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Accounting for soil moisture 
improves prediction of flowering 
time in chickpea and wheat
Yashvir S. Chauhan1, Merrill Ryan2, Subhash Chandra3 & Victor O. Sadras4

Matching crop phenology to environment is essential to improve yield and reduce risk of losses due 
to extreme temperatures, hence the importance of accurate prediction of flowering time. Empirical 
evidence suggests that soil water can influence flowering time in chickpea and wheat, but simulation 
models rarely account for this effect. Adjusting daily thermal time accumulation with fractional 
available soil water in the 0–60 cm soil layer improved the prediction of flowering time for both 
chickpea and wheat in comparison to the model simulating flowering time with only temperature and 
photoperiod. The number of post-flowering frost events accounted for 24% of the variation in observed 
chickpea yield using a temperature-photoperiod model, and 66% of the variation in yield with a model 
accounting for top-soil water content. Integrating the effect of soil water content in crop simulation 
models could improve prediction of flowering time and abiotic stress risk assessment.

The world faces the growing challenge of feeding over 9.5 billion people by 2050 under the looming threat of 
climate change1. To address this challenge while reducing the carbon footprint and conserving water, our reliance 
on protein from plants will need to increase significantly2. Chickpea is the third most important protein rich 
grain legume which is directly consumed as human food in the poorer countries where the projected popula-
tion increases are most likely to occur3. The crop is also important for sustainability of farming systems due to 
its nitrogen fixing ability4. Chickpea yields are constrained by the crop’s high sensitivity to a number of abiotic 
stresses including frost, drought and heat stress5,6.

Matching crop phenology to environment is critical for stress adaptation and crop yield7, hence the impor-
tance of accurate prediction of flowering time. Based on experimental studies8,9, crop simulation models includ-
ing the Agriculture Production Systems Simulator (APSIM) and Decision Support System for Agrotechnology 
Transfer (DSSAT)10–13, model chickpea phenology as a function of temperature and photoperiod. However, pre-
diction of flowering time based on these two parameters is relatively poor14–16, suggesting other drivers of crop 
development may have been overlooked.

A few studies have shown that soil water can influence flowering time in chickpea and wheat. Kwang-Wook17 
and Singh18 reported a positive relationship between chickpea flowering time and crop evapotranspiration. 
Singh18 reported that the thermal time requirement for emergence to flowering and flowering to maturity of 
chickpea decreased as normalized evapotranspiration deficit increased. Johansen, et al.19 also reported differences 
in flowering time between irrigated and rainfed chickpeas. A similar effect of soil water deficit on flowering time 
has been reported for wheat20–22. In wheat, photoperiod and vernalisation genes only accounted for about 53% of 
the variation in flowering time23, indicating that a significant proportion of the observed variation could be due 
to other factor(s), including soil water.

Limited attempts have been made to incorporate the soil water effect in models for flowering time, with 
emphasis on the drier end of the soil water range21,22,24. The APSIM model has an option to delay flowering of 
maize, sorghum and peanut in dry soil (www.apsim.info). Here we propose that the soil water effect on flowering 
time in chickpea and wheat can involve both (i) a hastening effect of water deficit, and (ii) a delaying effect of 
wet soil. Both interpretations have been advanced in the literature, but the former dominates18,19. The possibility 
of soil water delaying flowering in wheat has been alluded to by McDonald, et al.25, but this was not investigated 
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further. This study describes the detection of the dynamic effect of high soil water on flowering time and its use 
in the APSIM model to improve flowering time prediction. Our focus is chickpea, with a secondary analysis in 
wheat.

Results and Discussion
Detection of soil water effect on flowering time of chickpea.  Prediction of flowering time using 
temperature and photoperiod10 for 11 sowings at three sites in northern Australia resulted in a discrepancy of up 
to 34 days between the observed and predicted flowering times (Fig. 1a). The magnitude of this discrepancy was 
about 1.5 times larger than the range of genetic variation in flowering time in diverse field environments across 
Australia26; hence the importance of understanding the source of this discrepancy. Previous studies in chickpea 
have suggested that soil water deficit can advance flowering time17,18. Since the three soils in our study varied 
in plant available water holding capacity, we suspected that soil water could have caused this discrepancy. The 
maximum discrepancy occurred at Jondaryan and Warwick in South East Queensland, Australia where chickpea 
crops were grown with considerable sowing to pre-flowering rainfall (Table 1) on Vertisols with higher water 
holding capacity.

