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Abstract.  The utility of near infrared spectroscopy as a non-invasive technique for the assessment of internal eating
quality parameters of mandarin fruit (Citrus reticulata cv. Imperial) was assessed. The calibration procedure for
the attributes of TSS (total soluble solids) and DM (dry matter) was optimised with respect to a reference sampling
technique, scan averaging, spectral window, data pre-treatment (in terms of derivative treatment and scatter correction
routine) and regression procedure. The recommended procedure involved sampling of an equatorial position on the
fruit with 1 scan per spectrum, and modified partial least squares model development on a 720-950-nm window,
pre-treated as first derivative absorbance data (gap size of 4 data points) with standard normal variance and detrend
scatter correction. Calibration model performance for the attributes of TSS and DM content was encouraging (typical
R.? of >0.75 and 0.90, respectively; typical root mean squared standard error of calibration of <0.4 and 0.6%,
respectively), whereas that for juiciness and total acidity was unacceptable. The robustness of the TSS and DM

calibrations across new populations of fruit is documented in a companion study.

Additional keywords: spectral window, non-invasive.

Introduction

Near infrared spectroscopy (NIRS) has been applied to the
sorting of intact fruit on total soluble solids (TSS) and dry
matter (DM) content (Walsh et al. 2004), with commercial
application to pack-house fruit sorting lines for the sorting
of sweetness of citrus, apples, pears, and peaches at 3
pieces per second per lane, commencing in Japan in the
mid 1990s (Kawano 1994). Commercial application within
pack-houses of Western countries, began in the 2000s (e.g.
WWW.COMpAc.com; Www.cvs.com.au).

Various statistical terms and abbreviations have been
used by authors working with NIRS technology. In this
and the companion manuscript, the following terms and
abbreviations have been used: bias (bias) is the difference
between mean of actual and predicted values; standard
deviation of the reference method values (SD); coefficient
of determination on calibration dataset (R.?); coefficient
of determination on validation dataset (R,?); root mean
squared error of calibration (RMSEC); root mean squared
error of cross validation (6 groups; without bias correction)
(RMSECYV); root mean squared error of prediction (without
bias correction) (RMSEP); and RMSEP corrected for bias
[RMSEP(C)]. The SDR is calculated as SD/(RMSECV or
RMSEP).
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Application of NIRS technology to a given fruit
commodity requires an appreciation of the distribution of the
attribute of interest within the fruit, as fruit is not internally
homogenous. The mandarin fruit consists of an exocarp (skin)
with numerous oil glands, a mesocarp (white pith), and an
endocarp that produces extensions (juice sacs) that occupy
space within the carpels. The juice sacs form the primary
edible material of the fruit. Miyamoto and Kitano (1995)
noted that Satsuma mandarin TSS was greatest in the distal
apex of the fruit, decreasing towards the proximal (pedicel)
end. The coefficient of variation of TSS within a single orange
fruit was reported as 10.2, 1.8, and 5.6% in the proximal
to distal, around the fruit circumference (at an equatorial
position), and radial (from centre to skin, at an equatorial
position) orientations, respectively (Peiris et al. 1999b). This
variation was greater than that monitored in a peach and an
apple fruit, but less than that in a melon fruit (Peiris et al.
1999a). Near infrared spectroscopic assessment of citrus fruit
at an equatorial position is therefore logical.

The use of NIRS to assess mandarin TSS has been reported
by a number of researchers. Kawano et al. (1993) developed
multiple linear regression (MLR) models using Satsuma
mandarin in a transmittance sample geometry, and reported
R up to 0.98 and a RMSEC of 0.28% TSS, based on a
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population with SD of 1.73% TSS. Miyamoto and Kitano
(1995) also developed MLR models based on transmittance
spectra, and reported typical calibration statistics of R.> of
0.88 and RMSEC of 0.5% TSS, based on a population with
SD of 1.50% TSS. Ou et al. (1997) developed models using
Ponkan mandarins in an interactance geometry, and reported
calibration statistics of R.2 of 0.52—-0.74 and RMSEC of
0.41-0.64% TSS, for a given harvest area (SD was not
reported). Greensill and Walsh (2002) developed partial least
squares regression (PLS) models using Imperial mandarins
in an interactance geometry, and reported typical calibration
statistics of RMSECV of 0.26% TSS using a population
of SD 0.45% TSS. The R.? (calculated in this instance as
1 — (RMSECV/SD)?) for these values was 0.67. McGlone
et al. (2003) explored the use of several optical configurations
and wavelength windows for prediction of TSS in Satsuma
mandarin, reporting best results (R, of 0.93 and RMSEP
of 0.32% TSS) for a transmittance methodology operating
between 700 and 930nm. Results for an interactance
geometry (R,? of 0.85 and RMSEP of 0.47% TSS) were
superior to that for a reflectance geometry (R, ?of 0.75 and
RMSEP of 0.63% TSS).

