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Abstract
Key message  The use of a kinship matrix integrating pedigree- and marker-based relationships optimized the per-
formance of genomic prediction in sorghum, especially for traits of lower heritability.
Abstract  Selection based on genome-wide markers has become an active breeding strategy in crops. Genomic prediction 
models can make use of pedigree information to account for the residual polygenic effects not captured by markers. Our 
aim was to evaluate the impact of using pedigree and genomic information on prediction quality of breeding values for dif-
ferent traits in sorghum. We explored BLUP models that use weighted combinations of pedigree and genomic relationship 
matrices. The optimal weighting factor was empirically determined in order to maximize predictive ability after evaluating a 
range of candidate weights. The phenotypic data consisted of testcross evaluations of sorghum parental lines across multiple 
environments. All lines were genotyped, and full pedigree information was available. The performance of the best predictive 
combined matrix was compared to that of models fitting the component matrices independently. Model performance was 
assessed using cross-validation technique. Fitting a combined pedigree–genomic matrix with the optimal weight always 
yielded the largest increases in predictive ability and the largest reductions in prediction bias relative to the simple G-BLUP. 
However, the weight that optimized prediction varied across traits. The benefits of including pedigree information in the 
genomic model were more relevant for traits with lower heritability, such as grain yield and stay-green. Our results suggest 
that the combination of pedigree and genomic relatedness can be used to optimize predictions of complex traits in crops 
when the additive variation is not fully explained by markers.

Introduction

Selection based on dense genome-wide markers has become 
a revolutionary alternative to traditional genetic evaluations 
for improving quantitative traits in crops (Jannink et al. 

2010; Crossa et al. 2017). This selection technique exploits 
the association between high-density markers and unknown 
causative genes to predict genetic merit or breeding value 
(BV). Genomic prediction (GP) is expected to increase 
accuracy of evaluations by capturing large and small allelic 
effects across the genome simultaneously (Meuwissen et al. 
2001). These effects are estimated using phenotypic and 
genotypic data from a reference breeding population and 
then integrated to predict genome-assisted BVs of untested 
selection candidates that have been only genotyped. The 
implementation of this prediction method can potentially 
lead to higher rates of genetic gain and lower phenotyping 
costs compared to classical phenotypic or pedigree-based 
selection.

The underlying requirement for obtaining optimal 
genomic predictions is that available markers or haplotypes 
of markers are in complete linkage disequilibrium (LD) with 
quantitative trait loci (QTLs) of interest. Consequently, a 
major assumption is that the full additive genetic variance 
can be accurately explained by markers (Goddard 2009). 
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When this condition is not met due to incomplete LD with 
causative genes, accuracy of prediction is expected to 
decline (Habier et al. 2007; Goddard et al. 2011). In such 
cases, pedigree information may be incorporated into GP 
models to account for the residual polygenic variance not 
captured by markers and to reduce empirical bias of predic-
tions. Pedigree and genome-wide markers can offer differ-
ent, yet complementary, information on genetic relatedness 
among individuals. While pedigrees represent expected 
average relationships describing potential transmission of 
genes, genomic data provide observed realized relationships. 
The latter are expected to be more accurate because markers 
can trace alleles, capturing random Mendelian sampling and 
unknown ancestral relationships not considered in the pedi-
gree. Nevertheless, the inclusion of a residual genealogical 
effect in prediction models might account for potential LD 
patterns not explained by markers at population and family 
levels. Consequently, the joint use of pedigree and genomic 
information may provide better estimates of genetic similari-
ties between genotypes, affecting predictive performance.

The benefits of exploiting pedigree and marker data in 
plants have been previously reported in the context of QTL 
and association mapping (Bink et al. 2002; Parisseaux and 
Bernardo 2004; Malosetti et al. 2007). In sorghum, Jordan 
et al. (2004) demonstrated that combining pedigree infor-
mation with mapped markers facilitated the identification 
of genetic regions under selection in a breeding population. 
Within the GP framework, several approaches to combine 
genealogy with genomic data have been reported. Bayes-
ian regression and semi-parametric models were firstly 
implemented in crops (de los Campos et al. 2009; Crossa 
et al. 2010). Alternative models based on best linear unbi-
ased prediction (BLUP) have been used in maize and wheat 
(Albrecht et al. 2011; Burgueño et al. 2012; Sukumaran 
et al. 2017). These BLUP models include two mutually inde-
pendent genetic effects, one depending on a pedigree-based 
relationship matrix (A) and one depending on a genomic 
relationship matrix (G). A similar approach based on BLUP 
integrates pedigree and genomic relatedness into a single 
matrix. This strategy has been applied in the context of ani-
mal genetic evaluations (VanRaden 2008; Goddard et al. 
2011; Gao et al. 2012), but it has not been implemented 
so far in plants. Different models combining pedigree and 
genome-wide markers have also been proposed for specific 
situations where not all individuals in the reference popu-
lation are genotyped (Legarra et al. 2014; Liu et al. 2014; 
Fernando et al. 2016).

Compatibility between A and G may be an issue when 
jointly used in prediction models. It is important to consider 
that genetic relationships in both matrices are in different 
scales with reference to the base population (Legarra et al. 
2014). Therefore, the use of a compatible scale for pedi-
gree and genomic relationships should be considered when 

estimating and interpreting genetic variances and derived 
measures, such as heritability and expected response to 
selection. Different scaling methods have been implemented 
to achieve the same base population for A and G (Vitezica 
et al. 2011; Christensen 2012). These corrections are aimed 
at accounting for the non-randomness of genotyping due to 
the previous selection decisions.

Sorghum [Sorghum bicolor (L.) Moench] is the fifth most 
important cereal crop worldwide after wheat, maize, rice and 
barley. Its drought tolerance ability makes it a strategic crop 
for sustainable grain production in the perspective of climate 
change and increasing food demand. Early stage breeding 
of hybrid sorghum involves the development of elite inbred 
lines, which will be subsequently used as parents of commer-
cial hybrids. The initial selection of superior parental lines 
is typically based on their additive genetic values estimated 
from testcross performance trials. Genomic selection could 
be beneficial for reducing time and field testing resources 
during the testcross evaluation step, increasing efficiency of 
hybrid development. Despite the new opportunities offered 
by GP methods to accelerate genetic progress in sorghum, 
empirical studies are still limited compared to other crops 
(Kulwal 2016). A first implementation of GP in sorghum 
was reported for biomass traits in a global germplasm col-
lection (Yu et al. 2016). In a more recent study by Hunt 
et al. (2018), genomic models were applied for prediction 
of testcross yield performance in the context of individual 
trial analysis.

For the present research, we considered a multi-year and 
multi-location testcross evaluation of sorghum parental lines 
using several testers and including different production and 
adaptability traits. The dataset belongs to a public breed-
ing program in Australia where identification of superior 
parental lines is typically based on extensive phenotyping of 
progeny performance. This interesting case study was used 
to explore the potential of combining pedigree, markers and 
phenotypic data for optimization of genomic prediction in 
sorghum.

The objectives of this article were to explore the impact 
of combining pedigree and genomic information on the qual-
ity of BV predictions, and to determine the combinations of 
information that optimize predictive performance for dif-
ferent traits. For these purposes, we applied BLUP models 
using a blended kinship matrix constructed as a weighted 
combination of matrices A and G, where different weights 
were tried in search of improved prediction quality.
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Materials and methods

Phenotypic data

The dataset is part of the sorghum breeding program for 
female parental lines conducted by the University of Queens-
land and the Department of Agriculture and Fisheries in 
Queensland, Australia. Female lines are evaluated in hybrid 
combination with different male testers across multiple envi-
ronments. Testcross performance is then used to estimate the 
general combining ability (GCA) or BV of parental lines.

