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Key message  We describe the development and application of the Sorghum QTL Atlas, a high-resolution, open-access 
research platform to facilitate candidate gene identification across three cereal species, sorghum, maize and rice.
Abstract  The mechanisms governing the genetic control of many quantitative traits are only poorly understood and have yet to 
be fully exploited. Over the last two decades, over a thousand QTL and GWAS studies have been published in the major cereal 
crops including sorghum, maize and rice. A large body of information has been generated on the genetic basis of quantitative 
traits, their genomic location, allelic effects and epistatic interactions. However, such QTL information has not been widely 
applied by cereal improvement programs and genetic researchers worldwide. In part this is due to the heterogeneous nature 
of QTL studies which leads QTL reliability variation from study to study. Using approaches to adjust the QTL confidence 
interval, this platform provides access to the most updated sorghum QTL information than any database available, spanning 
23 years of research since 1995. The QTL database provides information on the predicted gene models underlying the QTL 
CI, across all sorghum genome assembly gene sets and maize and rice genome assemblies and also provides information on 
the diversity of the underlying genes and information on signatures of selection in sorghum. The resulting high-resolution, 
open-access research platform facilitates candidate gene identification across 3 cereal species, sorghum, maize and rice. 
Using a number of trait examples, we demonstrate the power and resolution of the resource to facilitate comparative genom-
ics approaches to provide a bridge between genomics and applied breeding.

Introduction

Over the last two decades, around 150 studies identifying 
almost 6000 QTL for over 220 traits have been published in 
sorghum. These studies have produced a large body of infor-
mation concerning the genetic basis of these traits including 
their genomic location, allelic effects and epistatic interac-
tions. However, this information has yet to be fully utilised 
by sorghum improvement programs and sorghum genetic 
researchers worldwide. This is due in large part to the het-
erogeneous nature of the data, the challenges of projecting 
QTL detected in one population onto another population 
and the capacity of researchers to determine if QTL alleles 
are shared by unrelated lines. Many of these problems are 
the result of the current unstandardized analogue method of 
transmitting QTL information via papers in scientific jour-
nals. Currently, journals do not impose a specific format for 
QTL data presentation and hence QTL information is not 
readily, or efficiently, searchable due to the heterogeneous 
nature of the data presentation across studies. As a result, 
individual researchers must expend a large amount of effort 
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to compare QTL across studies, and generally, this can only 
be done in a limited way for a small number of studies.

The discovery of gene order conservation among the 
grasses provides the opportunity to further dissect the 
genetic control of traits in large genome species by inves-
tigating the underlying syntenic genes in small genome 
species. Sorghum, with its small genome size, provides an 
important template for studying the genetic control of quan-
titative traits of closely related large genome crops such as 
maize, in addition to being complementary to rice as a grass 
genome model (Draye et al. 2001). However, the difficulty 
of making use of this information in species closely related 
to sorghum, such as maize and rice, is even greater due to 
the lack of ready access to syntenic QTL and candidate gene 
details across species.

What is required is a global database of QTL in each crop 
which allows researchers to readily search for and compare 
QTL not only within a species but between species. Given 
the lack of data standards and the general heterogeneity 
of data sets, creating such a data resource is a nontrivial 
task. A major complicating factor for the direct utilisation 
of information from QTL studies among the grasses is the 
variability in the precision of initial QTL identification. This 
variability is caused by many factors including population 
size and type, precision of the phenotyping, statistical analy-
sis methodology and marker order, coverage and density. 
As a result, projecting QTL and their confidence intervals 
identified across multiple studies on a single genetic map or 
physical map is a major challenge. Such projections from 
multiple experiments must take into account factors that 
affect the reliability of the initial study, including popula-
tion size, QTL effect size and statistical confidence inter-
vals for QTL locations. To date, two studies have collated 
existing QTL information for sorghum and positioned the 
QTL on a common map; Mace and Jordan (2011) projected 
771 QTL relating to 161 unique traits from 44 studies onto 
the sorghum consensus map, and Zhang et al. (2013) posi-
tioned the flanking markers of 604 QTL from 35 studies 
onto the sorghum genome assembly (v1.4). The later study 
did not adjust the resulting QTL CI to take into account 
factors influencing the reliability of the initial study. Com-
prehensive QTL databases for maize and rice are also lim-
ited in terms of content relative to published studies (e.g. 
multi-trait databases: MaizeGDB; Andorf et al. 2010, 2016; 
RiceQTLPro; Kim et al. 2014; Q-TARO Yonemaru et al. 
2010; Gramene; Ni et al. 2009; single-trait databases: root 
traits in rice Courtois et al. 2009; plant height in maize Wang 
et al. 2006; disease resistance in maize Zhao et al. 2015), 
and as such, it is very difficult to quantify the total num-
ber of QTL identified in rice and maize, in comparison to 
sorghum. A search in Google Scholar on key terms includ-
ing crop name, QTL and GWAS, returns 2.7 × the number 
of hits for maize in comparison to sorghum and 3.6 × the 