Shiina et al. (1993), Onda ef al. (1994), Schmilovitch
et al. (2000), and Sohn et al. (2000) have reported various
levels of success in measuring total acidity (TA) of
intact pineapple, plum, apple, and mango, respectively.
With Ponkan mandarin, Ou et al. (1997) obtained R,> of
0.5-0.8 and RMSEP of 0.13-0.27% for TA, using a
calibration developed on fruit from 1 district and used to
predict TA for fruit from another 2 districts. Similarly,
Miyamoto ef al. (1998) used NIR transmittance spectra of
intact Satsuma mandarins to achieve prediction of TA in
separate populations (origin of each population not stated),
with R,2 0f0.83, bias 0£0.02% TA, and RMSEP 0£0.15% TA.
However, McGlone et al. (2003) concluded that robust TA
prediction was not possible in Satsuma mandarin, although
R,? of upt0 0.65 and RMSEP of 0.15% TA could be achieved
within a given population through a correlation with skin
chlorophyll (fruit maturity).

Calibrations on fruit DM have been reported for kiwifruit
and mango (Guthrie and Walsh 1997; McGlone and Kawano
1998), fruit which store starch, with conversion to sugar at
ripening. Typical calibration model statistics were R.> 0of 0.96
and RMSEC of 0.79% DM. Although citrus fruit do not store
starch, DM content may be a useful index of certain internal
quality defects. For example, Peiris ef al. (1998) reported
the use of the second derivative of absorbance at 768 and
960 nm to identify fruit with section dryness disorder. These
wavelengths are relevant to water absorption.

For spectra collected using a transmission optical
geometry, it is expected that calibration model performance
will be affected by fruit size. To address this issue, Kawano
et al. (1993) identified absorption at 844 nm as related to
fruit (Satsuma mandarin) diameter, and normalised second
derivative of absorbance data for all wavelengths used in
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the MLR model by dividing by the second derivative of
absorbance at 844nm. However, Miyamoto and Kitano
(1995) reported that this procedure hindered prediction
ability when sample temperature was varied. These authors
reported that it was possible to compensate for optical
pathlength by including the second derivative of absorbance
data at, or near, the wavelengths of 740 or 840 nm as part of
a 4-wavelength MLR calibration.

Thus, there are at least 6 prior reports on the application of
NIRS to the assessment of TSS, 3 studies on TA, and 1 study
relevant to DM, in intact mandarins. However, these reports
vary in optical geometry and the chemometric approach
used (MLR, cf. PLS, data pre-processing technique, spectral
window, etc.). In the current study, we seek to confirm the
earlier reports of the utility of the NIRS method to the
assessment of TSS, DM, TA, and juiciness in mandarin,
using truly independent validation populations. We also
seek to optimise each of these features in the development
of a calibration model, prior to undertaking a companion
study of robustness of the model across new populations
(varying in growing location, time within a season, and
across seasons).

Materials and methods
Plant material

Mandarin fruit (Imperial variety) were obtained following commercial
harvest from orchards in Munduberra (25.6° S, 151.6° E), Bundaberg
(24.9° S, 152.3° E), and Dululu (23.8° S, 150.3° E), Queensland. Fruit
were obtained from 3 separate farms on 1 day, from separate harvests
of 1 tree over a 14-day period, and from 1 pack-house over 4 seasons.
In all, 20 populations of Imperial mandarins (each of approx. 100 fruit),
obtained over different seasons, growing districts, and different harvest
times from the 1 tree, were used for spectra acquisition and then assessed
for TSS. In addition, DM and juiciness of 6 separate populations, and
TA of 1 population, were assessed. All populations were alphabetically
named in chronological order.

Three populations of fruit were assessed in consideration of the
distribution of TSS, DM, and juiciness within fruit. The distribution
of TSS and juiciness of the inner and outer section of each segment
of 3 fruit was assessed (Population 1). TSS and DM of inner and
outer of proximal, equatorial, and distal parts of each of a further
5 fruit were assessed (Population 2). Finally, TSS and juiciness of
the proximal and distal halves of each of 99 fruit were assessed
(Population 3).

Reference analysis

All fruit were halved, juiced, and TSS determined by refractometry
(Bellingham and Stanley RMF 320). Total acidity was assessed
by titration of a 5-mL sample of juice against 0.1 NaOH using
phenolphthalein as an indicator. Dry matter of fruit halves (with skin),
was determined by drying at 70°C to constant weight in a forced-
convection oven over 48 h. Juiciness was estimated from the weight
of juice expressed from a fruit half by a commercial juice extractor
(juiciness % = weight of juice/weight of fruit * 100). Data were analysed
using ANOVA to determine differences in attribute distribution, with
testing of significance conducted at the 10% level.

Spectroscopy

Spectra were collected over the wavelength range 306-1130 nm using
a NIR-enhanced Zeiss MMSI1 spectrometer and a 100-W tungsten
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halogen light in the interactance optical configuration reported by
Greensill and Walsh (2000) (0° angle between illumination and detected
light rays, with detection probe viewing a shadow cast by the probe
onto the fruit). A Teflon tile (10mm thick) was used as a white
reference. Spectra were collected from 1 side of each fruit, on the
equator of the fruit, equidistant from proximal and distal ends, with
an integration time of 30 ms. For comparison purposes, | population
was also assessed using the partial transmittance optical configuration
used by Walsh et al. (2000) (45° angle between illumination source and
detector, relative to the fruit centre, with detector probe in contact with
the fruit surface). Various levels of spectral averaging (1, 2, 4, and 32
scans per spectrum) were also undertaken on this population. Spectra
were also collected from 1 population at 3 different fruit temperatures
(10, 22, and 30°C).

Spectra were collected as raw analogue to digital counts (15 bit), and
converted to absorbance values using an in-house-developed software
package. These data were then ported to the WINISI (ver. 1.04a)
chemometric software package for derivative calculations. Examples
of analogue to digital counts, absorbance, and second derivative spectra
are given in Fig. 1.

