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Abstract 17 

A widespread insect endosymbiont Wolbachia is currently of much interest for use in novel strategies 18 

for the control of insect pests and blocking transmission of insect-vectored diseases. Wolbachia-19 

induced effects can vary from beneficial to detrimental depending on host biology and the genetic 20 

background of the infecting strains. As a first step towards investigating the potential of Wolbachia for 21 

use in the biocontrol of buffalo flies (BF), embryos, pupae, and adult female BF were injected with three 22 

different Wolbachia strains (wAlbB, wMel and wMelPop). BF eggs were not easily injected because of 23 

their tough outer chorion and embryos were frequently damaged resulting in less than 1% hatch rate of 24 

microinjected eggs. No Wolbachia infection was recorded in flies successfully reared from injected 25 

eggs. Adult and pupal injection gave a much higher survival rate and resulted in somatic infection and 26 

germinal tissue infection in surviving flies with transmission to the succeeding generations on a number 27 

of occasions. Investigations of infection dynamics in flies from injected pupae confirmed that Wolbachia 28 

were increasing in numbers in BF somatic tissues and ovarian infections were confirmed with wMel and 29 

wMelPop in some instances, though not with wAlbB. Measurement of fitness traits indicated reduced 30 

longevity, decreased and delayed adult emergence, and reduced fecundity in Wolbachia-infected flies 31 

in comparison to mock-injected flies. Furthermore, fitness effects varied according to the Wolbachia 32 

strain injected with most marked reductions seen in the wMelPop-injected flies and least severe effects 33 

seen with the wAlbB strain.  34 

 35 

 36 
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Introduction 39 

Buffalo flies (BF), Haematobia exigua are obligate hematophagous ectoparasites of cattle [1]. They are 40 

present in the Australasian, Oriental and Palearctic regions of the world [2]. Both female and male BF 41 

feed 20-40 times a day on cattle, and the females only leave cattle to oviposit in freshly deposited cattle 42 

manure [3]. Their blood-feeding habits result in significant economic losses by reducing milk and meat 43 

production and causing defects in cattle leather [4, 5]. Further, BF infestation is a significant welfare 44 

issue with biting by flies causing severe irritation and, in association with a filarial nematode transmitted 45 

by BF (Stephanofilaria sp.), the development of lesions that range from dry, hyperkeratotic and alopecic 46 

areas to open suppurating ulcerated sores. BF are tropical and subtropical in their distribution and are 47 

mainly pests of cattle in the northern parts of Australia [6]. However, aided by a warming climate and 48 

reduced efficiency of control because of the development of chemical resistance, they have been 49 

steadily expanding their range southward [2, 6-8].  50 

Wolbachia, are maternally inherited endosymbionts of insects, that are of much interest for use in the 51 

biological control of pests, most particularly as a basis for area-wide integrated control strategies for a 52 

range of insect species [9-11]. Wolbachia has been used in insect control programs in two main ways. 53 

First, it has been used as a means to achieve population replacement, where Wolbachia-infected 54 

insects impart unique characteristics such as pathogen blocking or fitness deficits, and second, by the 55 

incompatible insect technique (IIT) in which Wolbachia-infected males released into the population 56 

cause the production of non-viable eggs, similar to the sterile male technique [11-14]. Both of these 57 

strategies are based on cytoplasmic incompatibility (CI) and the resultant ability of Wolbachia to spread 58 

though uninfected or differentially infected populations [14]. Some of the novel fitness costs induced by 59 

Wolbachia include decreased fecundity and male competitiveness, seen in Anopheles stephensi 60 

infected with wAlbB, lifespan reduction, egg mortality, delayed larval development and altered feeding 61 

behaviour seen in Aedes aegypti infected with wMelPop [15-20].  62 

The first successful field trial of the Wolbachia-based IIT technique was in Myanmar in early 1960’s to 63 

eliminate a native population of Culex quinquefasciatus mosquitoes responsible for transmitting 64 

filariasis [21]. Following the trial success, this strategy has been widely studied in mosquito species 65 

including Aedes polynesiensis, Aedes albopictus, Anopheles stephensi, Culex pipiens pallens, and in 66 

tsetse flies (Glossina morsitans) [10, 22-26]. Presently, wMel-infected Ae. aegypti mosquitoes are being 67 

released in Australia, Asia (Fiji, India, Sri Lanka, and Vietnam), North America (Mexico), and South 68 
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America (Colombia, Brazil) to suppress mosquito-transmitted diseases of humans such as dengue 69 

fever and Zika virus [27, 28]. 70 

The first step towards developing Wolbachia based control programs is the establishment of Wolbachia 71 

transinfected lines of the target pest. The most common method used to transinfect new hosts with 72 

