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Drought is a recurring phenomenon that puts crop yields at risk and threatens the livelihoods of many people around the globe.
Stay-green is a drought adaption phenotype found in sorghum and other cereals. Plants expressing this phenotype show less
drought-induced senescence and maintain functional green leaves for longer when water limitation occurs during grain fill,
conferring benefits in both yield per se and harvestability. The physiological causes of the phenotype are postulated to be water
saving through mechanisms such as reduced canopy size or access to extra water through mechanisms such as deeper roots. In
sorghum breeding programs, stay-green has traditionally been assessed by comparing visual scores of leaf senescence either by
identifying final leaf senescence or by estimating rate of leaf senescence. In this study, we compared measurements of canopy
dynamics obtained from remote sensing on two sorghum breeding trials to stay-green values (breeding values) obtained from
visual leaf senescence ratings in multienvironment breeding trials to determine which components of canopy development were
most closely linked to the stay-green phenotype. Surprisingly, canopy size as estimated using preflowering canopy parameters
was weakly correlated with stay-green values for leaf senescence while postflowering canopy parameters showed a much
stronger association with leaf senescence. Our study suggests that factors other than canopy size have an important role in the
expression of a stay-green phenotype in grain sorghum and further that the use of UAVs with multispectral sensors provides an

excellent way of measuring canopy traits of hundreds of plots grown in large field trials.

1. Introduction

Sorghum (Sorghum bicolor (L.) Moench) is a crop widely
grown in drought-prone areas around the world and is
mainly used in human and animal nutrition, as fiber or for
ethanol production [1]. It is the fifth most important cereal
crop in the world and provides food for more than 750 mil-
lion people in the semiarid tropical regions of Asia, Africa,
and Latin America [2]. Population growth in combination
with climate change is a challenge for the world’s future food
security [3]. This demands crops with traits that contribute to
tolerance of water deficit. Functional stay-green is a drought
adaptation phenotype that is generated by traits that influ-
ence water use and water capture and expresses itself in a