To understand how soil water status can influence flowering time of chickpea we modelled its effect. This was 
challenging because soil water availability is highly dynamic, as it is influenced by crop (i.e. size and functionality 
of canopy and root system), management (e.g. row spacing), soil properties and weather. Our data set representing 
a range of water holding capacities (109 to 257 mm) associated with site-specific soils (Ferrosol, several Vertisols), 
row spacing and rainfall (Table 1), captured many of these effects. In the absence of soil water measurements, 

Figure 1.  Observed and predicted flowering times (a) using the temperature (t) and photoperiod (p) based 
model, and (b) improved model based on t, p and soil water. NRMSE is the normalised root mean square error. 
The grey line is y = x. CCC = Lin’s concordance correlation coefficient.

Location
Sowing
date

Soil
(APSoil no) PAWC

Row
spacing

Starting  
watera

Pre -flowering 
rainb Irrigation

mm cm % mm mm

Kingaroy 22-May-14 Ferrosol (107) 109 50 12 38 120

Kingaroy 12-Jun-14 Ferrosol (107) 109 50 12 77 80

Kingaroy 3-Jul-14 Ferrosol (107) 109 50 12 88 40

Kingaroy 23-Apr-15 Ferrosol (107) 109 90 7 71 50

Jondaryan 24-Apr-15 Vertisol (523-Generic) 136 90 7 115 0

Warwick 27-Apr-15 Brown Vertosol (33) 109 76 12 100 0

Kingaroy 4-Apr-16 Ferrosol (107) 109 90 32 9 30

Jondaryan 17-Apr-16 Vertisol (622-YP) 257 90 23 83 0

Kingaroy 12-Jun-17 Ferrosol (107) 109 90 23 77 25

Jondaryan 17-Jun-17 Vertisol (30) 244 90 17 54 60

Warwick 26-Jun-17 Brown Vertosol (33) 109 76 32 22 0

Table 1.  Location, date of sowing, soil type, plant available water holding capacity (PAWC), row spacing, 
starting profile water, pre-flowering rain and irrigation in 11 sowings. aStarting water was initialised in the 
model on 1st Nov of the previous year. bSowing to pre-flowering rainfall. APSoil data are available from the 
google map at http://apsrunet.apsim.info/.
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each of the 11 simulations commenced with a low starting available water on 1st Nov of the previous year, which 
was about six months before sowing. This starting water was determined using the Australian Landscape Water 
Balance model accessed at www.bom.gov.au/water/landscape. We addressed the challenge by developing a simple 
equation (Eq. 1 described in methods) that captured the dynamic relationship between fractional available soil 
water (FASW), which is the ratio of available water to the total available water, and daily thermal time (TT). The 
equation was developed through manual adjustments in daily thermal time when simulated FASW was >0.65 to 
fit the observed flowering data. An FASW of >0.65 represents the readily available water in the surface 0–60 cm 
layer where most roots are present27. This equation improved the Lin’s Concordance Correlation Coefficient (Lin’s 
CCC), which measures a model’s predictive performance28 as defined in Eq. 6 in Methods, to the almost perfect 
(>0.99) category (Fig. 1b). Applying this relationship below or above 60 cm increased the normalised root mean 
square error (NRMSE).

The relationship between soil water and thermal time espoused through Eq. 1 modifies thermal time accu-
mulation to influence flowering time in different environments depending upon their soil and climatic attributes. 
In the 11 sowings, we observed a much larger delay in flowering time in self-cracking clay Vertisols of Warwick 
and Jondaryan in which the plant available water holding capacity is higher as compared to Ferrosols of Kingaroy. 
Comparison of soil water changes in 2015 at Kingaroy and Warwick suggested, that over time, FASW declined 
more gradually at Warwick as compared to Kingaroy (Fig. 2). The modification of thermal time at Warwick was 
therefore greater and occurred over a longer period resulting in slower accumulation of thermal time target of 
about 1017 °Cd for flowering compared to 1048 °Cd for Kingaroy. The difference in achieving these targets was 
consistent with about a month delay in flowering observed at Warwick.

