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Abstract

In conservation agriculture systems, farmers gain many advantages from retaining crop res-

idue on the soil surface, but crop residue retention in these systems may intervene with the

activity of pre-emergence herbicides. A pot study was conducted to evaluate the effect of dif-

ferent rates of pre-emergence herbicides [imazethapyr (100 and 150 g a. i. ha-1), isoxaflu-

tole (100 and 200 g a. i. ha-1), metolachlor (1.5 and 2.25 kg a. i. ha-1), pendimethalin (2.25

and 3.38 kg a. i. ha-1) and prosulfocarb + metolachlor (2.5 and 3.75 kg a. i. ha-1)] on seedling

emergence and biomass of Echinochloa colona and Chloris virgata when applied in the

presence of sorghum residue at rates equivalent to (0, 3 and 6 t ha-1). When seeds of E.

colona and C. virgata were not covered with sorghum residue, the seedling emergence and

biomass of both weeds was inhibited by 93–100% and 56–100%, respectively, with the appli-

cation (both rates) of isoxaflutole, metolachlor, pendimethalin and prosulfocarb + metola-

chlor. Using sorghum residue resulted in lower herbicide efficacy on both weeds. At 3 t ha-1

sorghum residue, E. colona emergence and biomass reduced by 38–100% and 30–100%,

respectively, with application of isoxaflutole, metolachlor and pendimethalin (both rates) in

comparison with the no-herbicide treatment. Similarly, the emergence and biomass of C. vir-

gata was also reduced by 92–100% and 25–100%, respectively. The results of this study

suggest that crop residue may influence efficacy of commonly used pre-emergence herbi-

cides and that the amount of crop residue on the soil surface should be adjusted according to

the nature of the pre-emergence herbicides to achieve adequate weed control.

Introduction

Echinochloa colona (L.) Link and Chloris virgata Sw. are major C4 summer grass weeds) in

Australia, where infested 111000 and 118000 hectares of Australian farms, respectively, causing
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respective revenue losses of AUD 14.7 and 7.7 million per year [1]. E. colona is a mimic weed

of rice (Oryza sativa L.) and is difficult to control in many cropping systems due to its prolific

seed production (>42000 seeds plant-1) as well as its resistance to several common herbicides

such as ACCase inhibitors, ALS inhibitors, EPSP synthase inhibitors, triazines, ureas and

amides [2–4]. C. virgata is a key weed in sorghum production in the northern cropping region

of Australia and in the southern and western regions of the country. The presence of this weed

has also been reported in vineyards and orchards within these regions [5–7]. C. virgata is resis-

tant to the EPSP synthase inhibitor herbicide and can produce up to 6000 seeds per plant [4–

6].

In Australia, >80% of agricultural land is under conservation agriculture and no-tillage sys-

tems and accounts for more than 52 million ha [1]. In such systems, crop residue is retained

on the soil surface whereby farmers gain many advantages, such as reduced soil erosion,

reduced soil evaporation, increased microorganism activity and reduced weed seed germina-

tion [8–10]. In conservation agriculture, the application of pre-emergence (PRE) herbicides is

highly recommended for the reduction of labor costs, the reduced need for costly post-emer-

gence herbicides and an overall increase in weed suppression and control duration [11–13].

PRE herbicides play an integral role in weed control within conservation cropping systems.

PRE herbicides such as imazethapyr [(Spinnaker), acetolactate synthase inhibitors], isoxaflu-

tole [(Balance), 4-hydroxyphenyl-pyruvate dioxygenase inhibitors], S-metolachlor [(Dual

Gold), cell division/ very long-chain fatty acid inhibitors], pendimethalin [(Rifle), microtubule

assembly inhibitors] and prosulfocarb + metolachlor [(Boxer Gold), inhibitors of lipid synthe-

sis and cell division/ very long-chain fatty acid inhibitors] are recommended for the control of

grass weeds such as E. colona and C. virgata in many summer crops [14–19]. In this study, her-

bicides with different water solubility (mg/L at 20˚C) [pendimethalin (0.33), isoxaflutole (6),

prosulfocarb + metolachlor (16), metolachlor (480), and while metolachlor (200), isoxaflutole