delayed onset of senescence, a slower senescence rate, or
enhanced greenness [4]. Under postflowering drought condi-
tions, stay-green components such as senescence rate and
onset of senescence are found to be correlated with increased
yield in sorghum [5-7]. Traits that change either the supply
or demand for water or the timing of water use all may
contribute to a stay-green phenotype. On the supply side,
root architectural traits such as longer roots or a narrower
root angle can contribute to a greater water extraction from
deep in the soil [8, 9]. On the demand site, several studies
suggested that a reduced leaf area and enhanced transpira-
tion efficiency play a major role [5, 8, 10-13]. Introgressing
stay-green QTLs into a senescent sorghum line resulted in a
smaller leaf canopy due to reduced tillering or smaller leaves
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and led to reduced water use before flowering [8]. Also, crop
modelling approaches suggested that in water-limited envi-
ronments on deep soils with good water-holding capacity, a
shift from preanthesis to postanthesis water use via a reduced
leaf canopy can lead to higher yields [11, 14]. This is because
a smaller canopy uses less water before anthesis and reduces
transpiration, and thus, more water is available during grain
filling. Where crop growth relies on soil moisture reserves
rather than in-crop rain, not only the size of the canopy is
an important determinant of water demand but also the leaf
area duration, which is mainly driven by phenology. The
sooner a hybrid flowers, the more water will remain in the
subsoil for the grain-fill period which will affect the expres-
sion of stay-green which is why phenology should be consid-
ered in the analysis of stay-green. Most of the studies finding
an association between stay-green and canopy size are based
on a small number of genotypes [8, 10, 12, 13]. In order to use
canopy size as a screening trait for stay-green in early-
generation variety trials, the association between canopy size
and leaf senescence (LSN) needs to be tested across a diverse
range of genetic backgrounds and environments, as the
expression of a stay-green phenotype may be due to different
underlying physiological mechanisms across a range of
genetic material [15]. The relative contribution of preanth-
esis canopy dynamics to stay-green has not been assessed to
date. Therefore, the aim of this study was to determine how
much attention should be paid to canopy size whilst selecting
for genotypes with stay-green-type drought adaptation in
sorghum breeding trials. There are a range of approaches
available which can be used to measure canopy size. Manual
methods for measuring leaf area index with a ruler or leaf
area meter are time consuming, expensive, and labor inten-
sive [16], particularly when the number of plots is large. In
such cases, the methods preclude measurements at multiple
time points making it difficult to capture traits associated
with canopy dynamics (rate of canopy development and
senescence). Typical plant breeding trials consist of hundreds
or thousands of plots, and hence, traits associated with can-
opy dynamics either are not used in selection or are visually
scored. The use of unmanned aerial vehicles (UAV) helps
to make the phenotyping process much faster [17, 18] and
permits evaluation of canopy size at multiple time points.
Remote sensors capture light reflection spectra from plant
canopies, which are then used for the calculation of different
vegetation indices. A widely used vegetation index is the nor-
malized difference vegetation index (NDVI). The NDVTI has
been shown to be a good estimator for leaf canopy dynamics
and is closely related to LAI [19, 20]. However, when the can-
opy becomes denser during the vegetative period, the NDVI
tends to saturate and underestimate the true LAI [21]. An
exponential relationship between the two values can correct
for this bias, and an empirical relationship for sorghum has
already been developed [22]. Due to this link between canopy
size and NDVI, it has also been used to evaluate the stay-
green phenotype and its components [23, 24]. Components
of the stay-green phenotype, such as high maximum green-
ness or delayed onset of senescence and rate of senescence
and residual “greenness,” can be derived from a logistic
[25], linear [26, 27], or polynomial function of NDVI [28]
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from early crop growth to maturity. Thereby, several sensing
metrics can be derived from the functions and correlated
with stay-green parameters. These traits include slopes,
integrals, and maximum NDVI values of the function. There
have not been any previous studies examining the relation-
ship between these traits themselves and their relative impor-
tance to stay-green in sorghum. Therefore, the overall
objective of this study was to (i) dissect the stay-green pheno-
type in sorghum into its components using vegetation indices
and by that (ii) estimate the influence of canopy size on LSN
in multiple environments and a broad range of hybrids and
(iii) evaluate the feasibility of using UAV-based sensors to
select for stay-green.

2. Materials and Methods

2.1. Genetic Material. The trials in this study comprised
experimental and control hybrids with a total of 427 hybrids
grown in Jimbour (26.9627°S, 151.2174°E) and 422 hybrids
grown in Pirrinuan (27.0657°S, 151.2653°E). Both are locali-
ties of the Western Downs region in Queensland, north-
east Australia. Experimental hybrids were obtained through
previous crosses of inbred lines with two different female
testers from a prebreeding program of the University of
Queensland and the Queensland Department of Agriculture
and Fisheries. The female parents (testers) were selected for
performance across several years and locations. Further, they
were deliberately selected for their contrasting stay-green
characteristics to expose variation in stay-green expression
in the male parents in both a high (Female 1) and a moderate
stay-green (Female 2) background.