To explore the effect of pre- and in-season rainfall on the same soil, we re-analysed the data of Beech and 
Leach29 for chickpea cultivar Tyson, sown in 1979 and 1980 at Dalby, Queensland in which soil water measure-
ments were also made (Fig. 3). The 1979 season was wetter than 1980 resulting in higher soil water in the surface 
layers30. In 1979, total water use was 191 mm by 28th Aug and 279 mm by 26th Sep. In 1980, total water use was 
93 mm by 1st Sep and 161 mm by 30th Sep. The soil water use simulated in 1979 was 179 mm and 268 mm on 28th 
Aug and 26th Sep, respectively, and in 1980, 106 mm and 149 mm on 1 Sep and 30th Sep, respectively. The crops 
flowered 94 days after sowing in 1979 and 83 days after sowing in 1980. Days to flowering simulated without the 
input of soil water was 83 in 1979 and 84 in 1980. With the soil water input, days to flowering time simulated was 
94 to 96 in 1979 and 81 to 84 in 1980 for a range of row spacing and planting densities used.

A larger modification of daily thermal time due to higher extractable soil water and over a slightly longer 
period was evident in 1979 (Fig. 3), which could have contributed to the delayed achievement of thermal time 
target for flowering as compared to 1980. The cumulative (unadjusted) thermal time targets computed by adding 
soil water effect for 1979 and 1980 were 1244 and 1035 °Cd, respectively, which closely matched the observed 
1214 and 1032 °Cd reported in the study29. The increase in thermal time target for flowering with higher soil water 
was consistent with similar differences observed in irrigated and rainfed chickpea on a Vertisol soil in India31.

Agronomic implications.  The improvement in accuracy with our modelling approach accounting for the 
soil water effect has agronomic implications as illustrated in the assessment of the risk of post-flowering frost 
(minimum temperature ≤0 °C) events32. The number of post-flowering frost events accounted for 24% of the var-
iation in yield in the 11 sowings using the original model, whereas the model accounting for soil water increased 
it to 66% (Fig. 4a,b). The yield ratio in Fig. 4 represents the ‘gap’ between the potential and observed yields 

Figure 2.  Dynamics of extractable soil water (ESW), rain, daily thermal time (TT), modified thermal time 
(TTm), flowering time predicted with soil water (DFSimSM), and without soil water input (DFSim), observed 
days to flowering (DFO), and frost events at Warwick (a) and Kingaroy (b) in Queensland in 2015. Kingaroy 
also received 25 mm irrigation (shown as rain) given at sowing and 113 days after sowing. FASW60 is fractional 
available soil water (FASW) of 60 cm layer (%) and FASW60TH = FASW threshold (%).
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occurring due to frost. Decreasing the potential yield by 5% for each post-flowering frost event and relating the 
reduced yield to the observed yield, increased the Lin’s CCC from 0.39 with the original model to 0.85 with the 
model accounting for the soil water effect (Fig. 4c vs. 4d). The soil water based model to predict flowering time 
should therefore improve strategies to manage frost risk that could be expanded to other stresses.

Prediction of flowering time of chickpea for more diverse ranges of environments.  We further 
compared the two modelling approaches, with and without soil water, using pooled data  including the original 
11 sowings and 26 additional sowings with Pulse Breeding Australia (PBA) HatTrick from yield evaluation tri-
als on soils of different plant available water holding capacities over a range of latitudes and longitudes within 
Queensland, Australia (Fig. 5). In these sowings, the improvement in Lin’s CCC was from poor (0.89) to substan-
tial agreement categories (0.97).