(145) and imazethapyr (1.4–173) tend to highly move with soil water [20]. Several reports sug-

gest that a significant amount of PRE herbicide may be adsorbed by crop residue, whereby her-

bicide efficacy is reduced, according to its physicochemical properties [21–22]. For example,

Banks and Robinson [23] found that 50% of metolachlor was adsorbed by wheat (Triticum aes-
tivum L.) straw applied at 1 t ha-1. Khalil et al [22] observed that trifluralin tightly bound to

wheat straw, and a small amount of this herbicide washed off from crop residue after rainfall

(20 mm), while pyroxasulfone had easily lost bond with crop residue. Chauhan and Abugho

[12] reported that some weeds such as Cyperus iria L. escape from PRE herbicide applications

in the presence of rice residue. There remains a significant gap of information for the northern

regions of Australia on the interaction of crop residue and PRE herbicides. Information on

sorghum residue retention and PRE herbicide application can be used to develop precise and

integrated weed management strategies.

The aim of this study was to evaluate the interaction effect of sorghum residue and PRE her-

bicides on emergence and biomass of E. colona and C. virgata.

Materials and methods

Seed description and soil preparation

In 2017, seeds of E. colona and C. virgata were collected from Gatton (27.43˚S, 152.24˚E),

Queensland, Australia. For each weed species, 100 mature seeds were placed on the soil surface

of plastic pots (10 cm diameter × 10 cm height) filled with field soil. The soil collected was

sandy loam soil (2% organic matter, pH 7) from the research farm at the University of Queens-

land, Gatton. This soil was sieved and placed in an oven set at 100˚C for a week to eliminate

any background seed bank.
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Herbicide application and sorghum residue

This study was conducted in 2018 in a shade house facility of the Queensland Alliance for

Agriculture and Food Innovation (QAAFI), the University of Queensland, Gatton, Australia.

The oven-dried (70˚C for 72 h) small pieces (2 cm) of sorghum (cv. MR Bazley) residue (leaves

and stems) at the field equivalent rates of 0, 3 and 6 t ha-1 were used to evaluate the interaction

of varying rates of PRE herbicides and sorghum residue. PRE herbicides [imazethapyr (100

and 150 g a. i. ha-1), isoxaflutole (100 and 200 g a. i. ha-1), metolachlor (1.5 and 2.25 kg a. i. ha-

1), pendimethalin (2.25 and 3.38 kg a. i. ha-1) and prosulfocarb + metolachlor (2.5 and 3.75 kg

a. i. ha-1)] were spayed using a Research Track Sprayer. Flat fan nozzles (110015) were used

and the total spray volume was 108 L ha-1. For each residue amount, there was a control (no-

herbicide treatment). Each pot was daily sub-irrigated separately after herbicide treatment,

and the soil was kept at field capacity. Minimum and maximum temperatures of the shade

house during the study are given in Fig 1.

Fig 1. Minimum and maximum temperatures during the studies on the interaction of sorghum residue and pre-emergence herbicides on emergence and

biomass of Echinochloa colona and Chloris virgata in a shade house at the Gatton Campus of the University of Queensland, Australia.

https://doi.org/10.1371/journal.pone.0229817.g001
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Data collection

The study was terminated after 5 weeks of herbicide application. Emerged weed seedlings were

counted at harvest. Weed biomass was collected by cutting the emerged seedlings at the soil

surface before being placed in an oven set at 70˚C for 72 h for drying [12].

Statistical analyses

A factorial experiment (herbicide × sorghum residue) based on a randomized complete block

design with three replications was used. The study was repeated once. The data for seedling

emergence was pooled as no significant differences were observed between the two experimen-

tal runs. However, biomass data is presented separately for each experimental run due to sig-

nificant differences between each experimental run. Before analysis (ANOVA), the data was

subjected to the Shapiro-Wilk test and no transformation was needed. The Fisher’s protected

Least Significant Differences (LSD) was used at probability 0.05 to evaluate the difference

among means.