Chemometrics

The software package WINISI (ver. 1.04a) was used for all chemometric
analysis except as stated. This package calculates a derivative as a
‘Norris regression’ (Shenk and Westerhaus 1993) using start, central,
and end points only over a user-definable ‘gap’ (g, wavelength range).
The Norris regression is calculated by the formula a — 2b + ¢, where
b is the absorbance at wavelength, A, and a and ¢ are absorbances
at wavelengths A — g and A + g, respectively. In the data smoothing
option, the absorbances at the 3 wavelengths used in the derivative
calculation can be averaged with a user-defined number of neighbouring
absorbances. Available scatter corrections include standard normal
variance (SNV) and detrend (Shenk and Westerhaus 1993). Standard
normal variance weights the absorbance at each wavelength by the SD
of'the calibration set. Detrending fits a least squares quadratic regression
to successive wavelength windows. This curve is then subtracted from
the spectrum to give the residual spectrum that is used in the subsequent
calibration. Calibrations were developed using both step-wise multiple
linear regression (MLR) and modified partial least squares regression
(MPLS) (Shenk and Westerhaus 1993). Calibration performance was
assessed in terms of R,2, RMSEP, SDR, slope, and bias of the
validation sets.

The Matlab PLS and WINISI MPLS techniques gave equivalent
model results for a given dataset (data not shown). The effect of spectral
window on PLS calibration model performance for TSS and DM was
optimised in terms of RMSEC using a PLS interval algorithm, developed
in Matlab (ver. 7.0) — PLS toolbox (ver. 3.5 by Eigenvector). First
derivative (WINISI gap size 4 with SNV and detrend scatter correction)
absorbance data interpolated to 3 nm steps were used in this exercise.
The wavelength range of the spectral windows varied in starting position
from 700 to 930 nm, with an end position of 800—1020 nm, in increments
of 3nm. The combined populations J and K for TSS and population T
for DM were used in this exercise.

Data pre-treatment procedures are generally optimised for a given
application, with a range of derivative and scatter correction techniques
trialled, and results (e.g. RMSEC, R.2, RMSECYV, bias, and RMSEP)
‘eyeballed’. Fearn (1996) has recommended a protocol involving testing
the significance of differences between both the RMSEP and bias of
different models. Derivative condition, derivative gap size, and data
smoothing were considered in this study with reference to the use of
both transmission and absorbance data. The procedure of Fearn (1996)
was used, facilitated by a spreadsheet (available from the corresponding
author on request) that ‘automated’ the procedure. A significance level
of 95% was used in these tests.
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Fig. 1. Near infrared spectral data of 3 intact mandarins displayed
as (a) analogue to digital counts including the white reference (open
triangle), (b) absorbance, and (c) second derivative (2nd D) absorbance
data. The mandarin fruit were chosen at random, representing fruit
with high (12.7%, closed circle), medium (10.2%, open circle), and
low (7.6%, closed triangle) total soluble solids. Horizontal bars show
important spectral areas.

Results
Attribute distribution

In general, TSS content increased marginally (less than 1%
TSS), albeit significantly, from proximal to distal ends of the
fruit, and decreased from skin to core of the fruit (Table 1).
Variation in mean TSS, however, differed among populations.
In Population 1, the external region TSS (8.9%) significantly
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Table 1. Spatial distribution of TSS, DM, and juiciness for 3
populations of mandarin fruit
For Population 1 (3 fruit with an average of 10 segments per fruit),
each segment was cut longitudinally into external and internal
sections. For Population 2 (5 fruit), each segment was cut
longitudinally into external and internal portions, and into proximal,
equatorial, and distal sections. For Population 3 (99 fruit), each fruit
was cut transversely through the equator of the fruit, into proximal and
distal halves. Means within a population and attribute followed by a
common letter are not significantly different (P = 0.05)

Pop. 1 Pop. 2 Pop. 3
Prox. [Equat. Distal Prox. Distal

7SS (%)

External 8.9a 8.4a  8.4ab 8.3a

Internal 8.3b 8.3b 8.4ab 8.5¢

Combined 9.2a 9.9b

Juiciness (%)

External 48.2a

Internal 38.8b

Combined 55.0a 55.6a
DM (%)

External 9.7b 9.6b 9.7b

Internal 9.1a 9.7b 9.5b

exceeded that of the internal region (8.3%). In Population 2,
external region TSS was marginally greater than the internal
region at the proximal end (8.4 cf. 8.3%), was not different
at the equatorial region, and was less at the distal end (8.3
cf. 8.5%). The maximum difference in mean TSS among
the combinations of proximal, equatorial and distal, and
internal and external portions in Population 2, was only 0.2%,
whereas in Population 3, TSS at the distal end was 0.7%
units greater than at the proximal end. The coefficient of
variation for TSS (over 10 segments in a single fruit) was 1.2
and 2.1% in the proximal-distal and equatorial circumference
orientations, respectively.

Dry matter varied by less than 1% DM between internal
and external regions (Population 2, Table 1). Dry matter
did not differ significantly among proximal, equatorial, and
distal positions for external tissue, whereas for internal
tissue, DM at the proximal position was less than at the
other positions and less than DM in external tissue. The
coefficient of variation for DM was approximately 3% in
the proximal-distal orientation, and 2% in the equatorial-
circumference orientation. Juiciness did not vary between
proximal and distal ends (Population 3), but varied between
internal and external regions of the fruit (Population 1).
The % DM content was not correlated to % juiciness
(correlation coefficient of 0.02 for a combination of
5 populations, n = 379).