number of hits for rice in comparison with sorghum. A study 
published over 10 years ago reported that over 7000 QTL 
had been identified in rice (Zeng et al. 2006). At the same 
time in sorghum, ~ 660 QTL had been identified. However, 
currently the most comprehensive QTL database available 
for rice, through Gramene (Ni et al. 2009), contains 8646 
QTL, indicating that not all of the QTL identified in the 
last decade have been included. The most comprehensive 
QTL database available for maize, MaizeGDB (Andorf et al. 
2010, 2016), contains 2294 QTL, which is similarly unlikely 
to represent all available QTL. Additionally, these existing 
QTL databases for rice and maize have not used a com-
parable QTL CI prediction and projection to the approach 
taken for the sorghum QTL. In addition to the precision of 
the initial QTL identification, any comparative QTL analy-
sis also depends on the quality of QTL projection onto a 
common framework map. The publication of the reference 
whole-genome sequence of sorghum (Paterson et al. 2009), 
rice (Goff et al. 2002; Yu et al. 2002) and maize (Schnable 
et al. 2009) provides a unified coordinate system for each 
crop. Additionally, the increasing, almost exclusive, use of 
sequence-based markers for genetic linkage and association 
mapping studies, including RFLPs, SSRs, DArTs and SNPs, 
facilitates accurate determination of the peak location of the 
QTL, or significant SNP, on the physical genome, permitting 
the development of more comprehensive QTL databases.

Increasingly, over the last 5 years, quantitative trait dis-
section has been undertaken using association mapping 
approaches in contrast to standard QTL genetic linkage 
mapping in biparental populations. For example, of the 43 
GWAS studies published to date in sorghum, 41 have been 
published in the last 5 years. The information generated 
through GWAS studies presents new opportunities and chal-
lenges for genetic researchers. It provides researchers with 
opportunities to increase the mapping resolution due to the 
increased amount of recombination available, as well as to 
identify more allelic diversity than in a traditional biparental 
population. However, factors such as sample size, population 
structure, unexpected linkage disequilibrium (LD), small 
effect sizes and low allele frequency remain a challenge for 
association mapping approaches and can result in a higher 
frequency of false-positive associations than in traditional 
QTL mapping studies. The potential to compare both GWAS 
and QTL outputs could therefore provide validation oppor-
tunities to increase confidence in putative signals across 
studies.