Wolbachia has been embryonic microinjection, although injection into other stages, such as adults and 73 

pupae have also given some success [14]. Of the available transinfection procedures, embryonic 74 

microinjection is mostly preferred as Wolbachia are directly introduced to the pole cells of pre-75 

blastoderm embryos using a fine needle inserted at the posterior end of the egg, desirably resulting in 76 

germline and somatic cell infection. In contrast, adult injection is usually carried out into the thoracic or 77 

abdominal regions of adults where Wolbachia must successfully evade or overcome a number of 78 

membrane barriers and the host immune response to become established in the germinal tissues for 79 

next-generation transmission [14]. Some instances of successful use of adult microinjection to 80 

transinfect new insect strains include the transfer of wMel strain to Drosophila melanogaster, wAlbA 81 

and wAlbB to Ae. aegypti, and wRi, wMel, wHa, and wNo to the leafhopper Laodelphax striatellus [14, 82 

29-31].  83 

Buffalo flies collected from twelve locations in Australia and Indonesia were negative for Wolbachia 84 

infection, and this has been confirmed by more recent testing in our lab (unpublished data) [32]. 85 

However, Wolbachia appears to be ubiquitous in closely related horn flies (Haematobia irritans) (HF) 86 

suggesting that BF will also be a competent host for Wolbachia [32-38]. In previous studies, Wolbachia 87 

has been mostly sourced from the egg of the infected species for microinjection purposes [14]. 88 

Nevertheless, using cell lines of the intended host artificially infected with Wolbachia as the donor 89 

source has been suggested as advantageous for obtaining a high density and host context adapted 90 

Wolbachia. Hence, we established the HIE-18 cell line from HF to adapt wAlbB obtained from mosquito, 91 

wMel, and wMelPop from Drosophila into the Haematobia spp. context prior to commencing BF 92 

microinjection. 93 

Here, we report the results of studies towards the establishment of lines of BF sustainably infected with 94 

the wAlbB, wMel, and wMelPop strains of Wolbachia and the dynamics and kinetics of infection in 95 

microinjected flies. The results of preliminary investigations into the related physiological costs of 96 

Wolbachia infection on the newly infected host BF, which are critical to considerations of the potential 97 

for use in biological control programs, are also described. 98 
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 99 

Material and Methods 100 

Establishment of Wolbachia-infected cell cultures 101 

A non-infected Drosophila cell line (JW18) was infected with the wAlbB (JW18-wAlbB), wMel (JW18-102 

wMel), and wMelPop (JW18-wMelPop) strains of Wolbachia following the protocol of Hebert et al. 103 

(2017) to first adapt them in a closely related species [39]. JW18 cell lines infected with the three strains 104 

of Wolbachia were cultured in a 75 cm2 flask in 12 ml Schneider’s medium supplemented with 10% FBS 105 

at 28 oC (Sigma Aldrich, NSW, Australia). The Haematobia embryonic cell line (HIE-18) maintained in 106 

our lab without the use of antibiotics were transinfected with wAlbB (wAlbB-HIE-18), wMel (wMel-HIE-107 

18) and wMelPop (wMelPop-HIE-18) as above. The infected HIE-18 lines were cultured in 75 cm2 flasks 108 

containing 12 ml of Schneider’s medium supplemented with 10% FBS at 28oC and subcultured every 109 

5-6 days by splitting at a ratio of 1:2 into new flasks (Sigma Aldrich, NSW, Australia).  110 

Wolbachia isolation 111 

Wolbachia were isolated from the cell lines, according to Herbert et al. (2017) [21]. Briefly, wAlbB, wMel, 112 

and wMelPop infected cell lines were grown in 75 cm2 cell culture flasks for seven days using previously 113 

noted methods. Cells were pelleted on the eighth day by spinning at 2000 x g and washed three times 114 

with SPG buffer (218 mM sucrose, 3.8 mM KH2PO4, 7.2 mM MK2HPO4, 4.9 mM L- glutamate, pH 7.5), 115 

sonicated on ice for two bursts of 10 sec and cellular debris was removed by spinning at 1000 x g for 116 

10 min at 4 oC. The supernatant was passed through 50 m and 2.7 m acrodisc syringe filters 117 

(Eppendorf, NSW, Australia) and centrifuged at 12000 x g to pellet Wolbachia. Finally, the pellet was 118 

suspended in 100 l SPG buffer and used for microinjection.  119 

Embryonic microinjection 120 

Buffalo flies were held in temporary cages for 20-30 min to collect eggs of similar age. Newly laid eggs 121 

(40 - 60 min old) were arranged on double-sided sticky tape using a paintbrush and microinjected at 122 

the posterior pole of each egg with wAlbB (2x108 bacteria/ml) using a FemtoJet microinjector system 123 

(Eppendorf, NSW, Australia). The microinjected eggs were then placed on tissue paper on the surface 124 

of artificial manure pats to hatch. After eclosion, larvae migrated into the moist manure where they fed 125 

until pupation. Pupae were separated from the manure by flotation in water on day 7 post-injection and 126 

incubated at room temperature. Flies that emerged from the puparium by day 10 were collected and 127 
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separated by sex. Females that emerged from microinjected eggs were held singly with two males for 128 

mating in small cages made of transparent acrylic pipe (6 cm diameter x 15 cm height) closed with fly 129 

mesh and a membrane feeder at the top supplying cattle blood maintained at 26 ⁰C. A 55 cm2 petri-dish 130 

containing moist filter paper was placed at the base of the cages for collection of eggs deposited by the 131 

flies. Females were allowed to oviposit, and the eggs were collected until the death of the flies. Dead 132 

flies were collected and tested for the presence of Wolbachia using real-time PCR.  133 