We modelled chickpea flowering using a photoperiod range from 10 to 12 hours compared to the original 
range of 10 to 17 hours in APSIM10. Within chickpea growing regions and sowing windows adopted in Australia, 
photoperiod changes are within 2.5 hours before the September equinox by which time most chickpea have flow-
ered. Hence, the rationale of using a higher range of photoperiod for Australian cultivars in the model may need 
re-examination. It might be that a larger photoperiod range was acting as a surrogate for the soil water effect. 
However, this would fail to capture locational and seasonal variation in soil water with variable influence on flow-
ering time as shown in Figs 2 and 3. It is possible that photoperiod and temperature interactions, that are com-
monly reported in the field8 in chickpea, are actually three-way interactions between soil water, temperature and 
photoperiod as photoperiod by temperature interactions have not been observed in controlled environments9,33. 
Temperature interacts with soil water by influencing evapotranspiration demand. With the most divergences of 
flowering time in the model based on photoperiod and temperature falling below the 1:1 line (Figs 1a and 5a), 
it appears that temperature and photoperiod set the minimum time that a chickpea crop could take to flower. In 
contrast, soil water modulates the time between minimum and actual time to flower (Figs 1b and 5b). Soil water, 
however, is very dynamic, hence the importance of initial conditions in the modelling of flowering time incorpo-
rating soil water. We achieved reasonable improvement of prediction when we initialised soil water based on root 
zone water modelled by the Australian Landscape Water Balance on 1st Nov, about six months before sowing. As 
an alternative, remote sensing can also be tested for soil water initialisation34.

Prediction of flowering time of wheat.  Wheat is the dominant crop of southern Australian farming 
systems spread over southern New South Wales, Victoria and South Australia35. The application of the soil water 
correction improved the prediction of flowering time in wheat (Fig. 6). In APSIM, wheat flowering time is pre-
dicted based on temperature, photoperiod and vernalisation, and parameters accounting for these effects seem to 
have been optimised in those environments. For example, model parameters of the popular cultivar Enterprise 
Grains Australia (EGA) Gregory, which is less photo-period sensitive36, are such that the original APSIM pre-
dicts flowering reasonably well for New South Wales sites/sowings, but not so well for Queensland sites/sowings 
resulting in a poor (0.81) Lin’s CCC (Fig. 6a). The default value of photoperiod sensitivity factor for this cultivar 
in the model is set to 3.2 and vernalisation sensitivity to 2.7. Zheng, et al.37 reduced the photoperiod sensitivity 
factor of this cultivar to 2.6 and the vernalisation sensitivity to 0.9 using a gene-based parameterisation (Fig. 6b). 
This moderately improved the Lin’s CCC (0.94) although prediction of flowering time for the central Queensland 
location of Emerald required further improvement. The discrepancy of Emerald (central Queensland) sowings 
was reduced by increasing the vernalisation sensitivity from 0.90 to 1.98, but this change affected prediction of 

Figure 3.  Dynamics of extractable soil water (ESW), rain, daily thermal time (TT), modified thermal time 
(TTm), flowering time predicted with soil water (DFSimSM) and without soil water input (DFSim), observed 
days to flowering (DFO), and frost events in 1979 (a) and 1980 (b) chickpea crops of cultivar Tyson near Dalby, 
Queensland (data from Beech and Leach)29. FASW60 is fractional available soil water (FASW) of 60 cm layer 
(%) and FASW60TH = FASW threshold (%).
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Figure 4.  Relationship of (a) number of post-flowering frost events and the ratio of observed vs. simulated 
yield using original model, (b) improved model, (c) simulated frost impacted yield (5% loss/frost event) vs. 
observed yield using the original model and (d) with improved model. NRMSE is normalised root mean square 
error. The black line in (a,b) is the fitted regression and light grey line in c and d is y = x. CCC in (c,d) are Lin’s 
concordance correlation coefficient.

Figure 5.  The predictive accuracy of flowering time for 37 chickpea sowings (a) based only on temperature and 
photoperiod and (b) based on the additional effect of soil water. NRSME is normalised root mean square error. 
The grey line is y = x. CCC = Lin’s concordance correlation coefficient.
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flowering time in New South Wales sowings (Fig. 6c). The Lin’s CCC increased to 0.96 when the soil water effect 
through Eq. 1 was incorporated (Fig. 6d). We can speculate that in the original model, the photoperiod and ver-
nalisation parameters for this cultivar may have been fitted to overcome the soil water effect on flowering time for 
the dominant growing environments. Site-specificity of APSIM parameters for predicting wheat flowering which 
was suspected to occur due to the lack of proper model mechanisms has been highlighted earlier38. For a more 
robust prediction of flowering time, accounting for the soil water effect using the model we have developed may 
be necessary in wheat as well.