Instrumentation and sample presentation

For 1 population of fruit, spectra were collected using 2
optical geometries, as used by Walsh efal. (2000) and
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Greensill and Walsh (2000). The TSS calibration model
developed for the 45° geometry was not significantly better
in terms of RMSECYV than any of the 0° geometries (Table 2)
and therefore the 0° geometry was used in all other studies
reported here.

Increasing the number of scans averaged per spectra
from 1 to 32 did not significantly improve TSS calibration
performance in terms of RMSECV when the fruit were
positioned equatorially with a 0° optical geometry, although
there was a trend towards improved performance (e.g.
RMSECYV decreased from 0.32 for 1 scan to 0.26 for 32
scans) (Table 2). Calibration model performance on TSS
was degraded if spectra were collected from the proximal
end of the fruit, but was similar for equatorial and distal
positions (Table 2).

Spectral window selection

The effect of spectral window on PLS calibration model
performance for TSS and DM was optimised in terms of
RMSEC using a PLS interval algorithm. Low RMSEC values
for both TSS and DM were obtained for a window beginning
between 703 and 850nm, and finishing between 906 and
950nm (Fig. 2). The minimum RMSEC for TSS (0.26%)
was recorded for a start wavelength of 703 nm and a finish
wavelength of 911 nm. The minimum RMSEC for DM
(0.34%) was recorded for a start wavelength of 703 nm and
a finish wavelength of 920nm. All work reported in this
manuscript used the region 720-950 nm and therefore was
similar to the observed optimal spectral window.

Spectral data treatment for MPLS

The data pre-treatment method was optimised for MPLS
regression in terms of data type (transmission or absorbance),
derivative condition (nil, first, or second order), derivative
treatment (gap size), smoothing interval, and scatter
correction for both TSS and DM. Comparison was made on
the basis of calibration statistics (R.2, RMSECYV, number of

Table 2. The influence of scan averaging, optical geometry, and
fruit positioning on calibration statistics (R.2, RMSECYV, and SDR)
for TSS
A single population of fruit (n =97, mean =9.6% TSS, and standard
deviation = 0.77% TSS) was scanned with either 1, 2, 4, or 32 scans
averaged per spectrum. Letters following RMSECYV values refer to
significance testing at a 95% probability level, relative to the 0°
1 scan treatment

Optics Fruit No.of RZ? RMSECV Terms SDR
position scans

0° Equatorial 1 0.87 0.32a 7 2.4
0° Equatorial 2 0.88 0.32a 7 2.4
0° Equatorial 4 0.87 0.34a 7 2.4
0° Equatorial 32 0.92 0.26a 7 2.9

45° Equatorial 4 0.91 0.39a 9 2.0
0° Proximal 4 0.68 0.63b 5 1.2
0° Distal 4 0.88 0.30a 6 2.6
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Fig. 2. Calibration model performance as assessed by RMSEC for varying spectral windows (varying start
and end wavelengths). Partial least squares calibration models for (@) total soluble solids for populations
J and K combined and (») DM for population T. The colour code to the RMSEC values (% TSS) is shown

in the bar scale to the right.

terms, and SDR) and prediction statistics (variance, RMSEP,
and bias). The calibration models were used to predict TSS
of an independent set drawn from the same harvest as the
calibration group (data not shown), TSS for 5 independent
populations (Populations A, C, J, L, and M; Table 3), and
DM for 5 independent populations (Populations T, S, X, W,
and V; Table 4).

For a model developed on 65 fruit from population L,
and validated on the remaining 10 fruit, the highest R.>

and lowest RMSECV (0.95 and 0.35% TSS, respectively)
for absorbance was recorded with a second derivative, gap
size of 4, and no smoothing. The lowest RMSEP value
(10.42% TSS) was recorded with the use of first derivative
absorbance data with a gap of 4nm and a 3 nm smoothing
interval (data not shown). Calibration model performance
on TSS was remarkably insensitive to variations in the gap
size used in derivatising spectral data (from 3 to 30 data
points, or approx. 10—100 nm, either side of the data point)
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Table 3. Optimisation of data pre-treatment in terms of derivative treatment (none, first, or second
order) and 4 scatter correction routines (none, SNV, detrend, or SNV and detrend combined) (a total
of 12 treatments) for TSS calibration
Model performance is reported in terms of prediction of 5 independent sets of mandarin fruit
(Populations A, C, J, L, and M; fruit harvested on different days or locations to that used in the calibration).
Calibration population statistics were n =81, mean =9.6% TSS, SD = 1.03% TSS, and range
of 8.2-12.3% TSS.

For each treatment prediction group within a population, the treatment with the lowest overall RMSEP
was selected and the RMSEP presented in bold (but not underlined). The corresponding bias was also
bolded. The lowest RMSEP within the other 2 derivative treatments was then selected and presented,
along with the corresponding bias, with an underline. The RMSEP (or bias) in bold was then compared
with each underlined RMSEP (or bias) in the population using Fearn’s significance test. If the values were
significantly different at a 95% probability level then the underlined value was bolded so that bold
and underline values differed significantly from the lowest value.