Adult microinjection 134 

Approximately 100-150 pupae from the BF colony at the EcoScience Precinct, Brisbane, Australia were 135 

held separately from the main colony for collection of freshly emerged female flies (2-3 hrs old) for 136 

injection. The female flies were collected within 3-4 h of eclosion from the pupae, anaesthetised using 137 

CO2 for 30-40 s, and then 2 l of Wolbachia suspension (3x109 bacteria/ml) was injected into the 138 

metathorax of each fly using a handheld micro-manipulator (Burkard Scientific, London, UK) with 139 

hypodermic needles (0.24 X 33 mm). The microinjected flies (G0) were blood-fed and mated with male 140 

flies at the ratio of 1:1 in small cages as described above. On day three after injection, an artificial 100 141 

g manure pat was placed onto sand at the base of each cage. Manure pats were removed every second 142 

day, and the collected eggs were reared to adults following our standard laboratory protocols. Newly 143 

hatched G1 female flies were mated to potentially infected males, allowed to oviposit until death and the 144 

dead G1 flies then tested by real-time PCR for the presence of Wolbachia. Depending on the results of 145 

testing, the cycle was repeated. 146 

Pupal microinjection 147 

Approximately 3000-4000 eggs from colony-reared BF were incubated and the larva grown on manure 148 

to collect freshly pupated BF for microinjection (1-2 h old). Pupae were aligned on double-sided sticky 149 

tape and injected in the third last segment at the posterior end close to germinal tissue using a FemtoJet 150 

microinjector system (Eppendorf, NSW, Australia). The microinjected pupae were then placed on moist 151 

Whatman filter paper and incubated at 27oC until flies emerged. Freshly emerged flies were separated 152 

and placed in a cage with a maximum of five females and five males each. Eggs collected from each 153 

cage every day were tested for Wolbachia infection. Once infection was detected, female flies were 154 

separated into a separate single cage and eggs were collected for the G1 line until the flies died. Later, 155 

dead females were tested for the presence of Wolbachia using real-time PCR.  156 
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Wolbachia diagnostic assay 157 

A modified Chelex extraction protocol from Echeverria-Fonseca et al. (2015) was used for extraction of 158 

DNA from the embryonic and adult microinjected samples [40]. Briefly, flies were homogenised using a 159 

Mini-Beadbeater (Biospec products, Oklahoma, USA) for 5 min in 2 ml screw-cap vials with 2 g of glass 160 

beads (2mm) and 200 l of buffer containing 1 X TE buffer and Chelex®-100 (Bio-Rad Laboratories, 161 

CA, USA). Samples were then incubated overnight at 56 oC with 10 l of Proteinase K (20mg/ml) and 162 

dry boiled the next day for 8 min at 99.9 oC. Finally, samples were spun at 13000 X g for 15 min, and 163 

the supernatant was stored at -20 oC until tested. For pupal-injected samples and eggs, DNA was 164 

extracted using an Isolate II Genomic DNA extraction kit (Bioline, NSW, Australia). DNA was amplified 165 

with strain-specific primers using a Rotor-Gene Q machine (Qiagen, NSW, Australia) (Table 1). 166 

Reactions were run in a total of 10 l having 5 l PrimeTime ® Gene Expression Master Mix (IDT, VIC, 167 

Australia), 0.5 l each of 10M forward and reverse primer, 0.25 l of 5M probe and 3l of genomic 168 

DNA. Negative and positive PCR controls were run with every batch of the samples. Optimised 169 

amplification conditions for wMel and wMelPop were 3 min at 95 oC followed by 45 cycles of 10 s at 95 170 

oC, 15 s at 51 oC, and 15 s at 68 oC. For wAlbB, the optimized amplification conditions were 3 min at 95 171 

oC followed by 45 cycles of 20 s at 94 oC, 20 s at 50 oC, and 30 s at 60 oC. To analyse the data, dynamic 172 

tube along with the slope correct was turned on, and the cycle threshold was set at 0.01. Any sample 173 

having CT score < 35 was considered positive, negative in case of no amplification or CT score equal 174 

to zero, and suspicious where CT>35.  175 

Table 1: List of primers used for the Wolbachia Screening in the BF. 176 

Strain    Primer & Probe (5’-3’) Reference 

wAlbB GF_5’-GGTTTTGCTGGTCAAGTA-3’ 

BR_5’-GCTGTAAAGAACGTTGATC-3’ 

FAM _5’-TGT TAG TTA TGA TGT AAC TCC AGAA-TAMRA-3’ 

[31] 

wMel WD0513_F_5’-CAAATTGCTCTTGTCCTGTGG-3’ 

WD0513_R_5’-GGGTGTTAAGCAGAGTTACGG-3’ 