The Nested Association Mapping (NAM) approach was 
recently described (Buckler et al. 2009) in order to com-
bine the advantages and reduce the disadvantages of both 
genetic linkage QTL mapping and association mapping. 
However, to date only two NAM studies have been pub-
lished in sorghum (Mace et al. 2013; Bouchet et al. 2017), 
and only one in rice (Fragoso et al. 2017) in comparison 
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with over 10 in maize (e.g. Buckler et al. 2009; Benson 
et al. 2015; Cook et al. 2012; Kump et al. 2011; Poland 
et al. 2011; Tian et al. 2011; Wallace et al. 2014; Zhang 
et al. 2015). It is unlikely that any single QTL, GWAS 
or NAM study will be able to detect all the QTL influ-
encing a complex trait, due to the statistical power of the 
analyses and the noise inherent in the complex biologi-
cal and environmental systems involved (Yamamoto et al. 
2009). Therefore, users increasingly need to conduct meta-
analyses across studies, and even across species, to more 
comprehensively dissect the genetic architecture of com-
plex traits. Such an approach is increasingly being used 
to dissect complex traits in humans. For example, GWAS 
meta-analyses studying intelligence (Savage et al. 2018), 
height (Wood et al. 2014) and body mass index (Locke 
et al. 2015) have all used sample sizes of over a quar-
ter of a million individuals, with a recent meta-analysis 
study combining data across previous studies, totalling 
almost 1 million individuals, to conduct a GWAS for both 
height and body mass index (Yengo et al. 2018). In con-
trast, large-scale association mapping studies are much 
more difficult in plants due in large part to the impact 
of genotype by environment interactions. In many cases, 
it is impossible to measure or sensibly compare traits in 
plants even when the plants are grown in the same envi-
ronment due to the dominating influence of phenology 
(driven by differences in photoperiod or vernalisation). 
As a result, the largest GWAS in plants reported to date 
involving only 12,000 accessions (Bandillo et al. 2015). 
Due to the difficulties in conducting association map-
ping studies at sufficient scale in plants, tools to facilitate 
meta-analyses across studies are critical. The database 
described here provides researchers with a new meta-
analysis tool to integrate data across multiple studies and 
types of studies (QTL, GWAS and NAM) and across spe-
cies to compare positions across studies and to determine 
allelic relationships among QTL, allowing for the more 
comprehensive dissection of the genetic architecture of 
complex traits. The accumulation of QTL information 
will allow researchers to more effectively mine the QTL 
landscape (the “QTLome”; Salvi and Tuberosa 2015), 
with the potential to enhance the impact of such studies 
on crop improvement activities. The inclusion of genes 
and genomic regions controlling more qualitative and 
polygenic traits (e.g. major effect genes frequently used 
for selection by breeders) is also a critical element of the 
described resource to provide comprehensive information 
for both complex trait dissection and molecular breeding 
implementation strategies. Additionally, genome synteny 
between sorghum, rice and maize will facilitate knowledge 
transfer from related species and the identification of can-
didate genes across species that potentially underpin QTL 
regions, providing the opportunity to evaluate the extent to 

which genomic features and specific genes and QTL play 
common roles across the grasses thereby accelerating the 
translation of diverse and heterogeneous QTL information 
into crop improvement progress.

Materials and methods

Sampling strategy

QTL and association mapping data for sorghum were col-
lected from 146 publications by conducting a bibliographic 
review and using keyword searches (e.g. QTL, mapping, 
genome-wide association, major effect gene). On a study-
by-study basis, details of the genetic linkage maps were col-
lated where relevant including population type and size, total 
number of markers mapped, number of linkage groups iden-
tified, overall average marker density, mapping function used 
and analysis methodology used, in addition to the details of 
the QTL, or significant SNP, including significance level, R2 
value, flanking or most significant marker and allele effect.

QTL projection steps

From 146 studies, 5844 individual QTL for 223 unique traits 
were included in the analysis. The 223 unique traits were 
classified into seven broad categories, modified from Mace 
and Jordan (2011) for the purpose of facilitating analysis and 
reporting; leaf, maturity, panicle, abiotic stress resistance, 
biotic stress resistance, stem composition, stem morphol-
ogy, and are reported in Supplementary Material (ESM, 
Table S1).

Each instance of a QTL, or significant SNP, for each trait 
identified in a single environment was recorded as a unique 
QTL even if it co-located with additional traits or it was 
detected in more than one environment The locations of the 
QTL and significant marker–trait associations reported were 
aligned to six different maps: the sorghum consensus map 
(Mace et al. 2009), sorghum genome assemblies v1.0, v2.0 
and v3.0 (Paterson et al. 2009; McCormick et al. 2018), the 
maize genome assembly (B73 agpv2; Schnable et al. 2009) 
and rice, O. sativa subsp. japonica (Release 7; Goff et al. 
2002; Yu et al. 2002).

The consensus map reported in Mace and Jordan (2011) 
consisting of 3272 unique loci spanning 1603.5 cM, with 
2335 sequence-mapped markers was used as the first ref-
erence map for QTL projection. As described previously 
(Mace and Jordan 2011), the map location with the highest 
test statistic on the chromosome in the individual studies 
was regarded as the estimated location of a QTL from a 
particular study. In the case where the sequence location 
of the QTL CI was provided, these were used. Otherwise, 
the confidence intervals (CI) for the projected QTL were 
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then estimated as described previously (Mace and Jordan 
2011) based on the following formulae:

CI = 530/(NR2) for F2 (described by Darvasi and Soller 
1997)
CI = 163/(NR2) for RI (described by Guo et al. 2006)

where N is the number of lines in the mapping population 
and R2 is the proportion of phenotypic variation explained 
by the identified QTL.