Results

Effect of PRE herbicides on emergence of Echinochloa colona
The interaction effect of herbicide treatment and sorghum residue was significant for the

emergence of E. colona (Table 1). In the no-herbicide control, covering the seeds with 3 t ha-1

sorghum residue resulted in a 20% increase in the emergence of E. colona d in comparison

with the no-residue treatment (41% emergence) with no significant differences observed

between 3 and 6 t ha-1 sorghum residue treatments. Without crop residue, seedling emergence

of E. colona was completely inhibited by isoxaflutole (both rates), metolachlor (both rates),

pendimethalin (3.38 kg ha-1) and prosulfocarb + metolachlor (3.75 kg ha-1).

In the no-residue cover treatment, seedling emergence was reduced by 70% following the

application of imazethapyr at 100 g ha-1 in comparison with the no-herbicide treatment.

Increasing sorghum residue from 3 to 6 t ha-1 resulted in 39% and 55% increases in seedling

emergence at 100 and 150 g ha-1 of imazethapyr, respectively. In the 6 t ha-1 sorghum residue

treatment, increasing the imazethapyr rate from 100 to 150 g ha-1 did not affect seedling emer-

gence of E. colona.

Table 1. Effect of residue amount and herbicide treatments on seedling emergence of Echinochloa colona.

Herbicide treatments Residue amount (t ha-1)

0 3 6

Seedling emergence (%)

Control 41.3 51.7 51.3

Imazethapyr 100 g ha-1 12.3 21.0 34.3

Imazethapyr 150 g ha-1 5.3 12.3 27.3

Isoxaflutole 100 g ha-1 0.0 20.3 32.7

Isoxaflutole 200 g ha-1 0.0 0.0 0.0

Metolachlor 1.5 kg ha-1 0.0 32.0 29.7

Metolachlor 2.25 kg ha-1 0.0 27.6 27.0

Pendimethalin 2.25 kg ha-1 3.0 31.3 37.7

Pendimethalin 3.38 kg ha-1 0.0 23.3 32.0

Prosulfocarb + metolachlor 2.5 kg ha-1 2.0 46.7 44.0

Prosulfocarb + metolachlor 3.75 kg ha-1 0.0 33.0 41.3

LSD (0.05) 7.63

https://doi.org/10.1371/journal.pone.0229817.t001
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Application of isoxaflutole at 200 g ha-1 resulted in complete inhibition of seedling emer-

gence. In the isoxaflutole 100 g ha-1 treatment, increasing sorghum residue from 3 to 6 t ha-1

resulted in a 38% increment in the emergence of E. colona.

In the 3 t ha-1 sorghum residue treatment, application of metolachlor at 1.5 kg ha-1 reduced

the emergence of this weed by 38% in comparison with the no-herbicide treatment. At 3 t ha-1

sorghum residue, increasing the metolachlor rate and sorghum residue did not affect the seed-

ling emergence of E. colona.

At 3 t ha-1 sorghum residue, the application of 2.25 and 3.38 kg ha-1 pendimethalin resulted

in 39% and 55% reductions in seedling emergence of E. colona in comparison with the no-her-

bicide treatment. Increasing the sorghum residue amount from 3 to 6 t ha-1 in the pendimetha-

lin 3.38 kg ha-1 treatment resulted in a 27% increase in seedling emergence; however, this

increment was not observed at the lower herbicide rate (i. e., 2.5 kg ha-1).

In the 3 and 6 t ha-1 sorghum residue treatments, spraying prosulfocarb + metolachlor at

2.5 kg ha-1 did not affect the emergence of this weed in comparison with the no-herbicide

treatment. However, the higher rate of this herbicide treatment (i. e., 3.75 kg ha-1) reduced the

seedling emergence of this weed by 36% and 19% at 3 and 6 t ha-1 sorghum residue amounts,

respectively, in comparison to the no-herbicide treatment.