2.2. Experimental Setup and Data Collection. The UAV image
data used for this analysis came from two hybrid sorghum
breeding trials planted at two different locations in south-
east Queensland, Australia. The trials ran from November
2018 to March 2019. The two locations had deep soils with
high water-holding capacity. The soils were close to field
capacity around planting but thereafter received little or no
rainfall. This resulted in typical postflowering drought condi-
tions where the stay-green trait was expressed (ie., severe
enough that senescence due to water limitation occurred
across all genotypes). Temperatures were very similar in
Jimbour and Pirrinuan at 24.4°C + 6°C. The experiments in
both locations were arranged in partially replicated designs
[29] with 39% of the hybrids replicated. Visual LSN scores
were taken at plant maturity ranging from 1 to 9, where 1
corresponded to no LSN and 9 to a fully senescent plant
canopy. Spectral data was collected via a Tarot custom-
made drone with 3DR-Px4 flight controller equipped with a
RedEdge multispectral camera (RedEdge, MicaSense, Seattle,
Washington) at seven time points during the vegetation
period in both trials. Flight altitudes were adjusted depending
on plant size and plot cover to ensure sufficient resolution,
which resulted in heights of 16, 20, 25, 30, 30, 30, and 35m
from the first to the last flight. Measurements were taken
under clear sky conditions on 13 November, 4 December,
19 December, 3 January, 16 January, 12 February, and 28
February/1 March for Jimbour and Pirrinuan, respectively.
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Once grains on main and tiller panicles were fully matured
and sufficiently dry, the trial plots were harvested with a
small-plot combine harvester to determine grain yield.

2.3. Calculation of Canopy Traits Related to Stay-Green. For
the calculation of canopy traits related to stay-green from mul-
tispectral data, the free statistical software R (R Development
Core Team, 2012) was used. The NDVTI index was calculated
as an average per plot from the spectral data using the formula

NIR - red
NDVI=_ (1)
NIR + red

For each trial plot, NDVI during the vegetation period was
plotted against thermal time. Thermal time from emergence
was calculated by calculating 3-hourly averages of daily tem-
perature and accumulating thermal time according to equa-
tions (2)—(4) derived from the method of Jones and Kiniry [30].

8TT=0 T<TyorT>T,,., (2)

STT=T-T, T,<T<Tyy (3)

T =T
STT = (Top — T,) |1 - Topt < T < Ty

Tmax - Topt
(4)

where TT is the thermal time and T is the average temper-
ature in each 3-hour period. Base (T,), optimum (Topt), and
maximum (T,.) temperatures were set to 10°C, 30°C, and
42°C, respectively, as used for grain sorghum in Hammer
etal. [31].

The resulting curves were divided into five different com-
ponents that relate to stay-green parameters: area under the
curve preanthesis (AUC-pre), area under the curve postanth-
esis (AUC-post), slope preanthesis(S-pre), slope postanthesis
(S-post), and maximum NDVI value (Figure 1).

To check whether reflectance from bare soil had an effect
on the results, the components were also calculated by filter-
ing NDVI values greater than 0.5. When using the filtered
NDVI values, the relationships between the components
and significance with LSN were essentially the same, requir-
ing no further use of filtered values for the analysis.

2.4. Statistical Analysis

2.4.1. Leaf Senescence. Leaf senescence in sorghum is a trait
known to show low levels of crossover GXE [7]. Even in the
case of small significant GxE interactions, the genotype
rankings did not change, which justifies the calculation of
across-site LSN BLUPs for each hybrid. For these overall
LSN values, a multienvironmental analysis (MET) was
conducted including 12 environments using the methods
described in Smith et al. [32]. As not all hybrids were mea-
sured in all 12 environments, their site-specific LSN values
were predicted within the MET based on the environmental
main effect in the missing location and their relative sensitiv-
ity to environmental changes [33].
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FiGure 1: Canopy traits related to stay-green derived from the
NDVI curve on an individual plot in Jimbour. Days to flowering
for each plot were used as separator between the left and right
sides of the curve. Integrals were estimated using the composite
trapezoid rule. Traits, their corresponding abbreviation, relevance
to stay-green parameters, and units are displayed in Table 1.

