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Abstract.

The robustness of multivariate calibration models, based on near infrared spectroscopy, for the assessment

oftotal soluble solids (TSS) and dry matter (DM) of intact mandarin fruit (Citrus reticulata cv. Imperial) was assessed.
TSS calibration model performance was validated in terms of prediction of populations of fruit not in the original
population (different harvest days from a single tree, different harvest localities, different harvest seasons). Of
these, calibration performance was most affected by validation across seasons (signal to noise statistic on root mean
squared error of prediction of 3.8, compared with 20 and 13 for locality and harvest day, respectively). Procedures
for sample selection from the validation population for addition to the calibration population (‘model updating”)
were considered for both TSS and DM models. Random selection from the validation group worked as well as more
sophisticated selection procedures, with approximately 20 samples required. Models that were developed using
samples at a range of temperatures were robust in validation for TSS and DM.

Additional keyword: non-invasive.

Introduction

In acompanion manuscript (Guthrie e al. 2005) the reference
sampling procedure and data pre-processing techniques were
optimised for the development of partial least squares (PLS)
calibration models on intact mandarin fruit for total soluble
solids (TSS) and dry matter (DM), using short wavelength
(720950 nm) near infrared (NIR) spectra acquired in an
interactance mode (Greensill and Walsh 2000). Chemometric
descriptive terms were also defined and will be used in the
current manuscript.

However, the application of near infrared spectroscopy
(NIRS) to a given fruit commodity requires an assessment
of the robustness of the calibration model across populations
of fruit grown under differing conditions. Different growing
conditions may result in differences in physical (e.g. trichome
density, intercellular space content) and chemical (e.g. water
content) properties of a fruit, resulting in altered fruit optical
properties and band assignments. Unfortunately, most reports
on the application of NIRS to fruit sorting describe the use
of a single harvest population, divided into a calibration set
and a validation set. For example, McGlone et al. (2003)
worked with 20 populations of mandarins (from 3 orchards
over 7 weeks), with a calibration set assembled from 75%
of each set and used to predict a population consisting of
the remaining samples from each of the sets. This procedure
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allowed an estimate of prediction error; however, it did not
involve testing the calibration against fruit from independent
populations (e.g. different harvest dates or localities). We are
aware of only 3 relevant reports involving the use of separate
harvest populations of fruit for calibration and validation.
These studies involved mandarin and peach fruit.

Two of these studies on TSS model robustness for fresh
fruit have involved mandarin. Ou et al. (1997) reported the
use of a calibration developed in 1 fruit-growing region to
predict TSS of Ponkan mandarin fruit from that region and
from 2 other regions, with coefficient of determination on
validation data set (sz) of 0.72, 0.44, and 0.30, and root
mean squared error of prediction (RMSEP) of 0.68, 1.16,
and 1.28% TSS, respectively. A calibration based on data
combined across regions performed better, with R, of 0.76
and RMSEP of 0.92% TSS. Miyamoto and Kitano (1995)
reported the use of a calibration developed in 1 year to predict
TSS content of intact Satsuma mandarins in the subsequent
2 seasons. Prediction statistics were similar to those for
calibrations developed within a given season (RMSEP of
<0.6% TSS and bias of <0.4% TSS).

The third published study on TSS model robustness for
fresh fruit involved peach. Miyamoto and Kitano (1995) also
reported calibration validation across 3 seasons for peach.
Prediction statistics for a calibration developed across data
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from all years (RMSEP of 0.60% TSS, bias of <0.1%
TSS) were better than for a calibration developed in any
1 year (RMSEP of 0.64% TSS, bias up to 0.34% TSS). Also
using peaches, Peiris ef al. (1998) reported that a calibration
developed on a population drawn from 3 seasons predicted
better on a combined season validation set (RMSEP of
0.9-1.3% TSS and bias 0of 0.2—0.4% TSS) than that developed
from populations drawn from a single season (RMSEP of
0.9-1.4% TSS and bias of 0.2-2.1% TSS).