Effect of PRE herbicides on emergence of Chloris virgata
The interaction between herbicide treatment and sorghum residue was significant on the

emergence of C. virgata (Table 2). In the no-herbicide treatment (control), covering the seeds

with 3 t ha-1 sorghum residue resulted in a 16% increase in the emergence of this weed in com-

parison with the no-residue treatment. Comparatively in the 6 t ha-1 sorghum residue treat-

ment, seedling emergence of this weed reduced by 48% in comparison with the no-residue

treatment. Without sorghum residue, seedling emergence of this weed was completely inhib-

ited by the application of isoxaflutole, metolachlor, pendimethalin and prosulfocarb

+ metolachlor.

Compared with no-herbicide treatment, the seedling emergence of C. virgata reduced by

68% and 39% when imazethapyr 100 g ha-1 was applied with no-residue and 3 t ha-1 sorghum

residue respectively. Increasing the sorghum residue amount from 3 to 6 t ha-1 reduced

Table 2. Effect of residue amount and herbicide treatments on seedling emergence of Chloris virgata.

Herbicide treatments Residue amount (t ha-1)

0 3 6

Seedling emergence (%)

Control 32.0 38.0 16.6

Imazethapyr 100 g ha-1 10.3 23.3 16.7

Imazethapyr 150 g ha-1 3.7 19.3 10.7

Isoxaflutole 100 g ha-1 0.0 1.0 3.3

Isoxaflutole 200 g ha-1 0.0 0.0 0.0

Metolachlor 1.5 kg ha-1 0.0 3.0 1.3

Metolachlor 2.25 kg ha-1 0.0 1.7 1.3

Pendimethalin 2.25 kg ha-1 0.0 3.0 4.3

Pendimethalin 3.38 kg ha-1 0.0 0.0 2.3

Prosulfocarb + metolachlor 2.5 kg ha-1 0.0 5.0 11.0

Prosulfocarb + metolachlor 3.75 kg ha-1 0.0 0.0 4.3

LSD (0.05) 3.29

https://doi.org/10.1371/journal.pone.0229817.t002
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seedling emergence of this weed by 28% and 45% at 100 and 200 g ha-1 of imazethapyr,

respectively.

In the 3 t ha-1 sorghum residue treatment, application of isoxaflutole (100 g ha-1), metola-

chlor (1.50 kg ha-1) and pendimethalin (2.25 kg ha-1) reduced seedling emergence of C. virgata
by 97%, 92% and 92%, respectively, in comparison with the no-herbicide treatment.

At 3.75 kg ha-1 of prosulfocarb + metolachlor, the seedling emergence of C. virgata reduced

by 74% at 6 t ha-1 sorghum residue in comparison to the no-herbicide treatment and no plant

survived at 3 t ha-1 sorghum residue.

Effect of PRE herbicides on biomass of Echinochloa colona
The interaction effect of herbicide treatment and sorghum residue was significant on the bio-

mass of E. colona (Table 3). Although significant differences were observed between experi-

mental runs, E. colona responded similarly to herbicide and sorghum residue treatments. In

both experimental runs, addition of sorghum residue resulted in an increase in biomass in the

no-herbicide treatment. In the no-residue treatment, imazethapyr 200 g ha-1 resulted in 82%

and 61% reductions in biomass in the first and second experimental runs, respectively, com-

pared with the no-herbicide treatment. In comparison with the no-residue treatment,

Table 3. Effect of residue amount and herbicide treatments on seedling biomass of Echinochloa colona.

Herbicide treatments Residue amount (t ha-1)

0 3 6

Biomass (g per pot)