2.4.2. Canopy Traits Related to Stay-Green. Because of the
potential for phenology to confound estimates of LSN, only
individual hybrids that flowered within a five-day flowering
window were included in the analysis. After filtering for flow-
ering and excluding commercial varieties, 431 experimental
hybrids remained in the dataset of which 251 hybrids were
with Female 1 and 180 hybrids were with Female 2 and 133
of the males were common between the two sets. For the
'canopy components, a joint analysis of both locations was
conducted and a linear mixed model was fitted for every trait
using the ASReml program [34] inside the statistical package
R [35]. There were two different models. One for the average
effect of the hybrids and another model considering the pop-
ulation structure of the two different female parents. The
basic model for the hybrid effect contained fixed effects for
location, plant establishment, and day of flowering. Geno-
type, replicates, rows, and columns were fitted as random
effects. A second model considered the population structure
and had an additional fixed effect for the females and a ran-
dom interaction term for males and females. A first-order
autoregressive structure for rows and columns was added in
both models to account for spatial correlations. Individual
adaptions for each model were made based on a Wald chi-
squared test for fixed effects and z ratios for random effects,
where nonsignificant terms were omitted. In addition, possi-
ble linear or spline trends along rows and columns were
added if necessary. Best linear unbiased predictors (BLUPS)
were calculated for the hybrids in the first model and for
males within females in the second model. Furthermore,
further BLUPS of the pre- and postanthesis parameters were
calculated whilst using maximum NDVT as a covariate in the
mixed model for a better separation of each component
effect. To check if there were significant correlations between
predicted LSN and canopy traits, ¢-tests were applied on a
simple linear regression with LSN as the response.
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TaBLE 1: Abbreviations, relevance to stay-green parameters, and units of calculated traits.
Abbreviation Trait Indicator for Unit
S-pre Slope preanthesis Rate of canopy development/green up (ANDVI/Athermal time) x 100000
AUC-pre Total area under Fhe curve Total canopy size before flowering NDVI x thermal time
preanthesis
Adjusted A_rea unc'ler the curve preanth§s1s Early canopy size before flowering exclud@g NDVI x thermal time
AUC-pre with maximum NDVTI as covariate ~ variances of maximum greenness at flowering
Max-NDVI Maximum NDVI Maximum canopy size (around anthesis) Dimensionless
S-post Slope postanthesis Rate of senescence (ANDVI/Athermal time) * 100000
AUC-post Total area under t.h ¢ cutve Total canopy size after flowering NDVI x thermal time
postanthesis
Adjusted A.rea und'er the curve postanthésis Canopy size ?fter flowering excluding Yariances NDVI x thermal time
AUC-post with maximum NDVT as covariate of maximum greenness at flowering
TABLE 2: Summary statistics for the calculated canopy traits and yield (t/ha) at the two locations Jimbour and Pirrinuan.
Trait Site Mean Stde Gvar H?
s Jimbour 196 5.6 3.3¢% 63.1
-pre
P Pirrinuan 165 9.2¢7% 7.5¢7% 83.5
Jimbour 237 5.95 48.1 54.6
AUC-pre o
Pirrinuan 262 10.8 77.0 71.6
. Jimbour 237 1.96 12.1 37.6
Adjusted AUC-pre o
Pirrinuan 262 3.88 27.5 72.6
Jimbour 0.72 5.1¢7% 42e7% 73.1
Max-NDVI o4 03
Pirrinuan 0.76 4.2e” 3.2e” 64.4
Jimbour -123 6.1e7% 6.4¢7% 92.5
S-post o4 0
Pirrinuan -111 5.3¢ 5.4¢ 91.0
Jimbour 332 9.15 101.63 78.0
AUC-post o
Pirrinuan 333 11.87 127.47 82.4
_ Jimbour 332 321 39.0 76.1
Adjusted AUC-post .
Pirrinuan 333 6.78 79.8 83.3
Jimbour 7.86 0.03 0.31 75.1
LSN -
Pirrinuan 7.83 0.03 0.27 71.9
. Jimbour 3.95 0.04 0.18 40.7
Yield .
Pirrinuan 3.40 0.05 0.21 49.1

Stde: standard error; Gvar: genetic variation; H?: broad-sense heritability. Means refer to the raw data.

Significance for across-site LSN and canopy traits was
additionally checked in the ASReml model where the trait
was fitted as a fixed effect. Broad-sense heritabilities were
calculated as proposed by Cullis et al. [29]. All analyses were
done using the statistical package R [35]. A principal compo-
nent analysis with the BLUPS of all traits for all hybrids was
created using the princomp function. Pearson’s correlation
matrix was calculated using the function “cor.”