The phenotypic records used in this study consisted of 
26 testcross performance trials where a total of 646 female 
lines were tested across 12 locations over a period of 7 years 
between 2008 and 2014. This trial series comprises a repre-
sentative sample from a target population of environments 
covering the main sorghum cropping region in Australia. 
Phenotypes of 2645 testcross hybrids were used to assess 
female lines in crosses with one to five different testers. 
These male parents were chosen to express contrasting lev-
els of yield potential and stay-green capacity (Jordan et al. 
2012). In each trial, between 110 and 315 lines were evalu-
ated and 3–5 testers were used. Across the dataset, more than 
50% of the lines were crossed with at least three different 
testers and grown in at least nine environments. The sets of 
testcrosses entering evaluation were designed to provide a 
degree of connectivity between lines and testers across tri-
als. Each experiment was laid out as a resolvable partially 
replicated design (Cullis et al. 2006), where 30% of the test-
cross hybrids had two replicates and commercial varieties 
were included with additional replication. The number of 
testcrosses in each trial varied between 247 and 858. We 
considered four productivity and adaptability traits routinely 
measured by the program: grain yield (GY), stay-green (SG), 
plant height (PH) and flowering time (FT). Stay-green is a 
drought resistance trait that expresses as delayed leaf senes-
cence in environments where water-stress conditions occur 
(Borrell et al. 2014). In this dataset, the stay-green trait was 
expressed in nine trials and observations were available for 
603 lines.

Pedigree and genotypic data

Inbred parent lines were derived from pedigree breeding 
methods resulting in a highly structured breeding popula-
tion. The 646 female lines are basically grouped into 74 
full-sib families including different numbers of siblings. 
Genealogical information on the tested lines and 499 ances-
tors tracing back 28 generations was available to compute 
the pedigree-based relationship matrix A.

All the female lines were genotyped using an integrated 
DArT and genotyping-by-sequencing (GBS) methodol-
ogy involving complexity reduction in the genomic DNA 
to remove repetitive sequences using methylation sensitive 
restriction enzymes prior to sequencing on next generation 
sequencing platforms (DArT, www.diver​sitya​rrays​.com). 
The sequence data generated were then aligned to the most 
recent version (v3.1.1) of the sorghum reference genome 
sequence (Paterson et al. 2009) to identify single-nucleotide 
polymorphism (SNP) markers. SNPs with minor allele fre-
quency lower than 2.5% or more than 20% of missing values 
were discarded. Missing genotypes were imputed based on 
random sampling from marginal allele distributions using 
the R package synbreed (Wimmer et al. 2012). After quality 
filtering, 4781 evenly spaced SNPs were retained to compute 
the genomic relationship matrix G.

Phenotypic analysis

A weighted two-stage approach was used for the analysis of 
phenotype data. In the first stage, each trial was individu-
ally analyzed to account for design factors and spatial field 
variation. In the second stage, spatially adjusted testcross 
means from the first stage were used to compute adjusted 
line means across testers and environments.

For the analysis of each trial, we applied a novel spatial 
method that adjusts for all types of field trends in a single 
modeling step by fitting a smoothed surface (Rodríguez-
Álvarez et al. 2018a). We used the same flexible spatial 
model to analyze the whole series of trials and all traits. 
Velazco et al. (2017) showed that this approach performs as 
well as the more elaborate spatial methods, which are typi-
cally based on a specific multi-step modeling for each trial 
and trait. The general spatial model used across trial–trait 
combinations is defined as

where the plot observation yijkl was modeled by fitting fixed 
effects for: the overall mean (μ), the ith line × tester hybrid 
(L × T) and the jth block (B); and random effects for: the kth 
row (R) and lth column (C). The term f(r, c) is a smooth 
function of row (r) and column (c) plot coordinates rep-
resenting the fitted spatial surface, which simultaneously 
accounts for global and local trends (see Rodríguez-Álvarez 
et al. 2018a; Velazco et al. 2017 for details). Finally, e is the 
random spatially independent residual representing measure-
ment error in each plot. All random effects were assumed 
independent homoscedastic and normally distributed with 
zero mean.

Spatial analyses were implemented within the REML-
based mixed model framework using the R package SpATS 
(Rodríguez-Álvarez et al. 2018b).

(1)yijkl = � + (L × T)i + Bj + Rk + Cl + f (r, c)kl + eijkl

http://www.diversityarrays.com
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In the second stage, spatially adjusted testcross means 
from all trials were jointly modeled by

where in this case yijk represents the adjusted mean estimated 
by best linear unbiased estimation (BLUE) of the ith female 
line crossed with the jth tester in the kth environment, which 
was fitted by a main line genetic effect (L), a main tester 
effect (T), a main environmental effect (E) and all possible 
interactions between these effects. The residual followed 
eijk ~ N (0, R), where R is a diagonal matrix with elements 
equal to the squared standard errors of each mean yijk esti-
mated by model (1) in the first stage (Frensham et al. 1997). 
The analysis using diagonal weights instead of the full geno-
typic covariance matrix from each trial is preferable in prac-
tice because of its computational efficiency and comparable 
results (Möhring and Piepho 2009; Welham et al. 2010). 
Since trials were considered random, all the interactions 
involving E were random. Heterogeneous variances for the 
latter effects were allowed to improve goodness of fit of the 
model in each trait, as evaluated by the Akaike information 
criterion. In this stage, the effects L and T were also taken as 
fixed. However, given that not all lines were testcrossed with 
all testers, the interaction effect LT was considered random 
to estimate line means across testers (Bernal-Vasquez et al. 
2014).

Prediction models

Different parental or GCA models based on BLUP were 
applied to predict breeding values of female lines from 
progeny performance. These models differed in the amount 
of pedigree and genomic information used for predictions.

The prediction models used in our study assume that 
available SNPs may not explain all additive genetic vari-
ances. The general model formulation can be defined as:

where the vector yL contains the BLUEs of line effects ( ̂Li ) 
from model (2), 1 is a vector of ones with associated gen-
eral mean μ, Z is a design matrix allocating line BLUEs 
to unknown genetic effects, g is the vector of total addi-
tive genetic effects and e is the vector of residuals. Random 
residuals were assumed e ~ N (0, R), where R is a diagonal 
matrix with elements equal to the squared standard errors 
of genotypic BLUEs from the second stage of phenotypic 
analysis. This matrix accounts for differences in precision 
of estimated line means.

Total additive genetic effects were assumed 
� ∼ N(0,��2

g
) , where K is  a combined kinship matrix 

exploiting pedigree and genomic information. This matrix 

(2)
yijk = � + Li + Tj + Ek + LTij + LEik + TEjk + LTEijk + eijk

(3)�� = �� + �� + �

is constructed as K = wA + (1 − w)Gs, where A is the numer-
ator relationship matrix among lines computed from the full 
pedigree and Gs is a rescaled genomic relationship matrix 
based on the SNP data (see details below). The weighting 
factor w represents the fraction of total additive variance (�2

g
) 

that is not captured by markers, such that w�2
g
 is the amount 

of residual polygenic variance explained by genealogical 
relationships. In this model, referred here as K-BLUP, the 
weight can take any value between 0 and 1. It should be 
noted that G and A are not orthogonal; therefore, the inter-
pretation of w should be considered with caution.