Scatter Variance (RMSEP) bias

correction Absorb. Ist Deriv. 2nd Deriv. Absorb. 1st Deriv. 2nd Deriv.
Population A

None 0.398 0.433 0.411 0.059 —0.171 —0.031

SNV 0.386 0.409 0.357 0.092 —0.096 —0.045

Detrend 0.492 0.402 0.360 —0.176 —0.087 —0.020

SNV & detrend 0.424 0.385 0.332 0.082 —-0.011 —0.048
Population C

None 0.762 0.888 0.770 —0.485 —0.725 —0.561

SNV 0.973 0.867 0.760 —0.638 —0.674 —0.491

Detrend 0.960 0.849 0.648 —0.728 —0.605 —0.295

SNV & detrend 0.707 0.611 0.686 —0.432 —0.335 —0.432
Population J

None 0.605 0.799 0.628 0.346 0.651 0.432

SNV 0.999 0.754 0.505 0.856 0.611 0.226

Detrend 0.579 0.476 0.532 0.352 0.193 0.304

SNV & detrend 0.640 0.415 0.450 0.448 0.001 0.128
Population L

None 0.635 0.693 0.660 0.477 0.505 0.468

SNV 0.695 0.607 0.752 0.543 0.434 0.581

Detrend 0.501 0.648 0.713 0.170 0.448 0.579

SNV & detrend 0.631 0.526 0.606 0.474 0.355 0.424
Population M

None 0.655 0.732 0.498 0.413 0.503 —0.102

SNV 0.786 0.781 0.475 0.593 0.618 -0.039

Detrend 0.938 0.542 0.494 0.753 0.196 0.119

SNV & detrend 0.688 0.462 0.500 0.540 0.007 —0.248

(RMSECYV was degraded from 0.43 to 0.49% TSS for first
derivative data). In this respect, second derivatives appeared
more sensitive than first order, with a decrease in calibration
and validation performance at gap sizes greater that 15 data
points (RMSECYV of 0.40, 0.39, and 0.48% TSS at gap sizes
of 3, 15, and 30 nm, respectively). Model performance was
also relatively insensitive to smoothing interval.

The optimal mathematical treatment for the TSS
model development based on prediction performance by
comparison of RMSEP and bias involved a first derivative
absorbance treatment with SNV and detrend scatter
correction, although there was little difference between
first and second derivative treatments (Table 3). There
was no clear requirement for derivative or scatter
correction for DM calibrations (Table 4). In all further

chemometric analysis reported in this study, unsmoothed
first derivative absorbance data calculated using a gap of
4 data points, with SNV and detrend scatter correction,
were used.

The RMSEP and bias for TSS and DM (averaged for
the 5 populations of Table 3 and 5, respectively) for models
using a mathematical treatment of first derivative, SNV, and
detrend was 0.48% and 0.14% TSS, and 0.77% and 0.25%
DM, respectively.

Multivariate regression analysis

Calibration models, using the data treatment identified
above, were developed for 17 populations harvested in
2001, a population each from 1999, 2000, and 2004, and a
combination of populations from 2001 (Table 5). Generally,
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Table 4. Optimisation of data pre-treatment in terms of derivative treatment (none, first, or second
order) and 4 scatter correction routines (none, SNV, detrend, or SNV and detrend combined) (a total
of 12 treatments) for DM calibration
Model performance is reported in terms of prediction of 5 independent sets of mandarin fruit
(Populations T, X, S, W, and V; fruit harvested on different days or locations to that used in the
calibration). Calibration population statistics were n = 106, mean = 14.7% DM, SD = 1.83% DM,
and range of 14.7-19.2% DM.

For each treatment prediction group within a population, the treatment with the lowest overall RMSEP
was selected and the RMSEP presented in bold (but not underlined). The corresponding bias was also
bolded. The lowest RMSEP within the other 2 derivative treatments was then selected and presented,
along with the corresponding bias, with an underline. The RMSEP (or bias) in bold was then compared
with each underlined RMSEP (or bias) in the population using Fearn’s significance test. If the values were
significantly different at a 95% probability level then the underlined value was bolded so that bold
and underline values differed significantly from the lowest value

Scatter Variance (RMSEP) bias

correction Absorb. 1st Deriv. 2nd Deriv. Absorb. 1st Deriv. 2nd Deriv.
Population T