Experimental run I

Control 0.39 0.61 0.54

Imazethapyr 100 g ha-1 0.22 0.37 0.39

Imazethapyr 150 g ha-1 0.07 0.27 0.36

Isoxaflutole 100 g ha-1 0.0 0.39 0.35

Isoxaflutole 200 g ha-1 0.0 0.0 0.0

Metolachlor 1.5 kg ha-1 0.0 0.43 0.37

Metolachlor 2.25 kg ha-1 0.0 0.38 0.36

Pendimethalin 2.25 kg ha-1 0.09 0.34 0.31

Pendimethalin 3.38 kg ha-1 0.0 0.33 0.35

Prosulfocarb + metolachlor 2.5 kg ha-1 0.17 0.49 0.50

Prosulfocarb + metolachlor 3.75 kg ha-1 0.0 0.46 0.47

LSD (0.05) 0.14

Experimental run II

Control 0.83 1.11 0.97

Imazethapyr 100 g ha-1 0.45 0.55 0.60

Imazethapyr 150 g ha-1 0.32 0.51 0.66

Isoxaflutole 100 g ha-1 0.00 0.57 0.43

Isoxaflutole 200 g ha-1 0.00 0.00 0.00

Metolachlor 1.5 kg ha-1 0.00 0.57 0.49

Metolachlor 2.25 kg ha-1 0.00 0.49 0.51

Pendimethalin 2.25 kg ha-1 0.35 0.50 0.58

Pendimethalin 3.38 kg ha-1 0.00 0.55 0.58

Prosulfocarb + metolachlor 2.5 kg ha-1 0.16 0.99 0.91

Prosulfocarb + metolachlor 3.75 kg ha-1 0.00 0.70 0.86

LSD (0.05) 0.12

https://doi.org/10.1371/journal.pone.0229817.t003
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retaining residue at 3 t ha-1 resulted in reductions in biomass by 39%, 36%, 30% and 44% at

100 g ha-1 of imazethapyr, 100 g ha-1 of isoxaflutole, 1.5 kg ha-1 of metolachlor and 2.25 kg ha-1

of pendimethalin, respectively, in the first experimental run. In the second experimental run,

the corresponding values were 50%, 48%, 48% and 55%, respectively. In the abovementioned

treatments (both experimental runs), increasing sorghum residue amount did not affect the

biomass of this weed.

In the no-residue treatment, the biomass of E. colona was reduced by 77% and 56% at 2.25

kg ha-1 of pendimethalin and 2.5 kg ha-1 of prosulfocarb + metolachlor, respectively, compared

with the no herbicide treatment in the first experimental run. Comparatively in the second

experimental run, the biomass of this weed reduced by 58% and 81%, respectively. In the 6 t

ha-1 residue treatment, application of prosulfocarb + metolachlor 3.75 kg ha-1 did not affect

biomass of E. colona compared with the no-herbicide treatment.

Effect of PRE herbicides on biomass of Chloris virgata
The interaction effect of herbicide treatment and sorghum residue was significant on the bio-

mass of C. virgata (Table 4). Although significant differences were observed between experi-

mental runs, this weed responded similarly to herbicide and sorghum residue treatments. In

Table 4. Effect of residue amount and herbicide on seedling biomass of Chloris virgate.

Herbicide treatments Residue amount (t h-1)

0 3 6

Biomass (g per pot)

Experimental run I

Control 0.35 0.56 0.48

Imazethapyr 100 g ha-1 0.12 0.44 0.42

Imazethapyr 150 g ha-1 0.11 0.37 0.33

Isoxaflutole 100 g ha-1 0.00 0.11 0.16

Isoxaflutole 200 g ha-1 0.00 0.00 0.0

Metolachlor 1.5 kg ha-1 0.00 0.20 0.12

Metolachlor 2.25 kg ha-1 0.00 0.12 0.12

Pendimethalin 2.25 kg ha-1 0.00 0.26 0.27

Pendimethalin 3.38 kg ha-1 0.00 0.00 0.27

Prosulfocarb + metolachlor 2.5 kg ha-1 0.00 0.36 0.37

Prosulfocarb + metolachlor 3.75 kg ha-1 0.00 0.24 0.29

LSD (0.05) 0.21

Experimental run II

Control 0.50 0.56 0.58

Imazethapyr 100 g ha-1 0.31 0.50 0.57

Imazethapyr 150 g ha-1 0.24 0.54 0.48

Isoxaflutole 100 g ha-1 0.00 0.23 0.34

Isoxaflutole 200 g ha-1 0.00 0.00 0.00

Metolachlor 1.5 kg ha-1 0.00 0.37 0.26

Metolachlor 2.25 kg ha-1 0.00 0.24 0.20

Pendimethalin 2.25 kg ha-1 0.00 0.42 0.50

Pendimethalin 3.38 kg ha-1 0.00 0.00 0.45

Prosulfocarb + metolachlor 2.5 kg ha-1 0.00 0.52 0.57

Prosulfocarb + metolachlor 3.75 kg ha-1 0.00 0.41 0.51

LSD (0.05) 0.13

https://doi.org/10.1371/journal.pone.0229817.t004
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both experimental runs, addition of sorghum residue did not affect the biomass of this weed in

the on-herbicide treatment.

