stimulation of intercellular synthetic
enzymes, such as the activity of sucrose synthase, and in-
hibition of degradative enzymes, such as invertase or phos-
phorylase (Stitt and Steup 1985). In our study, increase
amount of sugar level could be attributed to stimulation

of intercellular synthetic enzymes due to effect of photo-
sensitizer (CUR) and/or visible light (420 nm). However,
further investigations will be required to understand the
physiological basis of increased sugar content of strawber-
ry fruits after photosensitization.

Conclusion

Fresh strawberry fruit when photosensitized by the combina-
tion of visible blue light and 1000 μMCUR and stored at 4 ±
2 °C extended the shelf life up to 12 days compared to 8 days
in the untreated control fruits. Photosensitization did not affect
the physicochemical quality of the strawberry and retained
key quality attributes. It is worth emphasizing that there was
an increase in total soluble solids and sugar content of
photosensitized strawberries which can increase consumer ac-
ceptance. These results suggest that photosensitization may be
a useful non-thermal treatment technology for maintaining
strawberry fruit quality and extending shelf life. However,
further detailed studies on the impact of photosensitization
on other macro- and micronutrients, bioactive compounds as
well as sensory attributes are warranted to evaluate the effec-
tiveness of photosensitization on quality of strawberry fruit.
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Fig. 4 Effect of photosensitization on individual sugars in Albion
strawberries. Treated samples: 1000 μM CUR and 10 min exposure to
blue xenon light (light dosage 42 J/cm2). p > 0.05 compared to the control
group without CUR and light treatment. Data are mean ± SD (n = 3)

Fig. 3 Effect of photosensitization on individual anthocyanins in Albion
strawberries. Treated samples: 1000 μM CUR and 10 min exposure to
light (light dosage 42 J/cm2). p > 0.05 compared to the control group
without CUR and light treatment. Data are mean ± SD (n = 3)
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