The comparisons of model validation among independent
populations are usually difficult because population attributes
(e.g. SD) vary. The standard deviation ratio (SDR), expressed
as the ratio of SD to root mean squared error of cross
validation (RMSECYV) (for calibration datasets) or RMSEP
(for validation datasets), or RPD (ratio of the SD to
RMSECV corrected for bias [RMSECV(C)] or RMSEP
corrected for bias [RMSEP(C)] of the data) (Williams
and Sobering 1993), is sometimes presented as a gauge of the
utility of the technique. Other indices have also been used.
Ou etal. (1997) reported a form of the coefficient
of wvariation (CV) statistic (CV=RMSEP/mean of the
prediction set), and Miyamoto and Kitano (1995) reported
an evaluation index (EI=2 x« RMSEP/range = 100), in an
attempt to compare model performance across populations.
Another approach, suggested by Wortel ef al. (2001), is
based on the Taguchi concept of process control, in which
the variation of RMSEP among validation populations of
a given condition (e.g. populations drawn from different
harvest regions) is quantified in a signal to noise (S/N)
statistic (S/N =20 % logjo [mean RMSEP/SDrwvsgp], where
mean RMSEP is the average of the RMSEP across all
validation populations, and SDrmsgp is the SD of all
the RMSEP values).

In other industries (e.g. cereal, oilseed) NIRS-based
models are extended by inclusion of samples from the
validation population (e.g. from a new variety of wheat
or a new season of oilseed production). The decision
on when to add new samples to the calibration set is
generally based on an assessment of the dissimilarity of the
calibration and validation sets based on principal component
analysis (PCA)/PLS scores. The Mahalanobis distance, D
(Mahalanobis 1936), is such a measure. The chemometric
software package WINISI (ver. 1.04a) uses mean-centred
score data in the calculation of D. Further, D is normalised
to f to create the global H (GH) statistic, as follows:

DZ
GH = —
f
where f is the number of PCA/PLS factors in the model.

Shenk and Westerhaus (1991) advocate the use of the GH
value and a ‘nearest neighbour’ Mahalanobis distance (NH,
Mahalanobis distance from any given sample to its nearest
neighbour in principal component space) for the selection
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of outliers and for sample addition. However, the choice of
how many and which samples from the validation set should
be added to the calibration set is vexatious. Typically, high
leverage samples, which are not outliers, will be chosen,
with the number required defined through trial and error (e.g.
Wang et al. 1991).

Calibration model performance is affected by sample
temperature primarily through the strong effect of
temperature on H bonding and thus on the absorption
bands related to OH (Golic et al. 2003). Therefore, model
robustness should also be considered with respect to this
variable. We hypothesise that calibration models for DM
would be more sensitive to temperature than models for TSS,
as DM models may reflect water content.

Kawano et al. (1995) noted that as sample fruit (peach)
temperature increased, so did absorption at 841 and 966 nm
(water bands), resulting in a bias in the prediction of TSS.
Miyamoto and Kitano (1995) noted that when a calibration
developed from spectra collected from mandarin fruit at
20°C was used to predict the same fruit at 6, 15, and
25°C, RMSEP [presumably RMSEP(C)] was constant but
bias increased linearly with temperature. These researchers
developed MLR models using 3 wavelength regions, noting
900-910nm to be directly relevant to sugar, 740-755 or
840-855 nm to compensate for the optical path-length of the
fruit, and 794 or 835nm to compensate for the influence
of fruit temperature. Both reports concluded that if the
calibration model was developed with sample temperatures
covering the range of future sample temperatures, then
prediction accuracy was high. Sanchez et al. (2003) also
noted that the influence of spectrometer and fruit (apple)
temperature was mainly on bias, not RMSEP(C). However,
the effect of spectrometer temperature on bias was more than
twice that of fruit temperature.

The ‘repeatability’ file option of WINISI (ver. 1.04a)
software may represent an alternative procedure for
developing robustness in the model with respect to
sample temperature. This procedure was developed for the
calibration transfer between instruments, and depends on
the collection of spectra of a few samples on different
instruments. However, rather than add spectra directly to
the calibration, the repeatability file adds ‘difference’ spectra
(for each sample, scanned under different temperatures), with
corresponding reference values of zero (Westerhaus 1991).
The calibration algorithm is modified to give extra weight to
these spectra.

In the current study, we report on the robustness of NIRS
models for the evaluation of attributes related to eating quality
(% TSS, % DM) of intact mandarin, and on procedures to
select samples for addition to the calibration set. Calibration
robustness across harvest time, location, and seasons for
prediction of TSS, using the assessment methodology
suggested by Wortel ef al. (2001), is considered. Calibration
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robustness for prediction of TSS and DM is also
considered with respect to sample temperature. Calibration
performance across instruments (e.g. as reported for Imperial
mandarins by Greensill and Walsh 2002) will not be
considered here.