For our study, a sequence of eight values of w from 0.1 
to 0.8, with increments of 0.1, was explored to assess the 
impact on predictions. For the sake of comparison, the 
extreme cases w = 0 and w = 1 were also considered. Note 
that the latter case corresponds to the traditional pedigree-
based model, A-BLUP, which relies only on familial infor-
mation. Alternatively, assuming w = 0 results in the basic 
G-BLUP model (VanRaden 2008), where predictions are 
exclusively conditional on marker-based similarities.

An equivalent formulation of the K-BLUP model is as 
follows:

 where the total additive genetic effects in (3) are decom-
posed into a vector of genomic additive effects (m) and a 
vector of residual polygenic effects (a), such that g = m + a, 
with respective variances �2

g
= �2

m
+ �2

a
 . In this model, both 

types of genetic effects are assumed mutually independent 
with distributions � ∼ N(0,���

2
m
) and � ∼ N(0,��2

a
) , 

where �2
m
= (1 − w)�2

g
 and �2

a
= w�2

g
 . This parametrization, 

referred in the rest of the article as AG-BLUP, presents two 
differences compared to the K-BLUP model: first, the AG-
BLUP model requires the fitting of two relationship matrices 
(A and G) to combine pedigree and genomic information, 
while this information is condensed into a single matrix in 
K-BLUP; second, under AG-BLUP, the magnitude of w is 
driven by the data in order to maximize the (restricted) like-
lihood of the model, as opposed to pre-specified weights 
used within the K-BLUP method. The performance of AG-
BLUP was also compared to that of the best predictive 
K-BLUP model.

The Gs matrix used in our models was rescaled to make 
it compatible with A in reference to the same base breeding 
population. The adjustment was based on fitting Gs to A 
by applying Gs = a + bG, where G is the unscaled genomic 
matrix as computed with the first method of VanRaden 
(2008), and the parameters a and b are estimated by equating 
the average levels of inbreeding and the overall relationships 
in A and G (Vitezica et al. 2011; Christensen et al. 2012). 
The added constant a accounts for old relationships among 
non-genotyped ancestral lines in the pedigree, while b is 

�� = �� + �� + �� + �
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a scaling term accounting for the reduction in the genetic 
variance of genotyped lines relative to the pedigreed base 
population (see Legarra et al. 2014 for details).

Given the variance components from prediction models, 
the narrow-sense heritability ( h2 ) of line means was obtained 
as: h2 = �2

g
∕
(

�2
g
+ �2

e

)

 , where �2
e
 is the residual variance 

comprising nonadditive genetic effects and true errors asso-
ciated with mean line estimates.

Models in the second stage of phenotypic analysis as well 
as prediction models were fitted using the average informa-
tion REML (AI-REML) algorithm as implemented in the 
mixed model package ASReml-R (Butler et al. 2017).

Model validation

The quality of predictions from each model was evaluated 
using a fivefold cross-validation technique. We considered 
two different strategies for splitting the data into training 
set (TS) and validation set (VS). These strategies emulate 
different selection schemes: one based on within-family 
predictions (W-fam) and one based on among-family pre-
dictions (A-fam). In W-fam, 20% of lines from each full-sib 
family formed the VS, i.e., predicted lines belong to families 
that were (tested) in the TS. In A-fam, we sampled 20% 
of whole families to construct the VS, i.e., predicted lines 
belong to full-sib families that were not present in the TS. 
With this setting, we examined contrasting levels of genetic 
relatedness between TS and VS: high for W-fam and low 
for A-fam. Each splitting scenario was repeated 20 times 
using the same random seed throughout all models. The line 
BLUEs from phenotypic analysis (yL) were regarded as the 
realized genetic values of lines and used for validation of 
prediction models.

Prediction quality evaluation

Model performances were assessed using multiple criteria. 
In this research, predictive ability was taken as the primary 
criterion for identifying the best prediction model. However, 

measures of empirical bias and accuracy were also consid-
ered, as they offer complementary information that should 
be taken into account when evaluating the predictive per-
formance of models. Predictive ability was measured as the 
Pearson’s correlation (rPA) between predicted additive values 
𝐠̂ and realized values yL in the validation set. Bias of predic-
tions was investigated by regressing yL on 𝐠̂ , where a coef-
ficient of regression b = 1 designates an empirically unbiased 
predictor, while b < 1 indicates inflation of the variance of 
genotype predictions or overpredictions. The mean squared 
error of prediction (MSEP) from the linear regression was 
also measured as an indicator of prediction accuracy, which 
incorporates concepts of both bias and precision. The evalu-
ation of models was based on average values over the 20 
replicates when using within-family or across-family relat-
edness for prediction. Significance of pairwise differences 
in predictive ability among prediction models was assessed 
by the Hotelling–Williams t test (Steiger 1980), which is the 
appropriate test when comparing two correlations that are 
not independent as a result of sharing a common variable 
(yL in our case).

Results

Heritability and effect of scaling genomic 
relationships

Table 1 presents the narrow-sense heritabilities (h2) for all 
traits estimated from BLUP models using only pedigree rela-
tionships, using only genomic relationships or combining 
both sources of information. We also show the influence of 
scaling the genomic matrix on the estimates of h2. In gen-
eral, heritabilities varied from relatively low in grain yield to 
high in the case of plant height. Models using the combined 
matrix K increased h2 for most traits compared to A-BLUP 
and G-BLUP. These changes in heritability reflect the ability 
of the models to capture genetic variation in the breeding 
population. Note that the weight w used to construct K in 
each case was defined to maximize the likelihood, being 

Table 1   Estimates of narrow-sense heritability for grain yield (GY), 
stay-green (SG), plant height (PH) and flowering time (FT) from 
prediction models using only the pedigree-based matrix (A-BLUP), 

using only the unscaled (G) or the scaled (Gs) genomic matrix and 
using the combined K matrix (K-BLUP)

a maxLL: weight that maximized the REML log-likelihood in each case; for GY: w = 0.54 with G and w = 0.48 with Gs, for SG: w = 0.43 with G 
and w = 0.38 with Gs, for PH: w = 0.19 with G and w = 0.16 with Gs and for FT: w = 0.34 with G and w = 0.29 with Gs

Model GY SG PH FT

G Gs G Gs G GS G GS

A-BLUP (w = 1) 0.40 0.40 0.61 0.61 0.70 0.70 0.63 0.63
G-BLUP (w = 0) 0.28 0.34 0.41 0.46 0.72 0.77 0.62 0.67
K-BLUP (w = maxLL)a 0.43 0.46 0.56 0.59 0.78 0.82 0.72 0.76
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the resulting K-BLUP model equivalent to fitting the model 
AG-BLUP. Finally, using the scaled genomic matrix Gs in 
G-BLUP and K-BLUP, increased heritability estimates for 
all traits relative to the heritabilities obtained using the con-
ventional genomic matrix.

Impact of combining pedigree and genomic 
relationships on prediction quality

Figure 1 shows the patterns of variation in prediction quality 
measures of BLUP models when using different weights (w) 
to construct the combined relationship matrix K. 