WD0513_Probe_Cy5’-TGAAATGGAAAAATTGGCGAGGTGTAGG-BHQ-3’ 

 

[20] 

wMelPop IS5_F_5’-CTCATCTTTACCCCGTACTAAAATTTC-3’ 

WD1310_R_5’-TCTTCCTCATTAAGAACCTCTATCTTG-3’ 

 

[20] 
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IS5_Probe_5’-Joe-TAGCCTTTTACTTGTTTCCGGACAACCT-TAMRA-3’ 

 177 

Fluorescence in situ hybridisation (FISH) 178 

FISH was carried out to visualise Wolbachia distribution in female BF post adult microinjection using a 179 

method slightly modified from that of Koga et al. (2009) [41]. Briefly, for the whole-mount assay, 10 BF 180 

infected with wMel and wMelPop were collected six days post-injection and fixed in Carnoy’s solution 181 

(a mixture of chloroform, ethanol and acetic acid) at a ratio of 6:3:1 overnight. Flies were washed the 182 

next day sequentially in 100% ethanol, 80% ethanol, 70% ethanol and stored in 10% H2O2 in 100% 183 

ethanol for 30 days to quench the autofluorescence. Preserved flies were subsequently washed three 184 

times with 80% ethanol, 70% ethanol, and PBSTx (0.8% NaCl, 0.02% KCl, 0.115% Na2HPO4, 0.02% 185 

KH2PO4, 0.3% Triton X- 100) and pre-hybridised with hybridisation buffer (4 X SSC, 0.2 g/ml dextran 186 

sulphate, 50% formamide, 250 g/ml Poly A, 250 g/ml salmon sperm DNA, 250 g/ml tRNA, 100 mM 187 

DTT, 0.5x Denhardt’s solution) without probe two times for 15 min each. The insects were then 188 

incubated with hybridisation buffer and Wolbachia 16S rRNA probes overnight [42]. The next morning, 189 

samples were washed three times with PBSTx, three times for 15 min each and finally incubated in 190 

PBSTx containing DAPI (10 mg/ml) for 30 min. Samples were then rewashed with PBSTx, covered with 191 

ProLong Diamond Antifade Mountant (Thermofisher, Australia) and photographed using a confocal 192 

microscope. 193 

Wolbachia quantification assay 194 

DNA was extracted from whole female BF post adult and pupal injection using an Isolate II Genomic 195 

DNA extraction kit (Bioline, NSW, Australia). Six flies were assayed at each point of time for 196 

determination of the relative Wolbachia density. Real-time PCR assays were carried out in triplicate to 197 

amplify the Wolbachia wsp gene [43] and host reference gene GAPDH (378 F_ 5’-198 

CCGGTGGAGGCAGGAATGATGT-3’, 445 R_5’-CCACCCAAAAGACCGTTGACG-3’) on a Rotor-gene 199 

Q Instrument (Qiagen, NSW, Australia). Reactions were run in a total volume of 10 l having 5 l Rotor-200 

Gene SYBR® Green PCR Kit (Qiagen, NSW, Australia), 0.3 l each of 10M forward and reverse 201 

primer and 2l of genomic DNA. Negative and positive PCR controls were included in all runs. 202 

Amplification was conducted for 5 min at 95 oC followed by 45 cycles of 10 sec at 95 oC, 15 s at 55 oC, 203 
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and 15 s at 69 oC, acquiring on the green channel at the end of each step. Finally, Wolbachia density 204 

was calculated relative to host GAPDH using the delta-delta CT method [44]. 205 

Survival assay  206 

Two to three-hour old female adult BF were injected with Wolbachia (wAlbB, wMel, and wMelPop) or 207 

SPG buffer (injected control) as described above and placed in triplicate cages containing ten flies each. 208 

Flies were cultured under laboratory conditions in small cages, and mortality was noted every 12 hours. 209 

Dead flies were later tested for Wolbachia infection individually using real-time PCR as described 210 

above. The survival assay for microinjected pupae was carried out as per the adult assay except that 211 

the number of flies in each cage was 20 (ten male and ten female). 212 

Adult emergence rate post pupal microinjection with Wolbachia 213 

Data from five independent pupae-microinjected batches were used to analyse the effect of Wolbachia 214 

on adult emergence. All three Wolbachia strains were injected in parallel to the buffer-injected controls. 215 

The number of injected pupae varied between batches from 77 to 205 for wMel, 98 to 145 for wAlbB, 216 

and 82 to 148 for wMelPop. The emergence of adults was recorded each day and the ratio of total 217 

emerged to number of injected pupae was calculated to determine the final percentage of emergence. 218 

Total egg production post pupal microinjection with Wolbachia 219 

The effect of Wolbachia on the number of eggs produced by females after pupal microinjection was 220 

assessed in triplicate with ten females per cage. Buffer-injected females were used as controls and 221 

number of eggs laid and females surviving were counted every 24 hours to estimate eggs laid per day 222 

per female. Dead females were later tested for the presence of Wolbachia using real-time PCR. 223 