Materials and methods
Plant material, reference analyses, and spectroscopy

Mandarin fruit (Imperial variety) were obtained following commercial
harvest from orchards in Munduberra (25.6°S, 151.6°E), Bundaberg
(24.9°S, 152.3°E), and Dululu (23.8°S, 150.3°E), Queensland.

Populations used in this study are the same as those used in the
companion study for the 2001 season, with populations alphabetically
named in chronological order as described in Guthrie et al. (2005).
Additional populations from the 1999 and 2000 seasons were used
in Fig. 1. Model robustness across harvest day, location, and season
was evaluated for TSS using populations gathered from a single tree
over 2 weeks, from 3 different locations, and from 4 seasons (from
different locations) (see Table 1). For TSS, the calibration population
was a combined J and K, with validation populations of M, E, G,
and L. For DM, the calibration population was T, with validation
populations of V, R, and S. Additionally, a model developed on a
combined population made up of 2 populations per year from years
1999 and 2000 (n =307, mean 9.9 and SD of 1.44% TSS) was used
to predict on a separate population from year 2000 (mean 14.2 and SD
1.05% TSS).

Total soluble solids content of extracted juice and DM of fruit halves
were determined as described in Guthrie et al. (2005). The procedures
used to acquire spectra were also described in Guthrie et al. (2005).
Briefly, spectra were collected over the wavelength range 720-950 nm
using a NIR-enhanced Zeiss MMS1 spectrometer and a 100-W tungsten
halogen light in the interactance optical configuration reported by
Greensill and Walsh (2000) (0° angle between illumination and detected
light rays, with detection probe viewing a shadow cast by the probe onto
the fruit).

Chemometrics

The software package WINISI (ver. 1.04a) was used for chemometric
analysis. Calibrations were developed using both step-wise multiple
linear regression (MLR) and modified partial least squares regression
(MPLS). The data pre-treatment options of first derivative, standard-
normal variance, and detrend scatter correction, as recommended in
the companion study (Guthrie et al. 2005), were adopted throughout
the current study. The repeatability file option in WINISI was also
considered as a method to improve prediction statistics across the
different sample temperatures.

The criteria of Wortel et al. (2001) were applied to evaluate model
robustness. This approach involved calculation of an average RMSEP
and the S/N statistic for the performance of a given model across a range
of validation populations.

A common approach for the improvement of -calibration
performance on a new validation population involves the addition of
samples from the validation population to the calibration population.
In this study, we extend the treatments reported by Guthrie and Walsh
(2001). Each validation population was initially assessed for outliers
as samples with a GH >3.0 using its own scores and loadings. These
outliers were removed and the resulting data divided randomly into 2
groups, one group (two-thirds) retained as the validation population
and the other group used for selection of samples for addition to the
calibration population.
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The following 3 approaches were used in the selection
of samples from the validation population for addition to the
calibration population.

(1) Random: done twice using 2 different seeds to the random number
generator.

(2) Selected on GH value: selecting samples with either (¢) minimal GH
(i.e. spectrally similar to the ‘mean’ of the calibration population),
(b) maximal GH (i.e. spectrally dissimilar to the ‘mean’ of the
calibration population), or (c) spaced evenly on GH ranking (i.e.
representative of the ‘spread’ of the calibration population).

(3) Selection on the basis of NH using 2 methods: (¢) NH cut-
off (in which only samples with a NH value greater than the
‘cut-off’ value are chosen; this procedure is available as a
WINISI software option, under ‘Make and Use Scores’, ‘Select
Samples From a Spectra File’), and (b) NH end (a manual
implementation of (a), in which all samples were ranked manually
in ascending order of magnitude for NH, with high NH value
samples chosen).

Thus, in total, 6 methods for sample selection were trialled.
In these exercises, the GH and NH values were calculated for
validation population members using the scores and loadings of the
calibration population. All validation populations were independent of
the calibration populations.

Different population updating techniques were compared, as were
different numbers of samples for model updating. This was trialled on
different calibration and validation populations for the attributes of both
TSS and DM (see Figs 1-5).