3. Results

3.1. Summary Statistics. All calculated canopy traits showed
moderate to high broad-sense heritabilities in both environ-
ments ranging from 37.6 to 92.5 (Table 2). Similar heritabil-
ities have been found for max-NDVI and postflowering

parameters in wheat [25, 27]. The heritabilities and genotypic
variation for most of the traits were lower in Jimbour than in
Pirrinuan. Phenotypic values of canopy traits varied similarly
across experiments with higher means in Pirrinuan for most
traits (Figure 2). In general, the postanthesis parameters
expressed more genotypic variation and higher heritabilities
than their preanthesis counterparts. Moreover, across-site
LSN values were highly correlated with site-specific LSN values
in all environments ranging from 0.54 to 0.99 (data not shown).

3.2. Overall Effect of the Hybrids on Canopy Traits Related to
Stay-Green. BLUPs of yield and LSN values showed a weak
but significant negative correlation (-0.18). Looking at the
correlations for the parameters calculated without using
max-NDVT as a covariate (SR and AUC-post), the hybrids’
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FIGURE 2: Histograms of canopy traits using raw data of Jimbour and Pirrinuan.
TaBLE 3: Correlation table of the canopy traits (BLUPS) for the average effect of all hybrids.
Adjusted Max- Adjusted .
Trait S-pre AUC-pre AUC-pre NDVI S-post AUC-post AUC-post LSN Yield
Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig.
S-pre 1 — 073 %% -0.09 ns 079 =*x% -034 *** 057 #*** 010 ns 005 ns 013 =**
AUC-pre 073 #%% 1 — 031 #%%x 080 #*** -040 k%% 051 *** 001 ns 011 * 025 **x
Adjusted AUC-pre  -0.09 ns 031 =#=%% 1 — — — 003 ns -035 #*xx -023 ***% 007 ns 006 ns
Max-NDVI 0.79 #** 0.80 #** — — 1 — 045 x*xx 072 x*xx — — 007 ns 019 =*x*
S-post -0.34 ***x -04 *x* 0.03 ns -045 **x 1 — 022 xxx 073 *xx*x -0.69 *x* (.17 **x
AUC-post 0.57 #*% 051 **x -035 **x 072 %% 022 *%%* 1 — 077 *%x -046 *** 033 *x*
Adjusted AUC-post 0.10 ns 0.01 ns -023 ***x — — 073 =*%xx 077 =*xx 1 —  -0.72 #xx 030 *xx
LSN 005 ns 011 =* 007 ns 007 ns -0.69 *** -046 *** -072 *** 1 —  -0.18 *x*x%
Yield 0.13  #% 025 #%* 006 ns 019 #*x* 017 %% 033 #*x 030 *xk -018 #kx 1 —

Cor.: correlation; sig.: significance. Significance tested in a regression analysis. Significance level: ***P < 0.001, **P < 0.01,

*P <0.05, ns: P> 0.05. S-pre: slope

preanthesis; AUC-pre: total area under the curve preanthesis; adjusted AUC-pre: adjusted area under the curve preanthesis for maximum greenness; max-
NDVI: maximum normalized difference vegetation index; S-post: slope postanthesis; AUC-post: total area under the curve postanthesis; adjusted AUC-post:
adjusted area under the curve postanthesis for maximum greenness; LSN: leaf senescence.