The use of the high photoperiod sensitivity parameter in the model for the otherwise relatively photoper-
iod insensitive wheat cultivar Gregory, as indicated above, may have unknowingly accounted for the soil water 
effect on flowering time at higher latitudes. In reality, however, soil water may be helping Gregory and other 
insensitive wheat cultivars to overcome some of the effects of earliness associated with photoperiod insensi-
tivity. Photoperiod insensitivity in commercial wheat cultivars was introduced through the shuttle breeding of 
wheat at CIMMYT in Mexico in the 1960s39. Although Normal Borlaug considered photoperiod insensitivity an 
unplanned effect of shuttle breeding of wheat40, it is now recognised to have contributed to the green revolution 
in wheat as it enhanced adaptation of the crop to a wide range of latitudes39. The increase in pre-anthesis period 
of high yielding photoperiod insensitive wheat cultivars, achieved by the dynamic effect of soil water with irri-
gation, might have also assisted in avoiding frosts, as in the case of chickpea described above, and in producing 
more biomass while not having any of the adverse effects of photoperiod related sensitivity in yield components41.

Figure 6.  Observed and predicted days to flowering of the wheat cultivar Gregory using (a) the APSIM model 
with original parameters of photoperiod sensitivity and vernalisation, (b) Zheng, et al.37 model, (c) original 
model with reduced photoperiod and vernalisation sensitivity, (d) original model with reduced photoperiod 
and vernalisation sensitivity and the soil water effect. The Temora and WaagaW (Wagga Wagga) locations are in 
New South Wales and all others in Queensland. NRMSE is normalised root mean square error. The grey line is 
y = x. CCC = Lin’s concordance correlation coefficient.
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Concluding remarks.  Our modelling study is consistent with, but does not prove, that soil water modulates 
flowering time. The effect of soil water on development is biologically interesting, and relevant for modelling and 
agronomy.

Biologically, the causes and consequences of this effect need further research. From an adaptive viewpoint, 
photoperiod is a conserved environmental cue; temperature follows seasonal patterns with some intra- and 
inter-seasonal variation, whereas soil water is characterised by larger temporal variability. We can thus hypothe-
sise that photoperiod and temperature provide broad geographic adaptation, whereas soil water would fine-tune 
flowering time to specific soil-season combinations. At the plant level, part of the effect could be related to tem-
perature, as a dry soil is hotter; this is particularly important for wheat as its growing apex is underground during 
key developmental stages42. Plants sense soil dryness and root-shoot signals are involved in modulation of shoot 
traits. Soil temperature has been suggested to affect flowering time in wheat43. However the possibility that soil 
temperature could affect flowering time in wheat was ruled out earlier through experiments involving manipu-
lation of soil temperature42.

From a modelling perspective, we have shown that a model accounting for soil water, photoperiod and tem-
perature is superior to conventional models in predicting flowering time. We have also shown the improvement 
in modelling risk associated with frost. Trade-offs between frost and heat damage are particularly important35, 
and could be modelled more reliably with our approach. Agronomically, practices can be envisaged to exploit 
genotype x environment x management interactions influencing soil water, and hence flowering time in a context 
of risk.

Methods
Soil water effect on flowering time in chickpea.  We collected flowering and yield data from 11 chick-
pea sowings from 2014 to 2017 at Kingaroy (26.55°S and 151.85°E), Jondaryan (27.37 to 27.50°S and 151.59–
151.76°E) and (Warwick 28.21°S and 152.10°E) in Queensland, Australia. These sowings were part of two 
trials conducted to compare response of chickpea cultivars PBA HatTrick (released in 2009) and PBA Boundary 
(released in 2011) to frosts and planting time. For sowing, a summer fallow was practiced for growing winter 
crops as in-season rainfall is often limiting. At the beginning of summer season (on 1st Nov), it was assumed to 
contain very limited amount of soil water left by the previous crop. Since this initial amount was not measured, 
we used values obtained from the Australian Landscape Water Balance model (www.bom.gov.au/water/land-
scape). The soil water increased with subsequent summer rains. Sowings were at a 5 cm depth with adequate seed 
to achieve a plant population of 30 plants/m2. Other agronomic details are given in Table 1. Observations on 
flowering were made when 50% of the plants had at least one open flower. Yield at maturity was estimated from 
hand-harvested samples from a 2 m2 area.