For 1 population of mandarin fruit (population T), spectra were
collected of fruit at room temperature (22°C) and then the fruit
equilibrated to 10°C and 30°C and rescanned. These fruit were then
assessed (separate halves) for both TSS and DM. Calibration models
were developed on a population of 70 samples (mean 9.6% and
SD 1.51% for TSS, and mean 14.7% and SD 1.66% for DM), from
spectra collected of these fruit at 10, 22, and 30°C. The prediction
populations were based on a separate population of 34 samples (mean
9.8%, SD 1.64% for TSS, and mean 14.7%, SD 2.03% for DM), again
with spectra collected of these fruit at 10, 22, and 30°C. The calibration
models for TSS involved 5 terms, whereas those for DM involved
6 or 7 terms. Separate calibration models were developed on spectra
of fruit at 10, 22, 30, 10, and 22°C, and all 3 temperatures combined
(i.e. 5 models). The WINISI repeatability file option was also used,
with all samples or the 4 samples with lowest GH values from the
22°C validation population. The significance (P < 0.05) of differences
in RMSEP and bias were tested as described by Fearn (1996), using an
automated spreadsheet (Guthrie et al. 2005).

Results
Calibration model robustness

A given TSS calibration model was used to predict
populations over harvest day, location, and season (Table 1).
The model used to predict populations over harvest day and
location was based on the combination of 2 populations
(J and K), and the model for predicting populations over
seasons (years) was based on populations from 1999. Model
predictions were more variable across seasons than across
harvest days or location (in terms of both RMSEP and
bias). This prediction variability was indexed as an average
RMSEP and a S/N on RMSEP following the procedure of
Wortel et al. (2001). The S/N ratio on the RMSEP of the
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Table 1.

J. A. Guthrie et al.

Calibration (Cal) and validation (Val) statistics for MPLS and MLR calibration models for mandarin TSS,

with validation across several populations varying in day of harvest, harvest location, and season of harvest

Variation in prediction performance is reported in terms of the Taguchi S/N value, RMSEP, and average RMSEP.
In the MPLS models the number of factors varied from 7 to 11. Population identifiers (letters in parentheses) refer to

table 6 in the companion manuscript (Guthrie et al. 2005). R.2, coefficient of determination on calibration data set

Fruit SD MPLS MLR
population (% TSS) RMSECV/RMSEP bias RMSEP(C) bias
R (% TSS) (% TSS) R (% TSS) (% TSS)
Harvest days
Cal (J-K) 0.92 0.90 0.33 0.86 0.36
(Days 1 & 3)
Val
Day 5 (L) 1.04 0.86 0.41 0.06 0.79 0.54 —0.07
Day 7 (M) 0.74 0.56 0.53 —0.13 0.64 0.48 0.03
Day 9 (N) 0.68 0.56 0.48 0.11 0.49 0.56 0.02
Day 10 (P) 0.84 0.84 0.51 0.39 0.80 0.95 0.85
Day 13 (Q) 0.67 0.68 0.51 0.33 0.63 0.87 0.75
S/N RMSEP 19.8 10.1
Av. RMSEP 0.49 0.68
Location
Cal (J-K) 0.92 0.90 0.33 0.86 0.36
Val
A (E) 0.99 0.75 0.59 0.31 0.6 0.79 0.39
B (F) 0.49 0.35 0.81 0.66 0.14 1.24 1.09
C(Q) 0.60 0.53 0.95 0.85 0.30 1.31 1.15
S/N RMSEP 12.7 12.0
Av. RMSEP 0.78 1.12
Seasons
Cal (1999) 0.92 0.93 0.27 0.87 0.34
Val
Year 1 (1999) 1.05 0.35 4.94 3.21 0.32 3.70 1.51
Year 2 (2000) 1.05 0.83 2.10 2.05 0.78 2.13 2.07
Year 3 (2001) 0.78 0.03 6.76 —3.58 0.02 4.74 —0.35
Year 4 (2004) 1.32 0.74 0.77 —0.31 0.21 2.74 1.95
S/N RMSEP 3.82 1.50
Av. RMSEP 3.64 3.33

MPLS model predictions was 20 over harvest days, 13 over
location, and 4 over seasons (Table 1). Modified partial least
squares models were more robust than MLR models (MLR
models had lower S/N ratios, being 10, 12, and 2 for harvest
days, locations, and seasons, respectively).