The framework of sequence mapped markers on the 
consensus map, originally described in Mace and Jordan 
(2011), was updated to include the physical locations on 
all three sorghum genome assemblies and enabled the pre-
dicted locations of the CIs to be estimated across multiple 
sorghum genomes. In the case of significant SNPs reported 
in GWAS studies, the cM location on the consensus map 
was predicted using the same framework map and a small 
window of 1 cM (0.5 cM either side of the predicted SNP 
location) was used to estimate the CI, to accommodate 
the heterogeneous nature of GWAS studies which impacts 
upon the accuracy and resolution of the analysis output 
and to facilitate comparison across studies.

The predicted gene models within the CI across all 
three sorghum genomes were collated (Sbi1.4, Sbi2.1 and 
Sbi3.1.1 gene sets) and information on selection signa-
tures on individual genes included based on Mace et al. 
(2013, 2014), which identified signatures of purifying and 
balancing selection based on whole-genome resequencing 
of 47 individuals categorised into three groups (1. Wild 
and Weedy genotypes, 2. Landraces, 3. Improved Inbreds).

The syntenic locations of all QTL/SNPs on the maize 
and rice genomes were predicted as follows: the mean 
location of the QTL or significant SNP CI on the first v1.0 
release of the sorghum genome was used to predict the 
mean syntenic location in maize and rice based on pub-
lically available syntenic gene sets (Lyons and Freeling 
2008; Schnable et al. 2012). Publically available frame-
work genetic linkage maps of sequenced mapped markers 
(Andorf et al. 2010; Harushima et al. 1998) were then used 
to predict the cM location in maize and rice, respectively, 
and a small window of 1 cM (0.5 cM either side of the 
predicted SNP location) was used to estimate the CI, to 
facilitate comparison across studies. The physical loca-
tions of the 1 cM CI were then predicted using the frame-
work genetic linkage maps of sequenced mapped markers 
for both maize and rice. The predicted gene models within 
the CI for both maize and rice were collated based on 
publically available data set; for maize the most recent 
gene model set (Zm0001d.2.) available via maizegdb was 
used and for rice, Os-Nipponbare-Reference-IRGSP-1.0 
as described in Kawahara et al. 2013).

Software and Implementation

MySQL (version 5.6.39) was used as the underlying rela-
tional database and WordPress as the content management 
system. All data and tools are hosted on a CentOS Enter-
prise server available through http://ausso​rgm.org.au/sorgh​
um-qtl-atlas​. WordPress template files written in PHP were 
used to develop the customised Web-based query interface. 
WordPress wraps these files to keep the theme consistent 
with the rest of the site and enforce login permissions.

Results

Database content

To date, sorghum QTL from over 140 studies are included 
that have utilised 82 unique biparental populations and 13 
association mapping panels. From these 140 studies, 5843 
individual QTL, or significant marker–trait associations, for 
223 unique traits were projected onto four different sorghum 
reference maps, (1) the sorghum consensus map, 2) the 
sorghum genome assembly v1.0, (3) the sorghum genome 
assembly v2.0, (2) the sorghum genome assembly v3.0, in 
addition to the genome assemblies of both maize and rice.

The 5843 QTL were grouped into seven broad trait cate-
gories, 1753 related to the trait category Abiotic stress resist-
ance, 1668 to Panicle, 753 to Stem morphology, 422 to stem 
composition, 407 to maturity, 394 to biotic stress resistance 
and 446 to the trait category Leaf (Table 1; Fig. 1).

Seven QTL hot spot regions were identified with a 
QTL density > 100 QTL/0.5 cM, on chromosomes SBI-
02, SBI-04, SBI-06, SBI-07, SBI-08, SBI-09 and SBI-10. 
In three of these hot spot regions, a single-trait category 
accounted for > 70% of the QTL in the hot spot region, e.g. 
for the QTL hot spot region on SBI-02, over 90% of the 
QTL in this region were associated with the panicle trait 
category, and in particular grain fat and protein content, 
tannin content and kernel hardness. In contrast, the QTL 
hot spot on SBI-07 contained high numbers of QTL from 
multiple trait categories, and in particular abiotic resist-
ance (e.g. stem biomass yield and leaf yield under cold 
temperatures), stem composition (e.g. vegetative yield 
and sugar yield) and panicle related traits (e.g. panicle 
architecture). Three cold-spot regions were identified with 
a QTL density of ≤ 1 QTL/0.5 cM, on the distal ends of 
chromosomes SBI-02, SBI-05 and SBI-08. Clustering of 
QTL within a trait category was observed most frequently 
for Biotic Resistance traits; e.g. of the 36% of the sor-
ghum genome implicated in quantitative disease response 
(QDR) to fungal pathogens, half of the total QDR genomic 
space consisted of co-localising QTL for the same trait. As 
noted previously (Mace et al. 2014), the majority (> 90%) 