None 1.075 0.937 0.909 0.814 —0.416 0.074

SNV & detrend 0.749 0.761 0.792 0.224 —0.188 -0.202

SNV 0.777 0.786 0.744 0.396 —0.340 —0.029

Detrend 0.958 0.889 0.766 -0.327 0.147 —0.148
Population X

None 0.842 0.693 0.681 —0.324 —0.231 —0.033

SNV & detrend 0.675 0.614 0.642 0.208 0.042 —0.038

SNV 0.757 0.669 0.669 —0.325 —0.235 —0.054

Detrend 0.712 0.744 0.716 0.266 0.035 —0.248
Population S

None 1.057 0.885 0.918 —0.607 —0.408 —0.484

SNV & detrend 0.806 0.805 0.904 0.038 —0.043 —-0.417

SNV 0.947 0.837 0.897 —0.464 —0.153 —0.402

Detrend 0.832 0.858 0.909 —0.048 —0.310 —0.447
Population W

None 1.031 1.181 1.062 0.314 —0.411 —0.021

SNV & detrend 0.906 1.141 0.948 0.248 0.713 0.457

SNV 0.849 0.960 0.867 0.081 0.334 0.163

Detrend 1.257 1.346 1.225 —-0.217 0.697 0.683
Population V

None 5.367 4.423 4.979 5.249 4.239 4.824

SNV & detrend 3.896 3.805 3.532 3.643 3.552 3.253

SNV 4.521 4.169 4.597 4.333 3.937 4.383

Detrend 2.982 4.393 4.102 2.681 4.229 3.921

better calibration results (R.> and RMSEC) for TSS were
achieved using MPLS regression than stepwise MLR.
Modified partial least squares calibration model statistics
varied among populations, ranging from R.> = 0.41 to
R.2 = 0.91, with RMSEC varying between 0.45 and 0.22%
TSS (Table 5).

Calibration models developed on the combined (A-N)
populations and on 2 individual populations (A and E,
chosen for low RMSEC and R.%) were validated with
independent populations (O, P, and Q). Modified partial least
squares calibration models were also superior (in terms of
R,?) to MLR calibration models in the prediction of TSS
(Table 6) for the individual calibration populations (A and
E) and the combined population (A-N). Multiple linear

regression model validation performance (R, ?) was generally
improved (Table 6) by restricting model development to
spectral windows of relevance to sugar (‘forced” MLR
(FMLR), using 760, 884, and 910 nm wavelengths). Adding
calibration groups together marginally improved MPLS and
MLR model validation (R, ?) of new populations. No method
was consistently better in terms of minimising the bias of the
validated values.

Calibration model performance for the attributes of TSS,
DM, juiciness, and TA

Typical calibration model statistics (R.> and RMSEC)
for TSS in a given population were >0.75 and <0.4%,
respectively (Table 5), and for DM were 0.9 and
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TableS. Calibration model statistics for TSS in each of 17 populations (A-N) of mandarin fruit harvested over 2001, populations A-N
combined, and populations from 3 other years
Calibration models were developed using MPLS and stepwise MLR, with a data pre-treatment of first derivative, SNV, and detrend

Population Population statistics MPLS calibration MLR calibration
n Mean SD RS2 RMSEC  No.of SDR RMSEC RS2 No.of  SDR
terms terms

A 56 9.6 0.72 0.76 0.36 7 1.6 0.41 0.77 6 2.1
B 60 9.2 0.53 0.73 0.27 7 1.4 0.31 0.66 4 1.7
C 41 8.5 0.78 0.66 0.45 5 14 0.46 0.58 3 1.6
D 58 9.0 0.53 0.41 0.41 5 1.2 0.48 0.17 1 1.1
E 78 9.6 1.00 0.91 0.31 7 2.7 0.76 0.42 2 1.3
F 98 9.8 0.45 0.65 0.27 7 1.5 0.34 0.53 4 1.5
G 94 9.7 0.60 0.86 0.22 8 2.2 0.30 0.74 5 2.0
H 78 9.7 0.55 0.74 0.28 7 1.5 0.34 0.61 4 1.6
1 91 9.3 0.54 0.63 0.33 7 14 0.45 0.28 3 1.2
J 75 10.3 0.91 0.87 0.33 7 2.3 0.46 0.73 3 1.9
K 76 9.2 0.63 0.83 0.26 6 2.0 0.51 0.42 2 1.3
L 75 9.9 0.97 0.87 0.35 5 2.5 0.39 0.86 4 2.7
M 78 9.0 0.74 0.87 0.27 7 2.2 0.74 0.00 1 1.0
N 72 9.1 0.57 0.68 0.32 5 1.6 0.42 0.62 3 1.6
0} 95 9.2 0.57 0.80 0.27 8 1.7 0.45 0.38 2 1.3
P 77 9.3 0.82 0.88 0.28 6 2.7 0.32 0.85 5 2.6
Q 89 9.5 0.66 0.84 0.27 7 2.1 0.33 0.76 4 2.0
A-N 770 9.4 0.87 0.84 0.35 10 2.4 0.50 0.69 9 1.8
1999 199 10.6 0.96 0.88 0.33 9 32 0.34 0.87 8 2.8
2000 100 8.4 1.05 0.88 0.36 9 29 0.38 0.87 6 2.8
2004 100 104 1.32 0.91 0.39 8 34 0.40 0.91 7 33

0.6%, respectively (data not shown). In contrast, model
performance with respect to TA was poor, with R.% of 0.3,
and a RMSEC of 0.2% recorded for a population of mean
0.67% and SD of 0.19% (data not shown). Calibration model
performance over 5 populations (A, C, J, L, and M) was also
poor with respect to % juiciness (R.2 < 0.2, RMSEC > 5.0%,
for population means ranging from 47 to 52% and SD from
4 to 9%).

Typical MPLS model b coefficients (regression
coefficients for the model) for TSS and DM models
are illustrated in Fig. 3. Stepwise MLR coefficients for

models developed on the same data were based on 860, 870,
and 900 nm wavelengths for TSS, and 907, 890, and 780 nm
wavelengths for DM.