Model performance in prediction of TSS of an
independent population was improved by inclusion of
samples from the independent population, regardless of the
method used to select the samples for inclusion (Figs 1 and 2).
This was demonstrated for a calibration developed on
populations from 1999 and 2000 (Fig. 1), and from 2001
(Fig. 2). The 4 methods of sample selection used (random,
every ‘ith’ sample based on ranking by GH, maximum GH,
and maximum NH) all behaved similarly (Fig. 1). Model
performance improved from 1.1% TSS to 0.45% TSS for
RMSEP and from 1.1% TSS to 0.15% TSS for bias with
the inclusion of only 10 samples (Fig. 1). In the second
exercise, where 6 methods of selection were used (as above

plus minimum GH and WINISI sample addition facility), all
methods again behaved similarly in terms of bias (Fig. 2). In
terms of RMSEP, all methods behaved similarly with addition
of up to 5 samples, but there was some divergence among
methods with addition of 10-20 samples. The RMSEP values
increased with the addition of 10 samples for the ‘random’
and ‘greatest GH’ (approaches 1 and 2, respectively) and for
the addition of 10 and 20 samples for the WINISI ‘sample
addition facility’ (approach 3). However, a repeat of the
random selection approach gave divergent results for the
addition of 10 samples. Of course, with the addition of all
samples from the one-third validation population, all results
will converge (except for where there is a slight difference in
the size of the population, e.g. 30 drawn from a population
of 31 or 34).

Model performance (from calibration on Population T)
in prediction of DM of an independent population
(Population V) was also improved (in terms of both RMSEP
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Fig. 1. Prediction statistics (RMSEP and bias) for a MPLS calibration
model (using 2 populations from each of years 1999 and 2000) for
mandarin fruit TSS. The independent validation population (another
population from year 2000) was divided into 2 equal sets (1 set used
for validation and the other used for sample addition to the calibration
population). Four methods for sample selection for addition to the
calibration population were used: (a) samples chosen randomly, closed
circle; (b) every ‘ith’ sample based on ranking by GH, closed triangle;
(c) samples with greatest GH less than 3, open circle; and (d) samples
with the greatest NH, open triangle.

and bias) by inclusion of samples from the independent
population, regardless of the method used to select the
samples for inclusion (Fig.3). The 3 methods of sample
selection used (random, every ‘ith’ sample based on ranking
by GH, and maximum GH) all behaved similarly, reaching a
stable value after the addition of 10 samples.

The effect of sample addition (using the random selection
method) on the performance of a TSS model (as used for
Fig. 2; based on Populations J and K) was described for a
further 3 independent validation populations (Populations
E, G, and L). A similar activity was undertaken for DM
(calibration Population T and validation Populations V, R,
and S). The GH of the validation population was calculated
using scores and loadings of the calibration population,
with recalculation after each sample addition. Where the
average GH of the validation population was markedly
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Fig. 2. Prediction statistics (RMSEP and bias) fora MPLS calibration
model (Populations J and K) for mandarin fruit TSS. The independent
validation population (Population M) was divided into 2 sets, two-thirds
used for validation and the remainder used for sample addition to the
calibration population. Six methods for sample selection for addition
to the calibration population were used: () samples chosen randomly,
open triangle and closed square; (b) samples with minimum GH values,
closed circle; (c¢) samples with greatest GH less than 3, closed triangle;
(d) every ‘ith’ sample based on ranking by GH, open circle; (e) samples
selected using WINISI sample addition facility, open square; and
(f) samples with the greatest NH, closed diamond.

different from the calibration population (e.g. average
GH >3), the improvement in validation was quite dramatic
(e.g. RMSEP decreasing from 1.45 to <0.60% TSS with
the addition of only 5 samples). When the average GH
of the validation population was similar to the calibration
population (i.e. GH <3), the validation performance,
although initially acceptable, showed little improvement (e.g.
RMSEP changed from 0.50 to 0.42% TSS with addition of
5 samples for a population with an initial average GH of 2)
(Figs 3 and 4).

Sample temperature

Model statistics (RMSEP) for DM prediction were not
significantly different for calibration models developed using
spectra of fruit at either 10 or 22°C, but that for 30°C
was inferior to that at 22°C (Table 2). For calibrations
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Fig. 3. Prediction statistics (RMSEP and bias) for MPLS prediction
models for DM of mandarin fruit. The independent validation population
(Population V) was divided into 2 sets, two-thirds used for validation
and the remainder used for sample addition to the calibration population
(Population T). Three methods for sample selection for addition to the
calibration population were used: (a) samples chosen randomly, closed
triangle; (b) samples with every ‘ith’ sample based on ranking by GH,
closed circle; and (c) samples with greatest GH less than 3, open circle.
The average GH of samples in the validation population was calculated
using calibration model scores.

developed on TSS for these 3 fruit temperatures, calibration
model RMSEP was not significantly different for models
developed at either 10 or 22°C, but a significantly lower
RMSEP was achieved at 30°C, compared with that at 22°C
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Fig. 4. Prediction statistics (RMSEP and bias) for MPLS prediction
models for TSS of mandarin fruit, using 3 independent (of the calibration
Populations J and K) validation populations (Populations E, closed
circle; G, opencircle; and L, closed triangle). The average GH of samples
in the validation population was calculated using calibration model
scores. Samples were selected randomly from the validation populations
for addition to the calibration population.