Application of different rates of imazethapyr (100 and 150 g ha-1) did not affect the biomass

of this weed at 3 and 6 t ha-1 sorghum residue treatments in comparison with the no-herbicide

treatment in both experimental runs. In the no-residue treatment, imazethapyr 100 g ha-1

reduced the biomass of this weed by 66% and 38% in the first and second experimental runs,

respectively, in comparison with the no-herbicide treatment.

In the first experimental run at 3 t ha-1 sorghum residue, the biomass of C. virgata reduced

by 80% and 64% following the application of 100 g ha-1 isoxaflutole and 1.5 kg ha-1 metola-

chlor, respectively, compared with the no herbicide treatment. Similarly, in the second experi-

mental run, the biomass of this weed reduced by 59% and 34% respectively. In both runs,

increasing the metolachlor rate did not affect the biomass of C. virgata.

In the 3 t ha-1 sorghum residue treatment, biomass of C. virgata reduced by 54% and 25% at

2.25 kg ha-1 of pendimethalin in the first and second experimental run, respectively, compared

with the no-herbicide treatment. In the 6 t ha-1 sorghum residue treatment, application of pen-

dimethalin at 2.25 and 3.38 kg ha-1 did not affect the biomass of C. virgata compared with the

no-herbicide treatment.

In both experimental runs, retaining sorghum residue at 3 and 6 t ha-1 did not affect the

biomass of C. virgata in the prosulfocarb + metolachlor 2.25 kg ha-1 treatment. In the 3 t ha-1

sorghum residue treatment, application of prosulfocarb + metolachlor at 3.75 kg ha-1 resulted

in weed biomass reduction by 57% and 27% in the first and second experimental run, respec-

tively, in comparison with the no-herbicide treatment.

Discussion

The farming practice of crop residue use in covering soil surfaces to reduce evaporation rate

and consequently increase soil moisture has been well established [8, 24]. Furthermore, it has

been shown to improve moisture conductivity and better seed-soil contact, resulting in higher

plant seedling emergence rate and growth [24–25]. In the current study, the seedling emer-

gence of E. colona (16%) and C. virgata (20%) under no herbicide treatment slightly increased

with the addition of sorghum residue at 3 t ha-1, in comparison with the no-residue treatment.

Mutti et al. [26] stated that the emergence of E. colona reduced by 47% as a result of covering

the seed with an amount of 8 t ha-1 sorghum residue. In the present study, increasing the sor-

ghum residue amount from 3 to 6 t ha-1 in the absence of herbicides did not affect the seedling

emergence of E. colona but the seedling emergence of C. virgata was reduced by 48%. In the

no-herbicide treatment, sorghum residue retention (3 and 6 t ha-1) increased the biomass of E.

colona. This was in contrast to the biomass of C. virgata which was not affected by sorghum

residue retention. Germination ecology studies revealed that although both weeds have many

similar requirements for germination, E. colona could germinate in a broad range of soil mois-

ture and the emergence of E. colona and C. vigata completely inhibited at -1 and -0.6 MPa,

respectively [4,6]. It could be concluded that the effect of crop residue on seedling emergence

may vary according to species, dependent upon plant requirements for moisture, temperature,

light and seed reserve resources for seedling emergence [3, 21, 27]. It has been reported than

the retention of crop residue in conservation agriculture protects weed seeds from predators

and physical decomposition [21, 28]. Furthermore, the increased soil water content and

organic matter available within conservation agriculture systems may result in higher weed

seed microbial decomposition [21, 29–31].