Prediction of flowering times using APSIM.  The APSIM model (version 7.10)44 consists of many mod-
ules of different models that are called upon as needed, to predict flowering time. The model enables simulation 
of systems that cover a range of plant, soil, climate and management interactions. The plant module of APSIM 
provides uptake values for soil water to the soil module. The model uses a thermal time approach to predict flow-
ering of chickpea10 using cultivar specific parameters that are included in the plant models10. In this study we used 
three chickpea cultivars including PBA Boundary, HatTrick, and Tyson (released in 1978) and their parameters 
including thermal time requirements for different phases of growth are given in Table 2. In the original model, the 
thermal time requirement for flowering of PBA Boundary and PBA HatTrick decreased from 446 to 0 °C during 
the photoperiod sensitive phase, as photoperiod increases from 10.7 to 17 h. Since chickpea does not experience 
more than 12 hours photoperiod from sowing to flowering in the winter season over a range of latitudes, we pos-
tulated that extra hours might have been built into the model to account for the soil water effect. Since we directly 
incorporated soil water information, we reduced the upper bound of photoperiod from 17 to 12 hours as given in 
Table 2. The same set of cultivar parameters was applied to all sowings. To incorporate the effect of soil water on 
flowering time we used the following equation in the manager module of the model:

= ∗ . − ≥ . ≥TT TT (1 65 FASW) (when FASW 0 65 and the chickpea stage 3) (1)m

Here TTm is modified daily thermal time, TT is daily thermal time, and FASW is the fraction of available soil 
water in top 60 cm layers relative to lower limit at 1.5 MPa. These top layers constituted the effective rooting zone 
for chickpea where most of the roots are located27,45. TT in the model was computed using a set of cardinal tem-
peratures with base = 0 °C, optimum = 30 °C and ceiling = 40 °C. TT equalled mean ambient temperature up to 
30 °C. The ‘1.65’ in Eq. 1 was a constant identified through manual optimisation which limited reduction in TT 
only when FASW was >0.65. The available soil water in this range is described as the readily available water for 
chickpea and other crops27.

FASW was computed in the manager module of APSIM as a ratio of extractable water and the total available 
water. The soil module, which is a cascading water balance model, simulates the relevant processes in the soil pro-
file including soil water infiltration, movement, evaporation, runoff, drainage, extractable soil water and the total 
available water. To determine water balance, the model uses an input of 1.5 MPa lower limit (ll15 – the driest water 
achievable by plant water extraction), and drained upper limit (DUL, field capacity), saturated volumetric water, 
stage 1 and 2 evaporation parameters, and water uptake, all were computed by the plant module in a daily time 
step. These and other related parameters, except for water uptake by plants, for soils which were used in this study, 
were obtained through systematic soil sampling and characterisation. These are available in the APSoil database. 
The soil water module was called in APSIM on a daily basis to compute FASW using the following equation:

= Σ − Σ −FASW (sw_dep(i) ll15_dep(i))_/ (dul_dep(i) ll15_dep(i)) (2)
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where sw_dep is soil water, ll15_dep is the soil water corresponding to a soil water potential of 1.5 MPa, and dul_
dep is the soil water at field capacity (0.03 MPa) in each layer (i) in the top 60 cm soil surface layers. Equation 1 
was operationalised only when FASW was >0.65 and the emergence (growth stage 3) had occured. The reduction 
in TT was maximum when FASW values were ≥1, i.e., when soil water in the surface 60 cm layers was near the 
field capacity.

The extractable soil water was defined as the water held between field capacity (DUL) and at 1.5 MPa soil water 
potential (ll15) in the soil. Soil parameters of all sowing locations except for Jondaryan in 2015 were obtained 
from the APSoil database (www.apsim.info). For the Jondaryan 2015 sowing, a generic Vertisol (No. 523) of 
137 mm water available water holding capacity was selected from the same database based on water holding 
capacity described for an agricultural area around a nearby mining site46. Daily data from nearby weather stations 
were downloaded from the apsrunet.apsim.info website. Weather at the experimental sites was also monitored in 
the 11 sowings, which was patched on to the weather data downloaded from the apsurnet.apsim.info website. The 
user interface of APSIM was configured to link the above soil and daily weather data and other agronomic details 
including cultivar, sowing date, depth of sowing, row spacing and plant population used. The change in accumu-
lated thermal time was accomplished on a daily basis through the manager module of the model. Flowering time 
was also simulated using unmodified model parameters.