Discussion
Sample orientation

The distribution and level of attributes, such as TSS, within
a fruit may differ with maturation of the fruit, growing
conditions of the fruit (e.g. position within the canopy), and/or
size of the fruit. The TSS, juiciness, and DM tended to be

Table 6. Prediction statistics for the validation of MPLS, MLR, and ‘forced’ MLR (FMLR) models
on mandarin TSS, developed on populations A-N combined, and A and E individually (see Table 3),
on 3 independent validation populations (O, P, and Q)

In the FMLR model, the model was restricted to using wavelengths of 760, 884, and 910 nm

Validation Regression Calibration sets
sets analysis R,? bias
A-N A E A-N A E

0} MPLS 0.59 0.47 0.49 0.48 0.19 0.06
MLR 0.57 0.38 0.25 0.15 —0.17 —0.82
FMLR 0.54 0.33 0.45 0.62 0.56 1.06

P MPLS 0.81 0.78 0.78 0.13 —0.08 0.61
MLR 0.71 0.29 0.26 0.67 —0.51 0.20
FMLR 0.68 0.73 0.72 0.14 1.09 0.64

Q MPLS 0.73 0.73 0.68 0.23 0.00 0.76
MLR 0.57 0.25 0.10 0.84 —0.33 0.16
FMLR 0.60 0.55 0.64 0.00 0.86 0.55
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Fig. 3. Modified partial least squares calibration b (regression) coefficients for (a) TSS and (b) DM
models using second derivative of absorbance with a gap size of 4 points. Model coefficients for
populations E, G, L, and P are shown for TSS, and those for populations R, S, T, and X are shown

for DM.

higher in external (relative to internal) and in distal (relative
to proximal) tissue (Table 1). However, the absolute variation
in any attribute level with reference to position within the fruit
was low (maximum difference of 0.7% TSS and 0.6% DM).
There was less variation at the equatorial than at proximal
or distal positions. The CV for TSS around the equator of
the fruit (outer tissue) was 2.1%, similar to that of 1.8%
reported by Peiris ef al. (1999b) for a single orange and

grapefruit. However, Peiris et al. (1999D) reported greater
CV values for proximal to distal variation [10.2% for orange
and 12.4% for grapefruit (single fruit in each case)] than we
noted for mandarin (2.1%). Mandarin fruit are apparently
more homogenous than oranges or grapefruit.

Calibration model performance was poorer when based
on spectra acquired from the proximal end compared with
the equatorial and distal ends of the fruit (Table 2). This
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result is not surprising, given the variation in proximal end
morphology (variable pedicel removal).

Given the above consideration of attribute distribution
and spectral acquisition, it is recommended that optical
and reference sampling should occur at any position
around the equator of the fruit in order to best represent
the entire fruit.

Spectroscopy

The short-wave NIR spectra of attributes that contribute
to TSS (predominantly sucrose, but also glucose, fructose,
organic acids, pectins, etc.) and DM (e.g. soluble sugars,
starch, cellulose, lignin, proteins, lipids and, by negative
correlation, water) relate to second and third overtones of
OH and CH stretching, and related combination bands.
These bands are characteristically broad and overlap, and
thus spectra are ‘featureless’. For example, the chemical
environment of each OH and CH bond in water and sugar
molecules is different, so that the effective absorption bands
are wide. Derivative spectroscopy is used to tease out
differences from such spectra, and multivariate calibration
is used to tease out relationships between the spectra and the
attribute of interest.

Spectral features relevant to sugar and water in the
700-950 nm spectral region include the second and third
overtones of OH stretching vibrations at around 960 and
760 nm, respectively, and the first and second overtone of OH
combination bands at around 840 and 1180 nm, respectively
(Golic et al. 2003). Spectral features relevant to sugar CH
groups include second order stretching bands between 1100
and 1200 nm, and a third overtone band around 910 nm.
Miyamoto and Kitano (1995) found the key wavelengths
for a MLR calibration model on mandarin fruit TSS to be
770 and 905nm for intact and peeled fruits, respectively.
These authors considered absorption at 770 and 905 nm
to be associated with the fourth overtone of CH, and
the third overtone of CH and CHj, respectively, whereas
absorption at 840-855nm was related to fruit diameter
(at a constant temperature).

The use of the 760, 884, and 910 nm wavelengths in
the FMLR TSS models was therefore an attempt to use
wavelengths related to 2 overtones of OH stretching and the
third overtone of CH stretching. Using the WINISI stepwise
MLR, models generally defaulted to 4-9 wavelengths,
including wavelengths close to 900, 870, and 860 nm for TSS
and 907, 890, and 780 nm for DM.

McGlone efal. (2003) noted that ‘vast numbers of
different spectral windows can be created over the wavelength
range and all possible options could not be investigated in any
reasonable time’. These authors limited their investigation
to 7 spectral windows chosen on the basis of ‘prior
experience and intuition’, concluding that a wavelength
range of 750—1100 nm was optimal for interactance spectra.
In the current study, all combinations of start and end
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wavelengths were considered for the development of a PLS
model. Calibration model performance was relatively stable
across the broad spectral window of 703-950 nm for both
TSS and DM (Fig. 3).

Calibrations for TSS based on second derivative
absorbance contained points of inflection for the b calibration
coefficients at around 760, 860, and 905 nm, whereas for DM,
points of inflection were around 760, 810, 850, and 910 nm
(Fig. 2). However, the plots are disconcertingly difficult to
interpret in terms of spectroscopic relevance, in contrast to
the experience of Golic ef al. (2003) who worked in the
same (short-wave NIR) wavelength region but with model
sugar-water solutions. The high weighting of features not
directly related to the attribute of use should make the
calibration less robust for an independent validation set.
In practice, however, the MPLS calibrations were more
robust than the MLR or FMLR calibrations where specific
wavelengths are selected. Presumably, overlap between bands
allows shoulder regions to hold more useful information than
regions of the absorption peaks. We conclude that use of
the whole wavelength region, 720-950 nm, is warranted for
development of both TSS and DM models. This includes
the spectral region associated with the second overtone CH
stretch of sugar (910 nm).