 224 

Results 225 

 226 

Embryonic microinjection of buffalo flies 227 

Of a total of 2036 eggs microinjected with the wAlbB strain only 10 developed through to adult flies (six 228 

females and four males) and no infection was detected in any of the adults. Microinjecting buffalo flies 229 

is particularly difficult because of the tough chorion surrounding the egg (Fig. 1A). We observed a 230 

significant detrimental effect of injection on embryo survival and hatching (one-way ANOVA: F2, 6 = 231 

455.3, p<0.0001) and identified that older eggs (40-60 min) had a better injection survival rate, 21.96% 232 
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compared to 3.4% for younger eggs (10-30 min) (Tukey’s multiple comparison test: p=0.010) (Fig. 1B). 233 

A number of other variations of the technique were tested to improve the survival rate of eggs post 234 

microinjection. These included dechorionation of the eggs with 2.5 % sodium hypochlorite for 30 s to 235 

soften the chorion, partial desiccation to reduce hydrostatic pressure in the eggs and increase space 236 

for the retention of larger volumes of injectate, and the use of halocarbon oil (2:1 mix of halocarbon 700 237 

and 27) to prevent desiccation of the eggs. None of these treatments markedly improved survival post 238 

microinjection (2.33%) and they also appeared to reduce egg survival in uninjected eggs (16.33%) (one-239 

way ANOVA: F2, 6 = 181.6, p<0.0001) (Fig. 1C).  240 

 241 

Wolbachia dynamics and tropism post adult injection 242 

The growth kinetics of Wolbachia were studied in injected female flies by quantifying Wolbachia on days 243 

3-11 compared to day zero (day of injection). Overall, the pattern showed an initial significant decrease 244 

in Wolbachia density to approximately day five followed by subsequent growth and increase in bacterial 245 

titre to day eleven in all three strains (Kruskal-Wallis test: p<0.0001) (Fig. 2A-C). 246 

Significant variation in Wolbachia growth dynamics after injection required a better understanding of 247 

tissue tropism. Hence, fluorescence in situ hybridisation (FISH) was carried out on whole mounted BF 248 

and dissected ovaries to visualise the localisation of wMel and wMelPop Wolbachia six days after 249 

injection (Fig. 3). No infection in the germline tissue was evident in any of the six samples analysed 250 

from each strain. However, Wolbachia was widely distributed in somatic tissues including the thoracic 251 

muscle, head, abdominal area, proboscis and legs (Fig 3).  252 

The PCR results for Wolbachia growth in flies (Fig. 2-3) suggest that the use of FISH at 6 days post-253 

injection was too early to determine the final distribution of Wolbachia. Hence, we studied tissue 254 

invasion and the detailed distribution of Wolbachia in adult flies by real-time PCR after dissecting out 255 

the thoracic muscle, midgut, fat bodies, ovary and head at nine days post adult injection (Fig. 4A-C). 256 

Wolbachia were found to be replicating in all somatic tissues with wAlbB having an infection percentage 257 

of 33-83 % (N=6) and wMel and wMelPop between 66-100% (N=6). No infection was found in germline 258 

tissues. However, on a few occasions first generation flies from adult injection with wAlbB, wMel, and 259 

wMelPop were found positive with infection percentages of 5%, 22%, and 10% respectively, suggesting 260 

transmission via the germline tissues in these instances (see Table 2). 261 

 262 
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Table. 2: Summary of pupal and adult injection. Go here represents injected adults and adults 263 

emerged from injected pupae. Infection was determined using real-time strain specific Wolbachia 264 

assays. 265 

 266 

Effect of Wolbachia on the survival of flies post adult injection  267 

In order to understand the population dynamics of the flies inside the cage, survival assays were 268 

performed. The results revealed that by day seven less than 20% of the wMelPop and less than 50% 269 

of wMel and wAlbB injected flies were alive (Fig. 5). Both wMelPop (log-rank statistic = 16.92, p<0.0001) 270 

and wMel (log-rank statistic= 11.96, p=0.0005) significantly reduced longevity of female BF. However, 271 

there was no significant effect of the wAlbB strain in comparison to the control injected flies (log-rank 272 

statistic = 0.25, p=0.62). 273 

Wolbachia dynamics and tropism post pupal microinjection 274 

 A similar quantitative assay to that used for injected adult BF was carried out to track the dynamics and 275 

tropisms of the three Wolbachia strains post pupal injection. The extra time in the pupal phase resulted 276 

in 66-100% infection in the somatic tissue with wAlbB and wMel (N=6) and 83-100% with wMelPop 277 

(N=6) 13 days post pupal injection (Fig. 6 A-C). Furthermore, in 16% of cases the ovaries of females 278 

injected with wMel and wMelPop Wolbachia were found to be infected. Also, two first generation flies 279 

from wMel-injected pupae and four eggs from wAlbB-injected pupae were found positive for Wolbachia 280 

infection (Table 2). Analysis of Wolbachia dynamics showed approximately the same pattern as for 281 
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adult injection, where density initially decreased in the first seven days, then significantly recovered by 282 

day nine in wMel (Kruskal-Wallis test: p<0.0001), and day 13 in wMelPop and wAlbB post pupal injection 283 