http://aussorgm.org.au/sorghum-qtl-atlas
http://aussorgm.org.au/sorghum-qtl-atlas
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of co-localising QTL conditioned resistance to multiple 
diseases and pests with a hot spot region on SBI-04 where 
the mid-points of 25 QTL for resistance to head bug, shoot 
fly, green bug, rust, anthracnose, stalk rot and grain mould 
resistance map mapped within 20 cM on SBI-04.

In total, 9325 syntenic locations were predicted for 
5745 sorghum QTL in maize, and 6057 syntenic loca-
tions were predicted for 5813 sorghum QTL in rice (ESM 
Figures S1 and S2).

Table 1   Number of sorghum 
QTL per chromosome and per 
trait category

Chromosome Leaf Maturity Panicle Resist-
ance 
abiotic

Resist-
ance 
biotic

Stem 
composi-
tion

Stem 
morphol-
ogy

Grand total

SBI-01 107 63 276 246 50 58 102 902
SBI-02 23 45 319 174 48 36 34 679
SBI-03 56 34 159 240 39 53 83 664
SBI-04 41 29 284 125 34 32 55 600
SBI-05 20 19 70 103 21 15 31 279
SBI-06 48 84 177 145 43 73 147 717
SBI-07 43 19 126 127 23 58 115 511
SBI-08 57 29 87 269 22 18 39 521
SBI-09 21 40 70 162 76 57 99 525
SBI-10 30 45 100 162 38 22 48 445
Grand total 446 407 1668 1753 394 422 753 5843

Fig. 1   QTL density plots (num-
ber of QTL/0.5 cM) along the 
sorghum genome. The scale bar 
to the left indicates the length of 
each chromosome in cM based 
on the sorghum consensus map
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Web‑based tools

The database homepage contains background information 
and links to the relevant literature about the development of 
the database content. The homepage allows users to select 
different options for querying the database (ESM Figure S3).

•	 Search via trait
•	 Search via genomic location
•	 Search via study
•	 Search via syntenic location
•	 Advanced search

Search via trait allows users to select search terms which 
can be entered at the level of trait category, trait subcategory 
or trait description. For example, to search for QTL asso-
ciated with grain weight users can either enter the search 
term “Grain weight” in Trait Description, or select the trait 
category “Panicle” or Trait subcategory “Grain & Panicle 
Yield”, and search in the Trait Description options to select 
grain weight-related traits.

Search via Genomic Location allows users to search for 
a specified physical location on any of the three available 
sorghum genome assemblies in addition to the genetic link-
age scale on the sorghum consensus map. The location can 
be specified as a set distance from a target location or with 
a defined start and end location.

Search via Study allows users to search for QTL identified 
in specific populations, in specific publications (accessible 
through author names, publication title or keywords, the 
journal name, year of publication), the original published 
QTL identifier (e.g. stg A, Sb-HT9.1, qGY-5), flanking 
markers detailed in the original publication (e.g. txp302, 
Dsenhsbm64, S1_10629136), and to limit the search to only 
QTL, GWAS or major effect gene studies.

Search via Syntenic Location allows user to QTL in 
sorghum based on the syntenic location in either maize 
or rice. Users can specify the location in either the maize 
genome assembly (B73 agpv2; Schnable et al. 2009) or the 
rice genome assembly, O. sativa subsp. japonica (Release 
7; Goff et al. 2002; Yu et al. 2002), or provide a candidate 
gene ID from either species (e.g. GRMZM2G108663; 
LOC_Os01g01080.1).

Additionally, the advanced search option allows users to 
combine elements from all four searches above (via trait, 
genomic location, study and syntenic location).