(Table 2). Relative to models developed using fruit at several
temperatures, a model (TSS or DM) developed at a single
temperature (22°C) produced an inferior result [in terms
of bias rather than RMSEP(C)] when fruit temperatures
were other than that of the calibration population. For
both the attributes of TSS and DM, bias was related to
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fruit temperature (R? = 0.96, slope = —0.10% TSS/°C, and  Discussion
R? =0.86, slope = —0.10% DM/°C).

Incorporating samples with different temperatures in the
calibration population improved the prediction performance
of both the TSS and DM models, in prediction of samples Validation of a model on a population independent of that
within the temperature range included in the calibration  used in calibration effectively tests for over-fitting of the
population (Table 2). For example, bias was —1.17, —0.15, model. Where the calibration model has weighted spectral
and 0.07 for TSS models developed at sample temperatures ~ features that represent fruit characteristics that are correlated
of 22°C only, 10 and 22°C, and 10, 22, and 30°C, to the attribute of interest in the calibration population, but
respectively, for prediction of a population of samples not in the validation population, then validation performance

Calibration robustness: across seasons, locations,
and harvest time

at 30°C. will be poor. An example is a calibration developed for a
The 4 samples with the lowest GH value from the variety in which skin chlorophyll content (skin greenness) is
calibration population scanned at 22°C were identified.  related to fruit TSS at maturity, which will not predict well

The spectra of these samples at all 3 temperatures were  with a variety in which there is no such relationship (unless
included in the repeatability file of WINISI. In a second  the wavelength range considered is trimmed to eliminate the
exercise, all samples (from across all temperatures) were spurious correlation).

used in the repeatability file. Including spectra of fruit Calibration performance across harvest days (fruit from
scanned at different temperatures in the repeatability file did 1 tree in the 1 season) was superior to that across locations
not improve calibration model statistics (for either DM or  (fruit from harvests from varying farms in 1 season) (e.g. S/N
TSS), or model prediction statistics for DM, relative to a  statistic of 20 and 13, respectively, with an average RMSEP
model using fruit re-scanned at all temperatures (Table 2). of 0.49 and 0.78% TSS), but performance was dramatically
In contrast, the repeatability file option supported better  degraded when applied across seasons (S/N of 4, average
prediction statistics for TSS, in terms of both RMSEP and ~ RMSEP of 3.64% TSS). There was no trend for performance
bias, relative to a calibration developed using fruitre-scanned ~ to degrade with increasing time (days) or distance/soil type
at all temperatures. Using all samples in the repeatability file ~ of harvest (data not shown).

was, however, better than using only 4 from each scanning Taguchi descriptors calculated from 3 literature reports
temperature in this WINISI option. differ from those reported here. A S/N statistic of between

Table 2. Effect of temperature on prediction of DM and TSS for mandarin fruit
Models were developed on a population of 70 samples (SD 1.51% for TSS and SD 1.66% for DM), from spectra collected of these fruit at 10, 22,
and 30°C. The prediction populations were based on a population of 34 samples (SD 1.64% for TSS and SD 2.03% for DM), again with spectra
collected of these fruit at 10, 22, and 30°C. The calibration models for TSS involved 5 terms, whereas those for DM involved 6 or 7 terms.
Separate calibration models were developed on spectra of fruit at 10, 22, 30, 10, and 22°C, and all 3 temperatures combined (i.e. 5 models). The
WINISI repeatability file option was also used, with all samples or the 4 samples with lowest GH values from the 22°C validation population. The
significance of the RMSEP at each temperature was tested. The RMSEP values followed by a common letter are not significantly different
(P < 0.05). R.2, coefficient of determination on calibration data set

Sample temperature Calibration model statistics Prediction model statistics
(&) 10°C 22°C 30°C
n  RMSEP R.2? RMSECV bias RMSEP(C) bias  RMSEP(C) bias  RMSEP(C)