Fig. 1   Predictive abilities, regression coefficients and MSEP from 
BLUP models using different weights (w) to construct the combined 
matrix K for grain yield (GY), stay-green (SG), plant height (PH) 
and flowering time (FT) predictions within (blue) and among (green) 

families. The weight w = 0 corresponds to the simple G-BLUP model. 
The horizontal lines indicate a regression coefficient b = 1 (color fig-
ure online)
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In both prediction scenarios, predictive ability for GY 
and SG improved as the weight placed on pedigree infor-
mation increased from w = 0 up to 0.4 ≤ w ≤ 0.6. The use 
of higher weights caused decreasing trends in rPA for both 
traits. The largest relative increases in predictive abilities 
were observed for GY, with K-BLUP achieving 7% and 8% 
of improvement compared to G-BLUP (w = 0) for within- 
and among-family predictions, respectively. For PH and 
FT, rPA was generally maximized by using lower weights 
(w ≤ 0.2) in both prediction scenarios. Any further increase 
in w slightly changed rPA within families and was clearly 
detrimental for among-family predictions. Using a combined 
pedigree–genomic matrix provided more limited benefits for 
PH and FT, representing less than 2% of relative gains in rPA 
over using only marker information.

In most cases, placing increasing weights on pedigree 
relationships reduced bias of predictions relative to predic-
tions based on genomic relationships alone (w = 0). Moreo-
ver, the addition of genealogy information was more effec-
tive in reducing inflation of predictions when these were 
based on among-family relatedness. The only exception was 
observed for FT, where higher values of w gave more biased 
among-family predictions.

The use of increasing weights to form the K matrix 
reduced MSEP for GY, reaching the lowest values at w = 0.5 
in both prediction scenarios. The opposite tendency was 
observed for the other traits, with higher accuracies obtained 
when more weight was assigned to genomic relationships 
and with accuracy of PH predictions being less sensitive to 
changes in w.

The optimal weighting factors for each trait and predic-
tion scenario are given in Table 2. These weights were deter-
mined in order to maximize predictive ability of K-BLUP 
after examining the variation in rPA over the set of candidate 
weights, as shown in Fig. 1. The best predictive weights 
based on cross-validation were generally similar to the 
weights that maximized the log-likelihood of the model for 
each trait in the entire breeding population (see footnotes 
to Table 1).

Performance of prediction models

Table 3 presents the measures of prediction quality from the 
BLUP models using pedigree and/or genomic information 

for all traits and both cross-validation scenarios. Independ-
ent of the prediction model, predictive abilities were signifi-
cantly lower and predictions tended to be more biased when 
among-family information was used. The pedigree-based 
BLUP model, considered here as the benchmark, always 
gave the lowest rPA and the highest MSEP. Statistically sig-
nificant increases in rPA were obtained by models exploit-
ing genomic relationships alone or combined with pedigree 
in most cases. Exceptionally, the differences with A-BLUP 
became significant for GY predictions within families only 
when genealogy information was included in the genomic 
model. In general, the use of genome-wide information 
caused larger relative gains in rPA for among-family pre-
dictions. The inclusion of marker-based relationships had a 
higher impact on improving rPA for PH and FT, which were 
the traits with higher heritabilities. Models combining infor-
mation from A and G consistently outperformed the basic 
G-BLUP in predictive ability. These improvements were 
statistically significant only for SG in both prediction sce-
narios. The highest predictive abilities were always achieved 
with K-BLUP, and this model exhibited the lowest MSEP 
in most situations. Moreover, including a residual polygenic 
component through the optimal K matrix produced the larg-
est reductions in bias relative to G-BLUP in most cases. 
Although differences between AG-BLUP and K-BLUP were 
significant only for FT predictions among families, the latter 
model was slightly superior in predictive ability and predic-
tion bias across all traits and both cross-validation schemes. 
The relative benefit of using the best predictive K matrix 
was more evident when predictions relied on among-family 
information.

Discussion

Advances in genotyping technology have facilitated the 
implementation of genomic selection for several plant spe-
cies. However, for some strategic cereal crops, especially 
sorghum, efforts are still needed to attain a full insight into 
the prospects of this genetic evaluation method. Here, we 
present a first comprehensive study addressing the poten-
tialities of exploiting pedigree and genome-wide marker 
information to enhance prediction of parental BVs in sor-
ghum. The idea of combining different kinship matrices for 
genomic prediction has also been introduced in the con-
text of reproducing kernel Hilbert spaces regression using 
multiple kernels (de los Campos et al. 2010; Gianola and 
Schön 2016). This method provides a flexible framework, 
including the possibility of using nonlinear combinations 
of kinship matrices (Corrada Bravo et al. 2009; Gianola and 
de los Campos 2008). Our research is based on the BLUP 
method as it is easy to understand, compute and implement 
in available mixed model software. Moreover, several studies 

Table 2   Optimal weights (w) used to construct the combined matrix 
K for prediction of grain yield (GY), stay-green (SG), plant height 
(PH) and flowering time (FT) under within- and among-family pre-
diction scenarios

Prediction scenario GY SG PH FT

Within families 0.6 0.4 0.2 0.2
Among families 0.5 0.5 0.2 0.1
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have shown that this method performs comparably to other 
models, such as the Bayesian alternatives, for prediction of 
complex quantitative traits in crops (e.g. Heslot et al. 2012; 
Wimmer et al. 2013).

Results showed that the use of genomic information 
consistently improved predictive ability and accuracy of 
prediction in sorghum relative to the classical pedigree-
based method. This is expected because the G matrix 
accounts for Mendelian segregation of alleles, distinguish-
ing between full-sib lines that are more or less related than 
expected due to random chance. Therefore, genomic esti-
mated BVs of unphenotyped full sibs will reflect genetic 
differences caused by Mendelian sampling, while these 
sibs will have identical pedigree-based BVs reflecting 

only mid-parent genetic contributions. Similarly, specific 
pairs of lines from unrelated families may share more 
alleles than expected by chance and will have realized 
relationships different from zero. These features make the 
G matrix potentially more informative than A to better 
approximate genetic relationships between parental lines. 
The advantage of replacing pedigree by genomic-based 
similarities in prediction models has also been reported 
for other crops (e.g., Albrecht et al. 2011; Burgueño et al. 
2012; Auinger et al. 2016). Less conclusive results regard-
ing the relative value of A and G for prediction in sor-
ghum were reported by Hunt et al. (2018). However, their 
study is not strictly comparable to the present research due 
to different predictive contexts. Hunt et al. (2018) used 

Table 3   Mean values (and SD 
of 20 replicates) for predictive 
ability (rPA), relative increment 
of rPA (∆ rPA), regression 
coefficient (Bias) and mean 
squared error of predictions 
(MSEPs) from BLUP models 
using different relationship 
matrices for grain yield (GY), 
stay-green (SG), plant height 
(PH) and flowering time (FT) 
prediction within and among 
families. The best values for 
each evaluation criterion are 
boldfaced

a Using K matrices constructed with the specific optimal weights given in Table 2

Trait Quality criterion A-BLUP G-BLUP AG-BLUP K-BLUPa

Within-family prediction
GY rPA 0.299 (0.011) 0.323 (0.013) 0.339 (0.014) 0.345 (0.014)

∆ rPA(%) 0 8.1 13.4 15.3
Bias (b) 0.963 (0.040) 0.924 (0.045) 0.924 (0.043) 0.948 (0.045)
MSEP 0.217 (0.002) 0.214 (0.002) 0.211 (0.002) 0.210 (0.002)

SG rPA 0.437 (0.010) 0.475 (0.007) 0.490 (0.009) 0.494 (0.009)
∆ rPA(%) 0 8.6 12.1 13.0
Bias (b) 0.988 (0.030) 0.953 (0.024) 0.952 (0.025) 0.963 (0.025)
MSEP 0.514 (0.005) 0.388 (0.004) 0.401 (0.005) 0.400 (0.005)