The effect of temperature on plant biomass production has been reported in several studies

[32–34]. Although biomass was higher for both weeds in the second experimental run, both
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weeds responded similarly to herbicide and sorghum residue treatments in each experimental

run. The increased biomass in the second experimental run could be attributed to the increase

in temperature shown in Fig 1. Furthermore, microbial herbicide decomposition may increase

with an increase in temperature, thereby affecting herbicide efficacy [35–36].

Several PRE herbicides have been registered for the control of many grass weeds in Austra-

lia. In the current study, without sorghum residue, the seedling emergence of both weeds was

inhibited by 93%-100% with the application of isoxaflutole, metolachlor, pendimethalin and

prosulfocarb + metolachlor. Similar results were obtained by Chauhan and Abugho [12], that

in no-crop residue treatment, the emergence of E. colona was completely inhibited by applica-

tions of oxidiazon and pendimethalin.

In the no-residue treatment, imazethapyr had a lower effect on seedling emergence of both

weeds in comparison with other herbicide treatments. Imazethapyr belongs to the imidazoli-

nones family and is considered a low rate herbicide that can be absorbed by roots and shoots.

Imazethapyr is highly water soluble with a low vapor pressure (<0.013 MPa) that presents a

high risk of leaching. Furthermore, it has been reported that it is sensitive to photodegradation

in water [37–38]. In the no-residue treatment, the lower efficacy of imazethapyr in comparison

with other herbicides could be attributed to leaching as a sub-irrigation system was used in

this study and photodegradation might have been enhanced in the presence of water.

Chauhan and Abugho [12] reported that retaining rice residue on the soil surface may

reduce PRE herbicide efficacy on some species and cause evasion of chemical control in con-

servation agriculture systems. All herbicide treatments in our study showed a lower efficacy on

E. colona and C. virgata in the presence of sorghum residue and both weeds produced more

biomass when sorghum residue was retained. In conservation agriculture systems where weed

seeds remain on the soil surface, retention of crop residue may act as a physical barrier to the

amount of herbicide received on the soil surface. Khalil et al [39] reported a higher prosulfo-

carb, pyroxasulfone, and trifluralin interception when increasing the crop (wheat, barley,

canola, chickpea and lupin) residue from 2 to 4 t ha-1 and lower herbicide efficacy with crop

residue present. Furthermore, PRE herbicide efficacy may depend on herbicide physicochemi-

cal properties in conservation agriculture systems [13, 21, 22, 25]. For example, herbicides

such as pendimethalin may be exposed to high volatilization and photodegradation with crop

residue retention [40]. In systems with high soil organic matter, low soluble herbicides such as

pendimethalin may have higher dissipation rates due to strong soil binding and exposure to

higher microbial degradation [41–42]. It may be concluded that despite the many benefits of

crop residue in conservation agriculture systems, the amount of crop residue on the soil sur-

face should be adjusted for adequate weed management strategies. The use of surfactants or

the changing of herbicide formulation for low interception rates could improve PRE herbicide

efficacy in conservation agriculture systems [21, 43].

Lower PRE herbicide efficacy in the presence of crop residue may encourage a higher herbi-

cide application rate from users. In the current study, increasing the isoxaflutole rate from 100

to 200 g ha-1 resulted in complete inhibition of emergence of both weeds. The risk of the evolu-

tion of weed resistance to herbicides due to increased application rates has been well docu-

mented [44–46] and should not be neglected. Furthermore, the higher usage of herbicides and

absorption of herbicides by crop residue may also result in the occurrence of phytotoxicity in

the next crop [47].

Conclusions

Australian farmers gain many advantages from retaining crop residue on the soil surface. In

conservation agriculture systems, PRE herbicides are a major weed management practice. The
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results of this study showed that the efficacy of PRE herbicides may be reduced by crop residue

retention. Herbicides in the presence of crop residue may result in high interception rates,

leaching, photodegradation and microbial dissipation based on their physicochemical proper-

ties. In such systems, the amount of crop residue on the soil surface should be adjusted accord-

ing to the nature of the PRE herbicides to avoid a high load and to achieve adequate weed

control. In future studies, the feasibility of the application of more efficient herbicides with

new formulation and a lower interception rate in the presence of crop residue based on

weather conditions, such as temperature and precipitation should be evaluated.
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