(Kruskal-Wallis test: p<0.0001) (Fig. 6 D-F). 284 

Effect of Wolbachia on survival of buffalo flies post pupal microinjection 285 

A significant decrease in the longevity of BF post pupal injection was found in both sexes of wMelPop-286 

injected BF (Male: log-rank statistic = 20.25, p<0.0001, Female: log-rank statistic =29.04, p<0.0001), 287 

but the effect was not significant with the two other strains (wAlbB: male (log-rank statistic = 2.267, 288 

p=0.132), female (log-rank statistic = 3.275, p=0.071)), wMel: male (log-rank statistic = 3.027, 289 

p=0.1545), female (log-rank statistic = 3.467, p=0.063)) (Fig. 7).  290 

 291 

Effect of Wolbachia on adult emergence rate 292 

Infection of the somatic tissues by Wolbachia can have consequences on physiological processes. Non-293 

injected control flies emerged from pupae after 3-7 days, whereas mock-injected control flies emerged 294 

from 5-7 days, wAlbB after 6-7 days and wMel and wMelPop injected flies at 5-7 days post injection 295 

(Fig. 8A). It is important to note that emergence in wMel and wMelPop injected flies was less than 2% 296 

on day 5. Overall, there was significant decrease in the percent emergence of wMel (30.01 + 3.91) 297 

(Tukey’s multiple comparison test, p=0.0030) and wMelPop (27.98 + 3.92) (Tukey’s multiple 298 

comparison host test, p=0.0011) injected flies compared to the control injected flies (46.95 + 4.15), but 299 

no significant difference was observed with the wAlbB-injected flies (Tukey’s multiple comparison test: 300 

p=0.77) (Fig. 8B). Nearly 5% of the flies that emerged from the wMelPop-injected pupae were too weak 301 

to completely eclose from the pupal case and had deformed wings (Fig. 8 C-D).   302 

Effect of Wolbachia on egg production  303 

Difference between infected females and non-infected females in egg production was also analysed 304 

following pupal injection with the three different strains of Wolbachia. Over 14 days there was a 305 

significant reduction in the total eggs laid by females infected with wAlbB (p=0.012), wMel (p=0.0052), 306 

and wMelPop (p=0.0051) in comparison with the mock-injected flies (Fig. 9).  307 

 308 

Discussion 309 
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Embryonic microinjection is by far the most frequently used technique to develop Wolbachia-310 

transinfected insect lines, mainly because Wolbachia injected into the germ cells of the developing 311 

embryo provides a direct route for infection of the germ tissues in the early stage of differentiation [14]. 312 

However, this technique is also the most challenging step because the invasive procedure of egg 313 

microinjection can result in high mortality of eggs and optimal methods differ for different insect species 314 

[14, 45, 46]. Another disadvantage of this technique is that inability to determine the sex of an embryo 315 

prior to injection means that approximately half of the injected flies will be males that do not transmit 316 

Wolbachia to the next generation [14]. This means that many thousands of eggs must often be 317 

microinjected using specialised equipment before successful Wolbachia transinfection is achieved [14] 318 

and as male embryos cannot be identified, half of this effort is functionally wasted. With BF, less than 319 

1% of more than 2000 embryos we injected subsequently hatched because the tough chorion of BF 320 

eggs caused difficulties with needle penetration, rapid blunting and high breakage rate of microinjector 321 

needles, frequent chorion tearing, and embryo damage. Treatment with sodium hypochlorite to soften 322 

the chorion, prior partial desiccation of eggs to reduce hydrostatic pressure, and the use of halocarbon 323 

oils to prevent egg desiccation during injection did not markedly improve the survival rate. Similar 324 

difficulties were experienced when attempting to use microinjection for gene transfection in closely 325 

related Haematobia irritans eggs. In this instance, the researchers opted to use electroporation, which 326 

is unsuitable for the introduction of bacteria [47]. 327 

Although embryonic microinjection has been the primary method used to develop transinfected insects, 328 

adult microinjection can be advantageous in that females can be selected for injection [14]. Further, 329 

adult microinjection can be performed using a simple syringe and small-bore needles delivering higher 330 

volumes of Wolbachia to overcome the host immunological response [14]. Our results with adult 331 

injection of Wolbachia were promising. Despite that injections in first few batches were made mainly 332 

with Wolbachia grown in D. melanogaster cells (wAlbB, wMel and wMelPop strain), not previously 333 

adapted in Haematobia cells, infection rates and persistence in the injected flies were high (generally > 334 

90%). In a few batches, transmission to the next generation was confirmed.  335 

As oviposition by BF may begin as early as three days after eclosion from the pupae and continue until 336 

death, knowledge of Wolbachia distribution and dynamics in injected females was critical for us to 337 

identify the optimal timing for collecting infected eggs for the establishment of an infected colony (11-338 