DM

10 70 0.63ab  0.85 0.71

22 70 0.4la 0.94 0.51 0.54 0.79 0.04 0.52 —1.48 0.79

30 70 0.61b 0.86 0.66

10 + 22 140 0.53 0.90 0.60 —0.26 0.77 —0.01 0.65 —0.78 0.81

10+22+30 210  0.55 0.89 0.60 —0.20 0.67 —0.01 0.56 —0.15 0.68

22 + repeatability 70 0.57 0.88 0.60 —0.11 0.84 —0.08 0.80 —0.14 0.86
7SS

10 70 0.69a  0.79 0.75

22 70 0.73a  0.77 0.88 0.89 1.16 0.22 1.13 —1.17 1.18

30 70 0.63b  0.82 0.76

10+22 140  0.69 0.79 0.62 —0.08 1.11 0.17 1.11 —0.15 1.10

10422430 210 0.68 0.79 0.62 —0.05 1.14 0.38 1.19 0.07 1.17

22 + repeatability 70 0.69 0.79 0.81 —0.07 0.90 0.07 0.95 —0.07 0.89

22 + repeatability 70 0.79 0.73 0.89 —0.15 1.09 0.16 1.13 0.03 1.12

(4 samples)
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15 and 19, with an average RMSEP of approximately 1.1%
TSS was calculated from the results of Peiris ez al. (1998)
for the use of peach TSS calibrations across 3 seasons. The
S/N statistic and average RMSEP for the use of a single
variety calibration model across other varieties was between
12 and 17, with an average RMSEP of approximately
1.0% TSS. The mandarin TSS predictions of Miyamoto and
Kitano (1995) and Ou et al. (1997) yield a S/N statistic
of 20 and average RMSEP of 0.58% TSS for predictions
applied across seasons, and 7 (S/N) and 0.81% TSS
(average RMSEP) across locations. Thus, previous studies
indicate that model performance should be more stable
across seasons, for a given variety, than across varieties, in a
given season.

The cause of the dramatic decrease in performance of a
calibration when applied to fruit across seasons in this study
is not clear and could reflect changes in the instrument used
as well as changes in the sample (fruit). However, there were
no obvious changes in lamp or detector characteristics (i.e. in
white reference spectra collected across years). The change
in calibration performance between seasons is therefore more
likely to represent changes in fruit optics (e.g. cell size,
porosity), with consequent changes in the volume of fruit
optically sampled, or in fruit composition (with characters
other than the character of interest varying, and absorbing in
similar wavelength regions).

Sample addition for calibration

To improve calibration performance on a new validation
population, a common strategy is the addition of samples
from the new population to the calibration population. The
RMSEP and bias (Figs 1-5) decreased with addition of
validation samples to the calibration population reaching a
stable value with the addition of about 20 samples. Several
approaches were used in the selection of samples from
the validation population for addition to the calibration
population; however (surprisingly), all methods performed
equally well. This result indicates that the variation within a
new population must be small, relative to the difference of
that population to the calibration population, such that any
sample chosen from within a given population is a useful
representative of that population.

The higher the average GH of the validation population
when calculated on the calibration population scores (Figs 4
and 5 for the attributes of TSS and DM, respectively), the
greater the improvement to RMSEP and bias with the addition
of validation population samples. Higher average GH values
reflect an increased difference in the spectra of calibration
and validation populations, and a greater leverage on the
MPLS regression will be gained in sample addition from the
validation population.

It is surprising, however, that the reverse was not true,
i.e. that the addition of high GH validation samples to
the calibration population was not more effective than
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Fig. 5. Prediction statistics (RMSEP and bias) for MPLS prediction
models for DM of mandarin fruit, using 3 independent (of the calibration
population T) validation populations (Populations V, closed circle;
R, open circle; and S, closed triangle). The average GH of samples in
the validation population was calculated using calibration model scores.
Samples were selected randomly from the validation populations for
addition to the calibration population.

the addition of low GH validation samples, in terms of
improvement to prediction RMSEP and bias.

In practice, the level of accuracy required must
be established for each sorting task. Higher accuracy
requirements will require higher calibration maintenance.
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Fig. 6. Three-dimensional plot of MPLS scores (1, 2, and 3)
of the calibration population T (n=103) and an independent set
(subset of population V, n=30) calculated using a calibration model
for DM.