Organic acids (TA) are present in intact fruit at relatively
low levels (c. 1.0%). As such, detection using NIRS is
unlikely and we agree with the assessment of McGlone et al.
(2003) that previous reports of calibration on this attribute
are likely to represent secondary correlations on attributes
related to fruit maturity.

Another quality defect for mandarins is apparent
dryness, commonly assessed by % juiciness of fruit.
This characteristic was not modelled successfully with
NIR spectral data (correlation coefficient <0.01, data not
shown). This result is consistent with observation that the
dryness defect does not correlate with water content (DM).
Presumably, some of the water is present in the fruit in
a bound (gelled) form. This result is in contrast to that
of Peiris efal. (1998) but the ‘section dryness’ defect
considered by Peiris may well have been a different type
of defect (e.g. frost damage, in which juice sacs dehydrate
following damage).

Spectral collection

The calibration results for the 0° (interactance) and 45°
(transmittance) geometries (e.g. R.2 of 0.91, RMSECV
of 0.4% TSS) were not significantly different. The 0°
(interactance) geometry was expected to produce a poorer
calibration model than the 45° (transmittance) geometry due
to increased detection of specularly reflected radiation and/or
the shorter path length of light through the fruit in the 0°
geometry (as reported by McGlone et al. 2003). In practice,
the degradation in performance was marginal (not significant
in terms of RMSECYV), indicating that little specular light



NIR calibrations for intact mandarin fruit

was detected and that a representative volume of the fruit
was optically sampled using the 0° geometry.

The 45° geometry was applied with the detector probe
in contact with the fruit to exclude specular reflection.
The 0° geometry was applied without physical contact
between the detector probe and the fruit, in contrast to the
application of McGlone ef al. (2003). The shadow cast by
the detector probe in the 0° geometry minimises detection
of specular light relative to reflectance spectroscopy. The
separation of probe and fruit allows for rapid in-line sorting,
outweighing any disadvantage in terms of a marginally
poorer calibration performance due to increased detection
of specularly reflected radiation or a shorter path length of
light through the fruit. This conclusion is similar to that
of Greensill and Walsh (1999).

Most literature reports use averaging of multiple scans
(e.g. Guthrie and Walsh 1997). Increasing the number
of scans should improve signal to noise by the square
root of the number of scans averaged. In practice the
increase in calibration model performance with 32 scans,
compared with 1, 2, or 4 scans, was minimal (no significant
differences among RMSECV). On a commercial pack-line,
operating at a belt speed of 1 m/s, there is sufficient time
for only 1 scan.

We recommend the use of the 0° geometry with
a single scan per spectrum as appropriate for use
with mandarin fruit.

Calibration data treatment

Models in which the coefficients give more weight to
spectroscopically significant wavelengths (i.e. wavelengths
related to the band assignments associated with the analyte
of interest) should perform better in terms of validation on
independent populations (i.e. there should be less risk of
over-fitting the model). Multiple linear regression models
were developed in which the regression was based on
4-6 wavelengths anywhere in the 720-950 nm region, and
in which the regression was ‘forced’ to use data between
860—890nm and 900-933 nm, wavelengths relevant to
sucrose band assignments. The forced MLR models were
generally better in validation than MLR models, but not
MPLS models (Table 6). This result was not related to outlier
detection and removal routines as no outlier removal was
undertaken in these validation exercises. Thus, although there
is a greater potential to overfit MPLS than MLR models,
this did not occur, as, in general, MPLS models were better
than MLR models in both calibration development and
validation on independent sets (Tables 5 and 6). We therefore
recommend use of the MPLS procedure in preference
to MLR.

Calibration model performance was relatively insensitive
to the ‘gap’ size of derivation. This result is consistent with
the wavelength resolution of the Zeiss MMS1 (peak width
at half maximum for a line light source of 13 nm, Walsh

Australian Journal of Agricultural Research 415

et al. 2000) and the relatively broad absorption bands for
sugar and water occurring in the short wavelength near
infrared region.

For TSS, the optimal derivative and scatter correction
condition differed among validation groups, but in general,
a first derivative with SNV and detrend routines supported
superior model performance. For DM, no method was
consistently superior to other methods. Hence, first derivative
(gap size of 4 data points), SNV, and detrend procedures
are considered appropriate mathematical treatments for
calibration model development for mandarin fruit.

Conclusions

In this exercise, we have attempted to rationalise the NIR
calibration procedure for determination of TSS and DM
in intact mandarin. The recommended procedure involved
sampling of an equatorial position on the fruit using either
0° interactance or 45° partial transmittance optics using
1 scan per spectrum, with partial least squares model
development on a 720-950 nm window, pre-treated as first
derivative absorbance data (gap size of 4 data points) with
SNV and detrend scatter correction. A lack of robustness is
obvious, however, in terms of the ability of the models to
predict attribute levels in new populations. In a companion
manuscript, we consider sources of variation between
populations and calibration model updating procedures.
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