15 days). Wolbachia density significantly decreased to day five due to host immune response but 339 
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recovered by day eleven after injection. A similar result was obtained when wMelPop and wAlbB were 340 

injected into Anopheles gambiae adult mosquitoes [13]. The initial host immune response was 341 

anticipated as the densities of wAlbB, wMel, and wMelPop Wolbachia in Haematobia cells were also 342 

observed to initially decrease, possibly due to an innate immune response mediated by the Imd pathway 343 

(unpublished data). Real-time PCR analysis of dissected tissues nine days after injection showed 344 

Wolbachia to be present in all the vital somatic tissues, except for the ovarial tissues, suggesting that 345 

Wolbachia might need extra time to infect the ovaries. However, injection with wAlbB, wMel and 346 

wMelPop Wolbachia caused >40% death in flies by day seven post injection, further reducing the 347 

likelihood of collecting infected eggs. Therefore, we hypothesised that microinjecting 1-2 h old pupae 348 

would give more time than with adult microinjection for Wolbachia to multiply, spread and establish in 349 

the ovaries. Pupal injection has previously been conducted with Trichogramma wasps and resulted in 350 

successful ovarian infections and persistence of Wolbachia in the wasp colony for 26 generations [48].  351 

With BF, wMel and wMelPop overcame host immune responses and established in both somatic and 352 

germline tissues. Further, in two instances, next-generation (G1) BF from wAlbB and wMel injected 353 

pupae were positive for Wolbachia, indicating next-generation transmission as a result of pupal 354 

injection. The main disadvantages of pupal injection in comparison with adult injection were limitation 355 

on the volume of Wolbachia that could be injected and inability to distinguish female from male pupae 356 

for injection.  357 

The wMelPop strain is a virulent type of Wolbachia, and its over replication in somatic tissues and brain 358 

cells, known in other infected insects [49, 50], may have been the reason for the early death of BF. 359 

Further, in the studies of Wolbachia kinetics we found a higher density of wMelPop than with the other 360 

two strains following both adult and pupal injection. Reduction in the longevity of infected Ae. aegypti 361 

mosquitoes caused by infection with wMelPop, decreasing the potential extrinsic incubation time for the 362 

dengue virus, was one of the characteristics that led to the hypothesis that wMelPop infection would 363 

reduce dengue spread [51]. Infection with wMelPop could also markedly reduce BF lifespan and their 364 

ability to transmit Stephanofilaria sp. nematodes. These nematodes have been implicated in the 365 

development of buffalo fly lesions, a significant production and welfare issue in north-Australian cattle 366 

[52]. Stephanofilaria has an extrinsic incubation period of up to 3 weeks in Haematobia spp. [53] and 367 

the life-shortening effects of Wolbachia shown in our study could markedly reduce the vector 368 

competency of infected flies. There is also the possibility the Wolbachia infection could more directly 369 
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compromise the vector competency of BF for Stephanofilaria, as has been seen in the case another 370 

filarial nematode, Brugia pahangi transmitted by mosquitoes and in the case transmission of the dengue 371 

virus by Ae. Aegypti [54, 55] .   372 

Fecundity of insects has a significant influence on population dynamics of insect populations [56]. The 373 

successful establishment of Wolbachia in new host populations directly relates to the strong CI, vertical 374 

transmission and relatively more fertile egg production by infected females [57]. Wolbachia have been 375 

found to enhance and reduce egg production depending upon both the strain of the nematode and the 376 

host [15, 57-62]. We found that wAlbB, wMel, and wMelPop significantly reduced total egg production 377 

in pupal injected flies. Also, Wolbachia infection caused delayed and decreased adult emergence of BF 378 

post pupal injection. Wolbachia being an endosymbiont lacks nutritional biosynthetic pathways and 379 

depends on its host for wide range of nutrition [63, 64]. Hence, the fitness costs observed in injected 380 

BF could be the result of competition between high density of Wolbachia and BF for nutritional resources 381 

such as amino acids and lipids [63, 64]. Another possibility could be that as Wolbachia was found in all 382 

of the critical tissues involved in the endocrine cascades for egg production and maturation in insects 383 

(midgut, neuron, fat bodies and ovary), it interfered with egg production by this means [65]. In addition, 384 

delayed larval development associated with wMelPop infection has been documented in mosquitoes 385 

on a number of occasions [17, 19]. If these deleterious effects are a consistent feature of Wolbachia 386 

infection in BF, they could have a significant impact in altering population dynamics or even crashing 387 

BF populations [17, 66]. For instance, female BF lay eggs in fresh cattle manure pats, where eggs take 388 

approximately seven days to develop into pupae depending upon the temperature and moisture content 389 

of the pat [67]. Prolonged larval development and time to eclosion of Wolbachia-infected BF, together 390 

with adult lifespan reduction might decrease overwintering and survival of BF, particularly during periods 391 

of unfavourable fly conditions and at the edge of the BF range. 392 

In this work, we have shown that BF are competent hosts for the growth of wMel, wMelPop and wAlbB 393 