The search output is displayed in a downloadable sum-
mary QTL results table that can be further interrogated by 
clicking on any individual row, which provides a link to the 
QTL details page. The QTL details page provides trait hier-
archy information, general information (the population used 
for the QTL identification, the significance value and meas-
ure used, e.g. min log10P, LOD, p value (± adjustments made 

for FDR/Bonferroni correction, as detailed in each study), 
the additive effect, a hyperlink to the publication page), 
information about the location of the QTL. The location 
information includes the physical position of the QTL CI on 
all three genome assemblies, with a hyperlink to the list of 
predicted gene models under each CI, in addition to informa-
tion on the genetic linkage (cM) coordinates on the sorghum 
consensus map. It also includes information on the flanking 
markers and information on the predicted syntenic location 
in maize and rice, with hyperlinks to a downloadable list of 
predicted gene models in the rice genome underlying the 
QTL CI, in addition to links to the genome browsers (for rice 
at MSU (http://rice.plant​biolo​gy.msu.edu/; and for maize at 
maizegdb https​://gbrow​se.maize​gdb.org/).

Application examples

Do QTL identified for a selected trait in one population 
or environment corresponds to those identified in other 
populations or environments?

Clustering of QTL within a trait category was observed most 
frequently for Biotic Resistance traits. In particular, half of 
all the QTL associated with quantitative disease response 
(QDR) to fungal pathogens co-localised, often for the same 
trait. However, clustering of resistance responses across 
pests and diseases was also observed by Mace et al. (2014) 
with a hot spot region on SBI-04 where the mid-points of 
34 QTL for resistance to head bug, shoot fly, green bug, 
rust, anthracnose, stalk rot, ergot, Southern root-knot nema-
tode and grain mould resistance map mapped within 20 cM 
on SBI-04. As speculated previously, this could be due to 
single gene effects, whereby the resistance gene and QTL 
are allelic, or by the effects of clusters of genes. A hot spot 
region on SBI-09 was also identified where the mid-points 
of 43 QTL for resistance to, rust, rice weevil, striga, stalk rot 
and midge resistance co-located within 20 cM on the long 
arm of SBI-09. In both of these hot spot examples, resistance 
traits of importance to other species were identified, e.g. 
southern root-knot nematode (Meloidogyne incognita race 
3) resistance for maize, and rice weevil (Sitophilus oryzae) 
resistance for rice, providing opportunities to investigate the 
syntenic regions in maize and rice for evidence of associa-
tion with biotic resistance traits.

For a selected chromosomal region where a QTL has been 
detected, what other traits have been associated 
with the same region?

In many crop species, intense selection is practiced in early 
generations for major effect genes such as morphologi-
cal traits, major gene resistance or phenology. This strong 
selection will have strong effects on the frequency of closely 

http://rice.plantbiology.msu.edu/
https://gbrowse.maizegdb.org/
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linked genes in the genome. These impacts can be height-
ened where major effect genes are linked. Typically, breeders 
have little or no idea of the potential impact of this selection 
on other genes or QTL. To illustrate this issue, Mace and 
Jordan (2010) highlighted the impact on QTL allele frequen-
cies using a simulation study on a 100 cM region on the long 
arm of SBI-03 containing both stay-green QTL and major 
effect genes for grain colour and the presence of awns. Dif-
ferent selection strategies were investigated for the impact 
on recovering the beneficial stay-green QTL alleles (Fig. 2), 
and the study demonstrated that strong selection pressure 
applied for red grain colour in early generations resulted in 
significantly lower frequencies of the beneficial stay-green 
QTL alleles.

In the public sorghum breeding program in Australia, 
breeders practiced strong selection for the dominant allele 
of grain colour (R) and by doing so effectively reduced the 
frequency of the beneficial alleles for stay-green 2 to very 
low levels despite the stay-green trait being a major selec-
tion target of the breeding program (unpublished data). In 
the light of our knowledge of the association between the 
major effect genes for grain colour and awns and the two 
stay-green QTL in this genomic region (stg1 and stg2), alter-
native and more effective molecular breeding strategies can 
be identified and deployed, as described previously (Mace 
and Jordan 2010).

This example on SBI-03 has potential impact for closely 
related species. The stg2 QTL in sorghum is syntenic with 
the maize QTL stay-green 3 (qstgr3 in MaizeGDB) and 
has the potential to provide insights into unforeseen conse-
quences, due to linkage drag, of selection decisions based 
on genes or QTL that are closely linked. Simulation studies 
such as the one described here may help determine whether 
closely linked traits are due to allelism or pleiotropic effects 
and underline the potential risks and opportunities available 
when breeders and researchers have access to high-resolu-
tion data for specific genomic regions of interest.