across-site LSN values and postanthesis parameters were
strongly negatively correlated (Table 3). In comparison to
the postanthesis parameters, the preanthesis parameters SL,
AUC-pre, and max-NDVI were weakly correlated with
across-site LSN (0.05, 0.11, and 0.07, respectively). Moreover,
even though max-NDVT itself did not correlate strongly with
across-site LSN, it had strong associations with the other
components, whereas the correlations of max-NDVI with
the preanthesis parameters were higher than those with the
postanthesis parameters. Interestingly, AUC-pre and AUC-
post were positively correlated whereas S-pre and S-post

were showing the opposite relationship. On the other hand,
when including max-NDVT as a covariate in the model, the
correlation between adjusted AUC-post and adjusted AUC-
pre became negative (-0.23). In addition, the previous
positive relationship between max-NDVI and AUC-pre
became negative, whilst the correlation of across-site LSN
with AUC-pre tended toward zero. Moreover, when using
max-NDVT as a covariate, the correlation between AUC-
post and across-site LSN resulted in a much stronger associ-
ation as compared to the previous model. As expected, the
correlations of AUCs and max-NDVI were substantially
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reduced. Furthermore, the variation in pre- and postflower-
ing slopes between the different genotypes became negligible.

The biplot of the principal component analysis confirmed
a close relationship of postflowering rather than preflowering
canopy traits with LSN (Figure 3). The increase in the correla-
tion between LSN and postflowering canopy traits when the
postflowering canopy traits were adjusted using max-NDVI
as a covariate can be seen clearly. Even though there seemed
to be an increase in correlation of LSN and AUC-pre after
the adjustment, the substantially reduced loading led to a
smaller association.

Figure 4 shows some example plots from the trial in
Jimbour. The upper two panels display plots with low LSN
values while the lower two panels show plots with high
values. Preanthesis leaf canopy size can be either large or
small with no clear difference between high or low senescing
plots. On the other hand, postanthesis canopy size seemed to
be slightly larger for plots expressing low senescing values.

3.3. Effect of Female Parent on Canopy Traits Related to Stay-
Green. Comparing the hybrids derived from the two con-
trasting female testers, differences could be found in their
overall LSN as well as in their canopy traits. As expected,
hybrids derived from Female 1 (the stay-green female tester)
had significantly lower LSN values than those from Female 2
(P<0.001; data not shown). Among the hybrids derived
from Female 1, none of the preflowering leaf canopy traits
were significantly correlated with LSN (Table 4). All canopy
traits were more strongly correlated with yield among the
hybrids derived from Female 1, and associations of postanth-
esis traits with LSN were also greater than among the hybrids
derived from Female 2 (the senescent female). Among the
hybrids derived from Female 2, preflowering leaf canopy
traits were more strongly correlated with LSN of which the
correlation with max-NDVT was significant (Table 5). More-
over, the preanthesis traits among the hybrids derived from
Female 2 showed higher correlations with the postanthesis
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traits S-post and AUC-post. In general, it seemed that the
preflowering canopy size traits among the hybrids derived
from the senescent female had a greater impact on canopy
stay-green traits than those among the hybrids derived from
the stay-green female.

4. Discussion

The aim of this study was to estimate the relative impor-
tance of leaf area before anthesis in stay-green phenotypes
using NDVI to assess canopy characteristics associated
with stay-green.