Wolbachia strains and that infection can induce a number of fitness effects in the injected flies. However, 394 

embryonic injection has proven challenging with BF and to date we have not been able to establish a 395 

sustainably infected isofemale line using this technique. Pupal and adult microinjection gave much 396 

higher fly survival rates, high titres of Wolbachia in somatic tissues and ovarian infection and 397 

transmission to the next generation in a number of instances. Despite relatively limited testing, this gives 398 
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hope for the future establishment of Wolbachia-infected strains of BF for the future design of Wolbachia-399 

based control programs.  400 
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 600 

Fig. 1. Challenges with buffalo fly embryonic microinjection. A. Embryonic microinjection had a 601 

detrimental effect on embryo hatching. B. 40-60 min old embryos survived injection better than 10 – 30 602 

min old embryos. C. Eggs were dechorionated by treating with 2.5% sodium hypochlorite for 30 s and 603 

covered with 2:1 mix of halocarbon oil 700 and 27 to prevent desiccation. Eggs were sensitive to 604 

treatment and survival decreased further with the injection. Error bars are SEM. Analysis was by 605 

Student’s Unpaired t-test in (A) and Tukey’s multiple comparison test in (B) and (C); ****p<0.0001. 606 
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 608 

Fig. 2. Wolbachia dynamics post adult microinjection of female buffalo flies assessed using real-time 609 

PCR. (A-C) Wolbachia dynamics measured over eleven days post-injection by analysing N = 6 for each 610 

day. Here, Wolbachia titre is expressed relative to the host genome. Kruskal – Wallis test and Dunn’s 611 

multiple comparison test were used to compare titres at day zero. All error bars are SEM. Bars with 612 

different letters in each graph are significantly different. 613 
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 615 

Fig. 3. Fluorescence in situ hybridisation images showing localisation of Wolbachia six days post adult 616 

injection. Wolbachia is distributed throughout the BF (Blue: host, Red: Wolbachia). A. wMel in head and 617 

thorax. B. wMelPop in the abdominal region. C. wMelPop in the head, mouthparts, thorax and leg. D. 618 

Control no probe. T: Thorax, H: Head, A: Abdomen, M: Mouthparts, L: Leg. 619 
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 621 

Fig. 4. Wolbachia tropism post adult microinjection of female buffalo flies assessed using real-622 

time PCR. (A-C) shows Wolbachia tropism in female (N = 6) nine days post adult injection. None of the 623 

Wolbachia strains was found in the ovaries. Bars represent SEM. 624 
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 626 

Fig. 5. Survival of female buffalo flies post adult injection with Wolbachia. Triplicate cages of adult flies 627 

each containing ten females were maintained under lab culturing conditions. The number of dead flies 628 

were recorded until all died. A significant reduction in survival was observed in wMel (p<0.0005) and 629 

wMelPop (p<0.0001) injected flies by Log-rank (Mantel-cox) tests.  630 
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 632 

Fig. 6. Wolbachia tropism and dynamics post pupal microinjection of female buffalo flies assessed using 633 

real-time PCR. A-C show Wolbachia tropism in female BF (N = 6) 13 days post pupal injection. Ovary 634 

infection was detected in wMel, and wMelPop injected flies. D-F show Wolbachia dynamics measured 635 

over 15 days post-injection. Here, Wolbachia density is expressed relative to the host genome. Kruskal-636 

Wallis and Dunn’s multiple comparison tests were used to compare titres to those at day zero. Bars 637 

with different letters are significantly different (p<0.05). Scale on the Y axis for wMelPop (F) is different 638 

to that for the other two strains (D,E) indicating faster growth rate with wMelPop. 639 
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 641 

Fig. 7. Survival of buffalo flies post pupal injection with Wolbachia. Triplicate cages of flies eclosed from 642 

pupae on the same day (ten males and ten females per cage) were maintained in lab culturing 643 

conditions. Mortality was recorded daily until all flies were dead. Log-rank (Mantel-cox) showed a 644 

significant reduction in the male wMelPop (p<0.0001) and female wMelPop (p< 0.0001) injected flies.   645 
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 647 

Fig. 8. Fitness effects on buffalo fly post pupal injection with Wolbachia. A. Wolbachia delayed adult 648 

emergence. B. A significant decrease in adult emergence was observed in wMel (p=0.0030) and 649 

wMelPop (p=0.0011) injected pupae when analysed using Tukey’s multiple comparison test. Nearly 5 650 

% of wMelPop flies either failed to completely eclose from the pupal case or had deformed wings.  651 
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 653 

Fig. 9. Fecundity of buffalo flies post Wolbachia pupal injection. Flies started laying eggs from day three 654 

post-emergence and continued until day sixteen. Eggs laid from triplicate cages each having ten 655 

females was recorded every day for (A) wAlbB (B) wMel and (C) wMelPop. D. A significant difference 656 

between the total number of eggs laid per female over 13 days was found in flies infected with wAlbB 657 

(p=0.0123), wMel (p=0.0052) and wMelPop (p=0.0051) (Tukey’s multiple comparison test).  658 
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