PH rPA 0.420 (0.011) 0.574 (0.011) 0.579 (0.010) 0.581 (0.009)
∆ rPA(%) 0 36.6 37.8 38.3
Bias (b) 0.997 (0.032) 0.935 (0.024) 0.944 (0.023) 0.949 (0.021)
MSEP 30.4 (0.4) 24.8 (0.5) 24.6 (0.5) 24.4 (0.4)

FT rPA 0.394 (0.015) 0.489 (0.011) 0.497 (0.014) 0.500 (0.013)
∆ rPA(%) 0 24.0 26.1 26.8
Bias (b) 0.964 (0.045) 0.933 (0.029) 0.937 (0.030) 0.944 (0.027)
MSEP 0.774 (0.011) 0.697 (0.011) 0.693 (0.013) 0.690 (0.013)

Among-family prediction
GY rPA 0.184 (0.037) 0.230 (0.027) 0.243 (0.028) 0.249 (0.030)

∆ rPA(%) 0 25.0 31.9 35.1
Bias (b) 0.858 (0.181) 0.788 (0.094) 0.828 (0.094) 0.853 (0.104)
MSEP 0.231 (0.004) 0.227 (0.004) 0.225 (0.004) 0.224 (0.004)

SG rPA 0.365 (0.030) 0.413 (0.022) 0.426 (0.019) 0.437 (0.016)
∆ rPA(%) 0 12.9 16.7 19.5
Bias (b) 1.007 (0.121) 0.925 (0.055) 0.958 (0.061) 0.998 (0.050)
MSEP 0.552 (0.014) 0.417 (0.010) 0.432 (0.009) 0.434 (0.007)

PH rPA 0.235 (0.044) 0.468 (0.022) 0.469 (0.021) 0.477 (0.022)
∆ rPA(%) 0 99.1 99.4 102.9
Bias (b) 0.791 (0.155) 0.865 (0.051) 0.884 (0.056) 0.902 (0.055)
MSEP 35.0 (1.0) 29.0 (0.9) 28.9 (0.9) 28.6 (0.9)

FT rPA 0.156 (0.064) 0.374 (0.020) 0.352 (0.031) 0.376 (0.023)
∆ rPA(%) 0 139.6 125.2 140.6
Bias (b) 0.448 (0.196) 0.748 (0.047) 0.708 (0.066) 0.747 (0.051)
MSEP 0.929 (0.042) 0.802 (0.019) 0.823 (0.030) 0.801 (0.021)
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phenotypes of testcross progenies derived from crosses 
with a common tester. Consequently, the total genetic 
value of hybrids was predicted since general and specific 
combining ability effects could not be distinguished. In 
contrast, our study aimed to predict the additive genetic 
merit of parental lines given that the availability of test-
cross data using several testers allowed averaging out most 
dominance deviations. Moreover, predictions reported by 
Hunt et al. (2018) were based on separate analyses of indi-
vidual trials, whereas we obtained across-environment pre-
dictions using multi-environment trial analysis.

Before combining pedigree and genomic information 
in our prediction models, marker-based relationships were 
adjusted to take into account the difference in scale between 
A and G. While relationships in A are defined in relation 
to the founder population of the pedigree, the reference 
population for relationships in G is automatically set to the 
genotyped individuals when current allele frequencies are 
used (VanRaden 2008; Hayes et al. 2009). Therefore, if the 
population genotyped has undergone drift or strong selec-
tion, which is usually the case in plant breeding programs, 
its average breeding value will be different and the genetic 
variance would be expected to be reduced relative to the 
founder breeding population (Legarra et al. 2014). Several 
studies using real and simulated data have shown that res-
caling the G matrix improved predictions to a mild degree 
when not all individuals in the reference population were 
genotyped (Forni et al. 2011; Vitezica et al. 2011; Chris-
tensen et al. 2012). In contrast, the adjustment of G in our 
work, where genotypes were available for the entire training 
population, did not affect predictions (not shown). However, 
the rescaling did affect the scale of genomic variances, and 
thus changed heritability estimates (Table 1). These herit-
abilities derived from the adjusted G are thought to reflect 
a compatible scale for genomic- and pedigree-based esti-
mates of genetic variability. Consequently, the correction of 
G provided a clearer theoretical framework for interpretation 
of parameter estimates when pedigree and SNP informa-
tion are used simultaneously. Even though inconsistencies 
between the theory underlying classical polygenic models 
and the recent genomic approaches have received increas-
ing attention in animal breeding, this topic has been largely 
overlooked in crop applications.

In order to investigate the benefits of adding pedigree 
information into G-BLUP, we used a kinship matrix based 
on a weighted linear combination of pedigree- and marker-
based relationships, constructed as � = w� + (1 − w)�.

VanRaden (2008) and Goddard et al. (2011) proposed deter-
ministic methods to predict the appropriate w based on the 
error variance of the true genomic relationships or on the 
effective number of independent chromosomal segments, 
respectively. These methods and subsequent suggested 
alternatives provide variable theoretical estimates, and these 

can be substantially different from optimal data-dependent 
weights (Ilska et al. 2017). Here, we adopted an analyti-
cal approach where the best predictive w was empirically 
defined for each trait and cross-validation scenario after 
evaluating the changes in prediction quality over a sequence 
of candidate weights. The same approach was used apply-
ing a semi-parametric Bayesian method (Rodríguez-Ramilo 
et al. 2014) and in the context of multiple-trait prediction 
(Momen et al. 2017) in animal species. Our results in sor-
ghum showed a general agreement between the best pre-
dictive weights based on cross-validation and the weights 
that maximized the fit of the model to the entire breeding 
population. This suggests that goodness of fit can be used 
as guiding tool to attain an optimal prediction model. Our 
study demonstrates, however, that the best fitting model may 
not produce the best predictive performance. This topic will 
be specifically addressed later in the present section when 
discussing the differences between K-BLUP and AG-BLUP.

In our research, the optimal weighting factor w varied 
across traits. This implies that the optimal similarity matrix, 
from a predictive perspective, is actually trait-specific. 
According to the optimal weights for PH and FT (Table 2), 
a large proportion of the total additive variation in these 
traits was captured by SNPs (between 80% and 90%). This 
is expected since our sorghum breeding population is highly 
structured, with strong family relationships and small effec-
tive population size. Consequently, the genetic variance 
explained by markers might not only be a result of SNPs 
located on causative genes or in LD at population level, but 
it might mainly depend on SNPs capturing familial relation-
ships between lines (Habier et al. 2007). For GY and SG, 
lower amounts of additive genetic variance were explained 
by markers (between 40% and 60%) and higher weights on 
pedigree were generally required to optimize predictions. 
The lower levels of variance accounted for by markers may 
be due to the more complex genetic information driving 
these low-heritability traits, which was not totally captured 
by imperfect coverage of available SNPs. The higher impor-
tance of including pedigree information for GY and SG is 
reflected by the larger predictive improvements achieved 
from using K-BLUP instead of G-BLUP (Table 3). One 
reason may be that, when some markers are not in LD with 
QTLs, the addition of pedigree information contributes to 
capturing associations between causative alleles due to com-
mon ancestral identity, improving predictions. Furthermore, 
besides residual LD patterns explained by family structure, 
Jensen et al. (2012) pointed out that an additional poly-
genic component can also take into account potential LD 
across chromosomes. In agreement with our results, Liu 
et al. (2011) found that higher weights placed on pedigree 
information were required to optimize predictions of traits 
with lower heritabilities in dairy cattle. The use of trait-
specific optimal weights has not only been recommended 
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for genomic selection in animals (Liu et al. 2011; Gao et al. 
2012), but also in wheat (Ashraf et al. 2016). In the lat-
ter study, identification of the optimal weighting terms was 
based on likelihood curves. The authors pointed out that 
differing weights had relatively small effect on improving 
the likelihood. We arrived at similar deductions when the 
weights were tuned to maximize predictive ability. Our 
results show that despite specific values of w were identi-
fied for each trait, a weighting factor between 0.4 and 0.5 
would generally perform well across traits, with predictive 
performance being clearly sub-optimal only for FT predic-
tions across families (Fig. 1). It should be considered, how-
ever, that these results are partly dependent on the marker 
density used.