4.1. The Role of Preanthesis Canopy Parameters on the
Expression of a Stay-Green Phenotype. In this experiment,
preflowering canopy size was uncorrelated or very weakly
correlated with LSN. These findings contrast with results
found in experiments with wheat where maximum NDVI
and NDVI values around maturity were significantly corre-
lated in a drought environment [25]. Also, in sorghum, other
canopy traits such as number of tillers or leaf size have been
found to be closely linked to stay-green in smaller sets of lines
and near isogenic lines [8, 10, 12, 13]. Most likely, the differ-
ent findings are a result from the broader range of germplasm
used in this study and suggest that traits influencing water
capture or water use efficiency may play a greater role in
the expression of the stay-green phenotype in this material
than maximum canopy size (i.e., size of the canopy before
flowering). Similarly, in a previous study, the introgression
of stay-green QTLs into different genetic backgrounds did
cause reduced tillering, leaf area reduction, and a lower max-
imum leaf area around anthesis in only one of the two QTL
introgression lines [15]. This experiment highlighted the
importance of genetic background effects, with canopy size
being of different importance in the two females. Further-
more, in the hybrids derived from the female with higher
LSN, maximum NDVI seemed to be a driver for the correla-
tion between canopy size and LSN. The greater influence of
maximum NDVT in hybrids with the senescent female could
be related to the relative importance of different component
traits that contribute to stay-green. For the stay-green female,
traits other than canopy size, for example, root architectural
traits, might overshadow any contribution of leaf area differ-
ences to the stay-green phenotype. Conversely, in the senes-
cent female, lower water extraction or water use efficiency
capacities could lead to an increased role of preflowering leaf
canopy parameters to keep the plant green and would there-
fore explain the significant correlations of max-NDVI and
LSN. The adjusted AUC-pre on the other hand did not seem
to have any effect on LSN. This might have to do with the
average daily water use of sorghum which has its maximum
demand during flowering [36]. Therefore, in genotypes
where canopy size has an effect on LSN, a reduced canopy
size at the time of highest water demand may have a larger
impact on the stay-green phenotype than the rate at which
the canopy size increased. However, preanthesis canopy
traits have a small, context-sensitive effect on stay-green
when looking at the range of diverse hybrids evaluated in this
study. This indicates that more emphasis should be placed on
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FiGure 4: Example plots of sorghum hybrids in Jimbour. AUC-pre: area under the curve preanthesis; AUC-post: area under the curve
postanthesis; DTF: days to flowering which were used as a separator between the left and right areas under the curve. The upper plots
show low leaf senescence (LSN) values and the lower plots show high LSN values.

TasLE 4: Correlation table of canopy traits (BLUPS) for the average effect of the hybrids with Female 1.

Adjusted Max- Adjusted

S-pre AUC-pre S-post AUC-post LSN Yield

Trait AUC-pre NDVI AUC-post

Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig.
S-pre 1 — 078 =*#*x -0.05 ns 0.82 *x% -035 #*x* (057 #** 010 ns 0.04 ns 0.24 *xx*
AUC-pre 0.78 #xx 1 — 031 =#%x 0.84 =*xx -04 =*xx 054 *xx 005 ns 005 ns 025 sk**
Adjusted AUC-pre  -0.05 ns 0.31 %% 1 — — — 002 ns -027 **xx -019 =** 005 ns 004 ns
Max-NDVI 0.82 #*% 084 #*x —  — 1 — 044 #xx 071 #**x* — — 005 ns 025 *x*x*
S-post -0.35 ##% -0.4 k%% 002 ns -044 w*x ] — 024 =xxx 075 xxx -0.69 *xx 026 kkk
AUC-post 0.57 ##% 054 #%% -027 #*x 071 #*xx 024 #*xx 1] — 078 ##% 047 #*% 046 *x*
Adjusted AUC-post 0.10 ns 0.05 ns -0.19 =** — — 075 %% (.78 =#*xx ] — =07 #xx 046 xxx
LSN 004 ns 005 ns 005 ns 005 ns -0.69 #*** -047 *** -070 ***x 1 — 033 #xx
Yield 024 #%% 025 #%* 004 ns 025 #*% 026 #*** 046 *** 046 *** -033 **xx ] —

Cor.: correlation; sig.: significance. Significance tested in a regression analysis. Significance level: ***P < 0.001, **P < 0.01, *P < 0.05, ns: P > 0.05. S-pre: slope
preanthesis; AUC-pre: total area under the curve preanthesis; adjusted AUC-pre: adjusted area under the curve preanthesis for maximum greenness; max-
NDVI: maximum normalized difference vegetation index; S-post: slope postanthesis; AUC-post: total area under the curve postanthesis; adjusted AUC-post:
adjusted area under the curve postanthesis for maximum greenness; LSN: leaf senescence.