Assessment of the effect of post flowering frosts on chickpea yield.  In the above-mentioned 11 
chickpea sowings, the crop experienced a varying number of frost events (≤0 °C) before and after flowering in all 
three locations. The number of post-flowering frosts computed by the model was contingent upon the accuracy of 
prediction of flowering time. We assessed the impact of frost on yield using two approaches. In the first approach, 
we compared the relationship between the number of frost events and the ratio of potential realisable yield and 
the observed yield, which represented the yield gap. In the second approach, we compared the observed yield with 
the simulated yield loss due to post-flowering frosts. It has been estimated that each post-flowering frost event 
causes about 5% loss in yield of chickpea. The following equations were, therefore, incorporated in the manager 
module to simulate 5% yield loss for each post-flowering frost event:

= ∗ Σ ∗ .Yield Yield ( PFF 0 05) (3)L W

= −Yield Yield Yield (4)GM w L

YieldL is the yield lost due to frost, YieldW is yield with 12% seed moisture content (potential yield), and YieldGM is 
the observed (gross margin) yield a grower would harvest. PFF is a post-flowering frost event when the minimum 
temperature was ≥0 °C.

Validation of the soil water model to predict flowering time in chickpea in diverse range of 
sowings and seasons.  Flowering was also predicted in a larger set of 24 additional sowings from breeding 
yield trials and two farming systems trials (Peter Want, DAF, Kingaroy, Personal Communication) conducted 

Parameter Range Unit Description

x_pp_hi_incr 1 24 h Photoperiod

y_hi_incr 0.014 0.014 1/d Rate of HI increase

x_hi_max_pot_stress 0 1 Average stress at flowering

y_hi_max_pot 0.5 0.5 Maximum harvest index potential

cum_vernal_days 0 100 d

tt_emerg_to_endjuv 515a 515a °Cd TT from emergence to end of juvenile phase

est_days_emerg_to_init 83 d Estimated days from emergence to floral initiation

x_pp_endjuv_to_init 10.7b 17c h Photoperiod

y_tt_endjuv_to_init 446d 0 °Cd TT from end juvenile to floral initiation

x_pp_init_to_flower 1 24 h Photoperiod

Y_tt_init_to_flower 33 33 °Cd TT from initiation to flowering

x_pp_flower_to_start_grain 1 24 h Photoperiod

y_tt_flower_to_start_grain 450 450 °Cd TT from flowering to start grain fill

x_pp_start_to_end_grain 1 24 h Photoperiod

y_tt_start_to_end_grain 690 690 °Cd TT from start grain fill to end grain fill

tt_end_grain_to_maturity 60 °Cd TT from end grain fill to maturity

tt_maturity_to_ripe 1 °Cd TT from maturity to harvest ripe

x_stem_wt 0 10 g/plant Stem weight

y_height 0 800 mm Plant height

Table 2.  Parameters of desi chickpea cultivars PBA HatTrick, and PBA Boundary and Tyson in the APSIM 
model. aChanged to 660 °Cd for PBA Boundary and PBA HatTrick, 690 °Cd for Tyson. b10.1 h for Tyson. 
cChanged to 12 h in the new model, d468.3 °Cd for Tyson.
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from 2013 to 2017 in Queensland. These locations covered 23.4 to 28.5°S latitude and 148.1 to 152.1° longitude. 
The set up procedure of the model was similar to that for the 11 sowings of chickpea. The soil parameters for 
the simulations were obtained from the APSoil database and weather data from the apsurnet.apsim.info web-
site. The details of these sowings and soils are given in the supplementary information (Supplementary Table 1). 
Simulations of all sowings were initialised on 1st Nov using data obtained from the Australian Landscape Water 
Balance (Supplementary Table 1).