In this paper, we compare a BLUP model blending pedi-
gree and genomic information into a single matrix K with 
an equivalent model that fits A and G separately. While the 
latter approach has been previously used for genomic pre-
diction in crops, the K-BLUP method had not been explored 
until now for plant breeding applications. Results show that 
the benefits of using K-BLUP instead of AG-BLUP were 
generally marginal but fairly consistent across traits and 
prediction scenarios. The predictive performance of AG-
BLUP is expected to be sub-optimal compared to that of 
K-BLUP. The reason is that the weight used by AG-BLUP 
for prediction is the one that best fits the genotypes and phe-
notypes of the TS. However, this w is not necessarily an 
accurate estimator of the weight that optimizes prediction 
of phenotypes in the VS. Therefore, the likelihood-based w 
may contain some information that is only relevant for the 
reference lines, but with little predictive value for the valida-
tion lines. On the other hand, within the K-BLUP approach, 
w is empirically derived to optimize prediction of lines in 
the VS. Then, the resulting best predictive weight makes no 
direct reference to the TS data, but it seems to be closer to 
the w that best approximates the genetic variability among 
validation lines. This would explain why K-BLUP slightly 
increased predictive ability and reduced overprediction rela-
tive to AG-BLUP in all cases. Our results are consistent 
with those obtained by Ilska et al. (2017) in chicken, who 
found that the increased goodness of fit in the training set 
was accompanied by decreased accuracy and higher bias of 
predictions in the validation set.

Besides the difference in predictive performance, the fact 
that information from the two sources is conveyed by fit-
ting a single relationship matrix provides additional benefits 
regarding model applicability. In our study, computational 
time was reduced by more than 35% when fitting K instead 
of A plus G (not shown). In addition, K-BLUP is likely to 
produce more stable results when using small training sets 
since fewer variance components have to be estimated. We 
applied relatively simple prediction models, but differences 
in computational burden and stability between AG-BLUP 

and K-BLUP are prone to increase when more elaborate 
models are used. For instance, when prediction models 
include interactions of genotypes with environmental factors 
or when multi-trait prediction is aimed. Finally, the use of a 
blended matrix prevents from potential convergence prob-
lems resulting from collinearity between pedigree-estimated 
genetic effects and genomic effects when A and G are fitted 
separately, which may also deteriorate the quality of predic-
tions (Legarra et al. 2008).

In our study, the main criterion used to define the opti-
mal weighting factor for K-BLUP was the predictive ability. 
Given that all selection candidates belong to the same gener-
ation, we considered that this was the criterion to maximize, 
since prediction bias should not be too strong. It is notewor-
thy that, in this research, the highest predictive ability and 
the smallest empirical bias were rarely achieved by the same 
model (Table 3). However, inflation or overprediction (b < 1) 
should also be considered when searching for the best pre-
dictor. For instance, inflation of genomic predictions can be 
detrimental for genetic gain since the genetic merit of new 
genotyped lines is overestimated when compared to older 
lines that have undergone testcross field evaluations. Our 
results revealed that including pedigree information through 
the blended matrix K always caused the largest reductions in 
the inflation produced by G-BLUP. Reduced bias of predic-
tions obtained by increasing the weight on familial relation-
ships has also been reported in animal genomic evaluations 
(Liu et al. 2011; Gao et al. 2012). In addition, the lowest 
MSEP was mostly achieved by K-BLUP in our research. The 
minimization of MSEP has been recommended as an appro-
priate evaluation criterion for the comparison of prediction 
models since it considers both bias and precision (Vitezica 
et al. 2011; González-Recio et al. 2014).

We evaluated model performance when within-family or 
across-family information was used for prediction. For all 
models, predictions were clearly better when full-sib rela-
tionships were exploited. The value of using information 
from close relatives for prediction in structured populations 
is consistent with the previous studies in animal and plant 
breeding (e.g., Wientjes et al. 2013; Schopp et al. 2017). 
Across traits, the decline in predictive ability was less 
marked for models including G when predictions were based 
on relationships among families (a mean decrease of 21% vs 
40% for A-BLUP). This reflects the capacity of marker infor-
mation to capture populational LD, which becomes particu-
larly relevant when predictions rely on more distant genetic 
relatedness (Habier et al. 2007). As shown in Table 3, how-
ever, the relative benefit of using genomic information for 
among-family prediction was less evident for GY and SG. 
The latter finding emphasizes the contribution of additive 
genetic relationships and tempers that of LD for predicting 
traits with lower heritability.
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Conclusion

This paper provides a first empirical evidence based on 
sorghum breeding data that the use of genomic relation-
ships alone, even with relatively low marker density, can 
give better predictions of parental BVs than the pedigree-
based model. We also investigated how the use of different 
combinations of pedigree and genomic information affected 
prediction quality. Our results showed that using a kinship 
matrix integrating both sources of information yielded better 
predictive performance than G-BLUP for different traits and 
prediction scenarios. Identification of the optimal weighting 
factor used to combine familial- and marker-based relation-
ships was driven by the search for maximizing predictive 
ability. Under this approach, the weight that optimizes pre-
dictions differed between traits. These weights were gener-
ally consistent with the weights that optimized model fit-
ting to the entire dataset. The impact of including genealogy 
information to improve genomic predictions was stronger for 
traits with lower heritability, such as grain yield and stay-
green. Findings of this paper might be relevant for other 
breeding programs with limited genotyping resources and 
when lowly heritable traits are the main targets of selection.

Acknowledgments  We thank self-identified reviewer Daniel Gianola 
and an anonymous reviewer for valuable suggestions to improve the 
content of this manuscript. The data used in this research were gener-
ated with funding from the Grains Research and Development Corpo-
ration (GRDC) of Australia. JV acknowledges financial support from 
the National Institute of Agricultural Technology (INTA) of Argentina, 
Res. DN 1126/13.

Author contribution statement  JV, MM, DJ and FvE designed the 
research. JV performed statistical analyses and wrote the paper. MM, 
EM, DJ and FvE edited the manuscript. DJ coordinated the experiments 
and data collection. CH and EM processed and prepared the dataset. 
All authors read and approved the final manuscript.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

Albrecht T, Wimmer V, Auinger HJ, Erbe M, Knaak C, Ouzunova M, 
Simianer H, Schön C-C (2011) Genome-based prediction of test-
cross values in maize. Theor Appl Genet 123:339–350

Ashraf B, Edriss V, Akdemir D, Autrique E, Bonnett D, Crossa J, Janss 
L, Singh R et al (2016) Genomic prediction using phenotypes 
from pedigree lines with no markers. Crop Sci 56:957–964. https​
://doi.org/10.2135/crops​ci201​5.02.0111

Auinger HJ, Schönleben M, Lehermeier C, Schmidt M, Korzun V, 
Geiger HH, Piepho H-P, Gordillo A et al (2016) Model training 
across multiple breeding cycles significantly improves genomic 
prediction accuracy in rye (Secale cereale L.). Theor Appl Genet 
129:2043–2053. https​://doi.org/10.1007/s0012​2-016-2756-5