other component traits by breeders aiming to enhance stay-  strongly correlated with overall LSN values (breeding values)
green drought adaptation. derived from multienvironment ratings, and these correla-

tions were even stronger when the data was normalized for
4.2. The Role of Postanthesis Canopy Traits on the Expression ~ canopy size at anthesis by using max-NDVI as a covariate.
of a Stay-Green Phenotype. Postanthesis canopy traits were =~ Postanthesis canopy parameters have also been highly
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TaBLE 5: Correlation table of canopy traits (BLUPS) for the average effect of the hybrids with Female 2.
Trait S-pre AUC-pre ﬁgjé?;ercl 13482(/:1 S-post AUC-post :SJCu— S;Z(:t LSN Yield
Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig. Cor. Sig.
S-pre 1 — 072 %% -022 *x 078 =*x*% -047 **x* 057 =*** 0.04 ns 019 * 0.08 ns
AUC-pre 072 =**xx 1 — 016 * 079 #**x -045 *x* 056 *x* 0.02 ns 013 ns 020 **
Adjusted AUC-pre -022 =** 016 = 1 — — 023 **x -043 =**x -022 =** -007 ns 015 =
Max-NDVI 0.78 #*x 079 ***x — — 1 -0.56 x*x  0.79 Hkxx  — — 014 = 011 ns
S-post -047 x%% 045 **x 023 *x -056 *xx 1 — -0.03 ns 060 **x -056 *x* 023 *x*
AUC-post 0.57 #*x 056 =*** -043 **x 079 =*x** -0.03 ns 1 — 071 =*x% -026 #**x 028 *x**
Adjusted AUC-post 0.04 ns 0.02 ns -022 #*x — 0.60 ##* 071 #*x 1 —  -0.57 x#x 033 kxk
LSN 019 * 013 =ns -007 ns 0.14 -0.56 x** -0.26 **x -0.57 *xxx* 1 —  -0.28 k%
Yield 008 ns 020 =** 015 * 0.11 023 #*x 028 *xx% 033 #*kx -0.28 *xx*x 1 —

Cor.: correlation; sig.: significance. Significance tested in a regression analysis. Significance level: ***P < 0.001, **P < 0.01, *P < 0.05, ns: P > 0.05. S-pre: slope
preanthesis; AUC-pre: total area under the curve preanthesis; adjusted AUC-pre: adjusted area under the curve preanthesis for maximum greenness; max-
NDVI: maximum normalized difference vegetation index; S-post: slope postanthesis; AUC-post: total area under the curve postanthesis; adjusted AUC-post:
adjusted area under the curve postanthesis for maximum greenness; LSN: leaf senescence.

correlated with stay-green ratings in other studies in wheat
and sorghum [19, 24, 25]. Postanthesis NDVT not related to
canopy size differences indicates increased leaf “greenness”
and therefore delayed or slower senescence. This, in turn, is
likely driven by greater water uptake or increased water use
efficiency. In other studies with sorghum, QTLs for nodal
root angle which likely affect water uptake at depth were
found to collocate with stay-green QTL [9]. Stay-green has
also been associated with increased transpiration efficiency,
although those effects have been found to be either context
dependent or relatively small [14, 15].

5. Conclusion

Within the large set of diverse hybrids observed in this study,
it appears that canopy size before flowering made a relatively
small contribution to the expression of a stay-green pheno-
type after flowering. However, the effect varied depending
on the female tester which shows the importance of consider-
ing genotypic background and other context dependencies
when evaluating traits for the selection of complex traits such
as stay-green. If stay-green is a result of higher water use
during grain filling, traits such as water extraction efficiency
and water use efficiency rather than leaf area before flowering
may be the main drivers for the expression of the trait. In
conclusion, this study showed that variation in canopy size
before flowering is not a good predictor of stay-green expres-
sion in this set of breeding trials. This result is in contrast to
previous observations in smaller genetically less diverse sets
of material. In contrast, using UAVs to monitor the NDVI
decay after flowering is a suitable method for high-
throughput phenotyping of stay-green.
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