Simulations were similarly run to predict flowering times in rainfed trials conducted in 1979 and 198029 at 
Dalby, Queensland. Soil parameters for the site were obtained from the APSoil data base and weather data from 
the apsurnet.apsim.info website (Supplementary Table 1). Simulations were initialised on 1st Nov of the previous 
year with a low soil water of 20% as landscape water balance data were not available for those two seasons. Other 
agronomic information included in the model was as described in the papers29,30. Weather data were obtained 
from the apsurnet.apsim.info website.

Soil water effect on flowering time in wheat.  The applicability of Eq. 1 to predict flowering of wheat 
was tested for cultivar Gregory grown at Goondiwindi, Emerald, Kingaroy, and Wellcamp in Queensland, and 
Wagga Wagga and Temora in New South Wales spread over 23.5 to 35.0°S latitude and 147.3 to 151.9° longitude. 
FASW was computed using the APSIM model as described for chickpea in Eq. 1 to predict flowering time. The 
soil parameters for the simulations were obtained from the APSoil database (Supplementary Table 2). Soil water 
was initialised to a low level on 1st Nov of the previous year using the Australian Soil Water balance model (www.
bom.gov.au/water/landscape). The model set up was similar to that for chickpea. All observed flowering data 
were either obtained from the Grains Research and Development Corporation website www.grdc.com.au and 
for Kingaroy from a colleague (Peter Want, DAF, Kingaroy, Personal Communication). The APSIM-Wheat is a 
process-oriented modular structure with externalised model parameters47. To predict flowering time, the daily 
thermal time in the model was reduced by multiplying it with the vernalisation and photoperiod sensitivity fac-
tors for a given cultivar (www.apsim.info). Cultivar Gregory released in 2004 for cultivation in Queensland and 
New South Wales was considered to be relatively photoperiod insensitive36, but it has high a photoperiod factor 
of 3.2 (for 0 to 5 scale) in the model. We hypothesized that if Gregory cultivar is indeed photoperiod insensitive, 
the high photoperiod sensitivity for this cultivar in the APSIM model could be to account for the effect of soil 
water on flowering. Zheng, et al.37 through actual field experiments estimated its photoperiod sensitivity factor 
as 2.6. They also reduced its vernalisation sensitivity from 2.7 to 0.9 while increasing its thermal time to floral 
initiation requirement from 555 to 715 °C days. We compared prediction of flowering of wheat in 40 sowings/site 
combinations using the original APSIM model, the APSIM model proposed by Zheng, et al.37 and the soil water 
based model as proposed in this study.

The details of these sowings are given in the supplementary information (Supplementary Table 2). While 
applying the soil water based model using Eq. 1, the vernalisation sensitivity of the original APSIM model was 
reduced from 2.7 to 1.98, and the photoperiod sensitivity to 2.6 as used for Gregory in Zheng, et al.37 while the 
thermal time to initiation was kept as 555 °C days. These changes were derived from manual optimisation.

Statistical analysis.  The relationship between observed/simulated yield and simulated yield after reducing 
it by 5% for each post-flowering frost event (as y variable), was quantified using linear regression with the R pro-
gram48. The normalised root mean square error (NRMSE) in Figs 1, 4, 5 and 6 was computed using the following 
equation in the same program.

NRMSE (mean(fitted_flowering simulated_flowering) )
/mean (observed_flowering) (5)

2= √ −

Lin’s concordance correlation coefficient (CCC) ρc
28,49 reported in Figs 1, 4, 5 and 6 was used to quantify a 

model’s predictive performance. Lin’s CCC achieves this by measuring how well the relationship between the 
observations and model predictions is represented by a straight line through the origin at an angle of 45 degrees. 
Lin’s CCC is defined as

ρ = ρ × C (6)c b

where ρ is the Pearson product-moment correlation coefficient and Cb is a bias correction factor calculated as

= + +C 2/(v 1/v u ) (7)b
2

=v s /s (8)1 2

= − √ ×u (m m )/ (s s ) (9)1 2 1 2

where mi and si (i = 1, 2) are the mean and standard deviation of the observations (i = 1) and predictions (i = 2). 
McBride50 suggests the following guidelines to infer a model’s predictive performance.

•	 ρc < 0.90: poor
•	 ρc > 0.90 to 0.95: moderate
•	 ρc > 0.95 to 0.99: substantial
•	 ρc > 0.99 almost perfect.

https://doi.org/10.1038/s41598-019-43848-6
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