Bernal-Vasquez A-M, Möhring J, Schmidt M, Schönleben M, Schön 
C-C, Piepho H-P (2014) The importance of phenotypic data 
analysis for genomic prediction—a case study comparing dif-
ferent spatial models in rye. BMC Genom 15:646. https​://doi.
org/10.1186/1471-2164-15-646

Bink MCAM, Uimari P, Sillanpaa MJ, Janss LLG, Jansen RC (2002) 
Multiple QTL mapping in related plant populations via a pedi-
gree-analysis approach. Theor Appl Genet 104:751–762

Borrell AK, van Oosterom EJ, Mullet JE, George-Jaeggli B, Jordan 
DR, Klein PE, Hammer GL (2014) Stay-green alleles individu-
ally enhance grain yield in sorghum under drought by modify-
ing canopy development and water uptake patterns. New Phytol 
203:817–830

Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic 
prediction of breeding values when modeling genotype × environ-
ment interaction using pedigree and dense molecular markers. 
Crop Sci 53:707–719

Butler DG., Cullis BR, Gilmour AR, Gogel BG, Thompson R (2017) 
ASReml-R Reference Manual Version 4. VSN International Ltd, 
Hemel Hempstead, HP1 1ES, UK

Christensen OF (2012) Compatibility of pedigree-based and marker-
based relationship matrices for single-step genetic evaluation. 
Genet Sel Evol 44:37

Christensen OF, Madsen P, Nielsen B, Ostersen T, Su G (2012) Single-
step methods for genomic evaluation in pigs. Animal 6:1565–1571

Corrada Bravo H, Wahba G, Lee KE, Klein BEK, Klein R, Iyengar 
SK (2009) Examining the relative influence of familial, genetic 
and environmental covariate information in flexible risk models. 
Proc Natl Acad Sci 106:8128–8133. https​://doi.org/10.1073/
pnas.09029​06106​

Crossa J, de los Campos G, Pérez-Rodríguez P, Gianola D, Burgueño 
J, Araus JL, Makumbi D, Singh RP et al (2010) Prediction of 
genetic values of quantitative traits in plant breeding using pedi-
gree and molecular markers. Genetics 186:713–724. https​://doi.
org/10.1534/genet​ics.110.11852​1

Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquin 
D, de los Campos G, Burgueño J, González-Camacho JM et al 
(2017) Genomic selection in plant breeding: methods, models, 
and perspectives. Trends Plant Sci 22(11):961–975

Cullis BR, Smith AB, Coombes NE (2006) On the design of early 
generation variety trials with correlated data. J Agric Biol Environ 
Stat 11:381–393

de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Man-
fredi E, Weigel K, Cotes JM (2009) Predicting quantitative 
traits with regression models for dense molecular markers and 
pedigree. Genetics 182:375–385. https​://doi.org/10.1534/genet​
ics.109.10150​1

de los Campos G, Gianola D, Rosa GJ, Weigel KA, Crossa J (2010) 
Semi-parametric genomic-enabled prediction of genetic values 
using reproducing kernel Hilbert spaces methods. Genet Res 
92:295–308

Fernando RL, Cheng H, Golden BL, Garrick DJ (2016) Computa-
tional strategies for alternative single-step Bayesian regression 
models with large numbers of genotyped and non-genotyped 
animals. Genet Sel Evol 48(1):96. https​://doi.org/10.1186/s1271​
1-016-0273-2

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2135/cropsci2015.02.0111
https://doi.org/10.2135/cropsci2015.02.0111
https://doi.org/10.1007/s00122-016-2756-5
https://doi.org/10.1186/1471-2164-15-646
https://doi.org/10.1186/1471-2164-15-646
https://doi.org/10.1073/pnas.0902906106
https://doi.org/10.1073/pnas.0902906106
https://doi.org/10.1534/genetics.110.118521
https://doi.org/10.1534/genetics.110.118521
https://doi.org/10.1534/genetics.109.101501
https://doi.org/10.1534/genetics.109.101501
https://doi.org/10.1186/s12711-016-0273-2
https://doi.org/10.1186/s12711-016-0273-2


2066	 Theoretical and Applied Genetics (2019) 132:2055–2067

1 3

Forni S, Aguilar I, Misztal I (2011) Different genomic relationship 
matrices for single-step analysis using phenotypic, pedigree and 
genomic information. Genet Sel Evol 43:1

Frensham A, Cullis BR, Verbyla A (1997) Genotype by environ-
ment variance heterogeneity in a two-stage analysis. Biometrics 
53:1373–1383

Gao H, Christensen OF, Madsen P, Nielsen US, Zhang Y, Lund MS, Su 
G (2012) Comparison on genomic predictions using three GBLUP 
methods and two single-step blending methods in the Nordic Hol-
stein population. Genet Sel Evol 44:8

Gianola D, de los Campos G (2008) Inferring genetic values for quan-
titative traits non-parametrically. Genet Res 90:525–540

Gianola D, Schön C-C (2016) Cross-validation without doing across-
validation in genome-enabled prediction. G3 Genes Genomes 
Genetics 6:3107–3128. https​://doi.org/10.1534/g3.116.03338​1

Goddard ME (2009) Genomic selection: prediction of accuracy and 
maximisation of long term response. Genetica 136:245–257. https​
://doi.org/10.1007/s1070​9-008-9308-0

Goddard ME, Hayes BJ, Meuwissen THE (2011) Using the genomic 
relationship matrix to predict the accuracy of genomic selection. 
J Anim Breed Genet 128:409–421

González-Recio O, Rosa GJM, Gianola D (2014) Machine learning 
methods and predictive ability metrics for genome-wide pre-
diction of complex traits. Livest Sci 166:217–231. https​://doi.
org/10.1016/j.livsc​i.2014.05.036

Habier D, Fernando LR, Dekkers JCM (2007) The impact of genetic 
relationship information on genome-assisted breeding values. 
Genetics 177:2389–2397

Hayes BJ, Vissher PM, Goddard ME (2009) Increased accuracy of 
artificial selection by using the realized relationship matrix. Genet 
Res 91:47–60

Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection 
in plant breeding: a comparison of models. Crop Sci 52:146–160

Hunt CH, van Eeuwijk FA, Mace ES, Hayes JB, Jordan DR (2018) 
Development of genomic prediction in sorghum. Crop Sci 
58:690–700. https​://doi.org/10.2135/crops​ci201​7.08.0469

Ilska JJ, Meuwissen THE, Kranis A, Woolliams JA (2017) Use and 
optimization of different sources of information for genomic 
prediction. Genet Sel Evol 49:90. https​://doi.org/10.1186/s1271​
1-017-0365-7

Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant 
breeding: from theory to practice. Brief Funct Genomics 
9:166–177

Jensen J, Su G, Madsen P (2012) Partitioning additive genetic variance 
into genomic and remaining polygenic components for complex 
traits in dairy cattle. BMC Genet 13:44

Jordan DR, Tao YZ, Godwin ID, Henzell RG, Cooper M, McIntyre CL 
(2004) Comparison of identity by descent and identity by state for 
detecting genetic regions under selection in a sorghum pedigree 
breeding program. Mol Breed 14:441–454

Jordan DR, Hunt CH, Cruickshank AW, Borrell AK, Henzell RG 
(2012) The relationship between the stay-green trait and grain 
yield in elite sorghum hybrids grown in a range of environments. 
Crop Sci 52:1153–1161. https​://doi.org/10.2135/crops​ci201​
1.06.0326