This maintenance might involve adjustment of bias for new
populations, or recalibration with addition of spectra of
at least 20 fruit from the new population to the existing
calibration population, to recover RMSEP values.

It is not obvious why the inclusion of such a small number
of samples to the calibration population can have such an
influential effect. It may be partly due to the added samples
being so different (separate) from the original calibration
population, resulting in 2 ‘clusters’ (original and new) (Fig. 6)
that are basically treated by the calibration as 2 ‘points’.
However, it is then intriguing that the model predicts so well
on the validation population. Regardless, the methodology
was observed to work well in a number of circumstances and
for a number of populations.

Calibration robustness: temperature

Mandarin  fruit temperature can vary from 5°C
(recommended storage temperature) to over 30°C (field
temperature) during in-line grading in a commercial packing
shed. Temperature affects the degree of H bonding, and thus
the position and intensity of OH stretching vibration bands.
There are 2 main forms of liquid water, 1 form involving
a H bond to another water molecule, and the other form
involving more structured water. The second form dominates
at lower temperatures, and absorbs at higher wavelengths
relative to the first form. Golic ef al. (2003) reported that
calibration model statistics for models developed for pure
sucrose solutions across a range of sample temperatures
were degraded relative to those at a constant temperature
(20°C). These calibrations resulted in a de-emphasis on
those areas of the spectrum associated with OH stretching,
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favouring those areas associated with other spectral bands
of the sugars (e.g. 910 nm CH third overtone).

Where a model was required to predict samples with
temperatures outside the range included in the calibration
population, bias was increased for both DM and TSS models
(Table 2). The RMSEP was affected primarily through an
effect on prediction bias. Therefore the following discussion
reports on bias and RMSEP(C). In practical application, a
bias adjustment could be applied for the use of a calibration
at temperatures outside of the range included in the
calibration population.

Calibrations developed across a wide range of
temperatures are expected to be more robust in terms
of predicting analyte levels of samples at a range of
temperatures, although potentially at the expense of
diminished accuracy. Prediction robustness in terms of bias
was indeed increased for models developed across several
temperatures, whereas accuracy [RMSEP(C)] was similar
to that of single temperature calibration models, for both
DM and TSS (Table 2). Kawano ef al. (1995) also found
that incorporation of samples across a temperature range in
a (MLR) calibration allowed prediction of TSS with a high
degree of accuracy and minimal bias.

We expected DM calibration models to be more
sensitive to temperature than TSS models, given the
sensitivity of the water bands to temperature (H bonding
status) (Golic efal. 2003). This was not so, with TSS
and DM similarly sensitive to temperature (Table 2).
Presumably this effect reflects the large contribution of
sugar OH features that are sensitive to H bonding status,
and thus to temperature, in both the TSS and DM
calibration models.

The repeatability file option in WINISI was implemented
in an attempt to reduce the sensitivity of the calibration
to sample temperature variations. Wavelengths with less
change due to temperature should receive higher PLS scores,
thus decreasing emphasis on the remaining wavelengths. For
TSS, the repeatability file option did not improve calibration
statistics, but prediction was improved relative to a model
incorporating spectra of fruit at all 3 temperatures. For DM,
implementation, to the extreme of including all spectra in
the repeatability file, was not as successful as the combined
file approach.

Conclusions

Calibration models were less robust across seasons than
across locations and time within a harvest season. In all
cases, model updating involving the addition of relatively few
samples (approx. 20) was successful in improving prediction
of new populations. The method of sample addition was
not crucial. Therefore, for ease of operation the random
selection approach is the logical choice for sample addition
to improve RMSEP and bias in the prediction of independent
validation populations (for both the attributes of TSS and
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DM). The higher the average GH of the independent
population with respect to the scores and loadings of the
calibration population, the greater the beneficial effect of
sample addition.

We conclude, in agreement with Miyamoto and Kitano
(1995) and (Kawano et al. 1995), that samples scanned
at a range of temperatures should be included in the
calibration population in order for the model to be robust
in prediction of samples varying in sample temperature.
The issue of calibration population design to incorporate
robustness for sample temperature without loss of general
validation accuracy (i.e. what proportion of calibration
samples should be run at different temperatures, and
over what number of temperature steps) requires further
consideration. Alternatively, the orthogonal projection
method suggested recently by Roger efal. (2003) in
a consideration of model robustness across instruments
may have merit for increasing calibration robustness to
temperature variation.
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