Kulwal PL (2016) Association Mapping and Genomic Selection—
Where Does Sorghum Stand? In: Rakshit S, Wang YH (eds) The 
sorghum genome Compendium of Plant Genomes. Springer, 
Cham

Legarra A, Robert-Granié C, Manfredi E, Elsen JM (2008) Perfor-
mance of genomic selection in mice. Genetics 180(1):611–618. 
https​://doi.org/10.1534/genet​ics.108.08857​5

Legarra A, Christensen OF, Aguilar I, Misztal I (2014) Single step, 
a general approach for genomic selection. Livest Sci 166:54–65

Liu Z, Seefried FR, Reinhardt F, Rensing S, Thaller G, Reents R 
(2011) Impacts of both reference population size and inclusion of 

a residual polygenic effect on the accuracy of genomic prediction. 
Genet Sel Evol. 43:19

Liu Z, Goddard ME, Reinhardt F, Reents R (2014) A single-step 
genomic model with direct estimation of marker effects. J Dairy 
Sci 97:5833–5850. https​://doi.org/10.3168/jds.2014-7924

Malosetti M, Linden CG, Vosman B, Eeuwijk FA (2007) A mixed-
model approach to association mapping using pedigree informa-
tion with an illustration of resistance to Phytophthora infestans 
in potato. Genetics 175:879–889. https​://doi.org/10.1534/genet​
ics.105.05493​2

Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total 
genetic value using genome-wide dense marker maps. Genetics 
157:1819–1829

Möhring J, Piepho H-P (2009) Comparison of weighting in two-stage 
analyses of series of experiments. Crop Sci 49:1977–1988

Momen M, Mehrgardi AA, Sheikhy A, Esmailizadeh A, Fozi MA, 
Kranis A, Valente BD et al (2017) A predictive assessment of 
genetic correlations between traits in chickens using markers. 
Genet Sel Evol 49:16. https​://doi.org/10.1186/s1271​1-017-0290-9

Parisseaux B, Bernardo R (2004) In silico mapping of quantitative trait 
loci in maize. Theor Appl Genet 109:508–514

Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gun-
dlach H, Haberer G, Hellsten U et al (2009) The Sorghum bicolor 
genome and the diversification of grasses. Nature 457:551–556. 
https​://doi.org/10.1038/natur​e0772​3

Rodríguez-Álvarez MX, Boer MP, van Eeuwijk FA, Eilers PHC 
(2018a) Correcting for spatial heterogeneity in plant breeding 
experiments with P-splines. Spat Stat 23:52–71. https​://doi.
org/10.1016/j.spast​a.2017.10.003

Rodríguez-Álvarez MX, Boer MP, Eilers PHC, van Eeuwijk FA (2018) 
SpATS: spatial analysis of field trials with splines. R package ver-
sion 1.0–8. https​://CRAN.R-proje​ct.org/packa​ge=SpATS​

Rodríguez-Ramilo ST, García-Cortés LA, González-Recio O (2014) 
Combining genomic and genealogical information in a reproduc-
ing kernel Hilbert spaces regression model for genome-enabled 
predictions in dairy cattle. PLoS ONE 9:e93424

Schopp P, Müller D, Wientjes YCJ, Melchinger AE (2017) Genomic 
prediction within and across biparental families: means and 
variances of prediction accuracy and usefulness of deterministic 
equations. Genes Genomes Genetics 193(2):621–631. https​://doi.
org/10.1534/g3.117.30007​6

Steiger JH (1980) Tests for comparing elements of a corre-
lation matrix. Psychol Bull 87(2):245–251. https​://doi.
org/10.1037/0033-2909.87.2.245

Sukumaran S, Crossa J, Jarquin D, Lopes M, Reynolds MP (2017) 
Genomic prediction with pedigree and genotype × environment 
interaction in spring wheat grown in South and West Asia, North 
Africa, and Mexico. G3 Genes Genomes Genetics 7(2):481–495. 
https​://doi.org/10.1534/g3.116.03625​1

VanRaden PM (2008) Efficient methods to compute genomic predic-
tions. J Dairy Sci 91:4414–4423

Velazco JG, Rodríguez-Álvarez MX, Boer MP, Jordan DR, Eilers PHC, 
Malosetti M, van Eeuwijk FA (2017) Modelling spatial trends in 
sorghum breeding field trials using a two-dimensional P-spline 
mixed model. Theor Appl Genet 130:1375–1392. https​://doi.
org/10.1007/s0012​2-017-2894-4

Vitezica Z, Aguilar I, Misztal I, Legarra A (2011) Bias in genomic pre-
dictions for populations under selection. Genet Res 93:357–366

Welham S, Gogel BJ, Smith AB, Thompson R, Cullis BR (2010) A 
comparison of analysis methods for late-stage evaluation trials. 
Aust N Z J Stat 52(2):125–149

Wientjes YCJ, Veerkamp RF, Calus MPL (2013) The effect of link-
age disequilibrium and family relationships on the reliability of 
genomic prediction. Genetics 193:621–631

https://doi.org/10.1534/g3.116.033381
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1016/j.livsci.2014.05.036
https://doi.org/10.1016/j.livsci.2014.05.036
https://doi.org/10.2135/cropsci2017.08.0469
https://doi.org/10.1186/s12711-017-0365-7
https://doi.org/10.1186/s12711-017-0365-7
https://doi.org/10.2135/cropsci2011.06.0326
https://doi.org/10.2135/cropsci2011.06.0326
https://doi.org/10.1534/genetics.108.088575
https://doi.org/10.3168/jds.2014-7924
https://doi.org/10.1534/genetics.105.054932
https://doi.org/10.1534/genetics.105.054932
https://doi.org/10.1186/s12711-017-0290-9
https://doi.org/10.1038/nature07723
https://doi.org/10.1016/j.spasta.2017.10.003
https://doi.org/10.1016/j.spasta.2017.10.003
https://CRAN.R-project.org/package%3dSpATS
https://doi.org/10.1534/g3.117.300076
https://doi.org/10.1534/g3.117.300076
https://doi.org/10.1037/0033-2909.87.2.245
https://doi.org/10.1037/0033-2909.87.2.245
https://doi.org/10.1534/g3.116.036251
https://doi.org/10.1007/s00122-017-2894-4
https://doi.org/10.1007/s00122-017-2894-4


2067Theoretical and Applied Genetics (2019) 132:2055–2067	

1 3

Wimmer V, Albrecht T, Auinger HJ, Schön C-C (2012) synbreed: a 
framework for the analysis of genomic prediction data using R. 
Bioinformatics 28:2086–2087

Wimmer V, Lehermeier C, Albrecht T, Auinger HJ, Wang Y, Schön 
C-C (2013) Genome-wide prediction of traits with different 
genetic architecture through efficient variable selection. Genetics 
195:573–587

Yu X, Li X, Guo T, Zhu C, Wu Y, Mitchell SE, Roozeboom KL, Wang 
D et al (2016) Genomic prediction contributing to a promising 

global strategy to turbocharge gene banks. Nat Plants 2:16150. 
https​://doi.org/10.1038/nplan​ts.2016.150

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/nplants.2016.150

	Combining pedigree and genomic information to improve prediction quality: an example in sorghum
	Abstract
	Key message 
	Abstract 

	Introduction
	Materials and methods
	Phenotypic data
	Pedigree and genotypic data
	Phenotypic analysis
	Prediction models
	Model validation
	Prediction quality evaluation

	Results
	Heritability and effect of scaling genomic relationships
	Impact of combining pedigree and genomic relationships on prediction quality
	Performance of prediction models

	Discussion
	Conclusion
	Acknowledgments 
	References