Do QTL locations identified in one species correspond 
to QTL or candidate genes detected in corresponding 
regions of other related species?

The QTL atlas facilitates the identification and prioritisation 
of candidate genes through the identification of all predicted 
gene models underlying each QTL CI, not only across the 
three sorghum genome assemblies but also in maize and 
rice. Inclusion of the Gene Ontology (GO) terms and the 
sequence diversity statistics generated previously (Mace 
et al. 2013) for all predicted gene models, in addition to 
selection signatures, provides opportunities to prioritise can-
didate genes based on gene sequence variability and over-
representation of GO terms or specific gene families.

1.	 Maturity

As proof of concept, we compared the predicted syn-
tenic location of the major effect sorghum maturity locus, 
Ma3 (Childs et al. 1997), known to be encoded by PHYB, 
with the location of the orthologous PHYB genes in maize 
and rice (Fig. 3a). The predicted syntenic location of the 
CI for Ma3 was found to co-locate with PHYB in maize 
(GRMZM2G124532) and rice (LOC_Os03g19590). Fur-
ther to this, a syntenous maturity QTL identified in both 
sorghum and maize NAM resources (Mace et al. 2013; 
Buckler et al. 2009), which also co-located with a can-
didate gene, was investigated to compare the predicted 
syntenic location in maize with the reported significant 
marker–trait association from Buckler et al. (2009). The 
significant marker PZA00402.1 associated with days 
to anthesis in maize (Zm Chr 3 at 223,179,497 bp) co-
located within the predicted syntenic CI location (Zm Chr3 
222,942,597–223,384,631 bp), in addition to containing the 
orthologous photoperiod candidate gene identified in sor-
ghum, CHLOROPHYLL A/B BINDING PROTEIN (CAB) 
(Fig. 3b).

2.	 Fertility restoration

The genomic space in sorghum associated with fertil-
ity restoration QTL was found to be significantly enriched 
for PPR-encoding genes (Χ2 p value 0.00035), with only 
1 of the 17 QTL described in the literature without a PPR 
gene within the QTL CI. The predicted syntenic locations 
of the sorghum fertility restoration QTL in maize and rice 
were also found to co-locate with PPR genes, e.g. the CI 
of the Rf5 locus in sorghum (Jordan et al. 2011) co-locates 
with 8 PPR genes and the predicted syntenic locations in 
maize and rice co-locate with a single PPR gene (Fig. 4). 
The PPR gene within the maize CI has recently been identi-
fied as Emp11 (Empty pericarp11) shown to be essential for 
proper seed development in maize (Ren et al. 2017). Users 
are also able to use the maize gene identifier for Emp11 
(GRMZM2G353301) as the input search parameters and 
interrogate all the sorghum QTL that have been identified 
in the predicted syntenic location in sorghum.

Can a meta‑analysis across studies improve the resolution 
of the QTL/GWAS output for selected traits?

A meta-analysis across studies can provide opportunities for 
increasing the accuracy of the QTL location, and hence the 
underlying candidate gene. As proof of concept, we looked 
at the QTL for height that have been identified within 4 Mb 
of dw3, the causative gene (Multani et al. 2003). In total, 
70 QTL for height have been identified from 26 studies. 
The average distance of the QTL mid-point from dw3 was 
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1.128 Mb across the 70 QTL (Fig. 5); however, by collating 
and averaging all of the existing height QTL data across 
studies, a target region approximately 250 Kb from the 
causative gene can be identified increasing the resolution 
4.5-fold (Fig. S4).

Discussion

The Sorghum QTL Atlas is a high-resolution, open-access 
research platform to facilitate candidate gene identification 
across three cereal species, sorghum, maize and rice. The 
platform provides users with multiple QTL search options 
and resource links, both to external sites, and to downloada-
ble data, as shown in Figure S3. The versatility of the search 
options, the comprehensiveness of the database content and 
the simplicity of the user interface provide a valuable bridge 
between genomics and applied breeding. Such a resource for 
searching for and comparing QTL locations across studies, 
traits and species is more efficient than the current model 
for sharing QTL information through journal publications 
which do not impose data format standards and requires sig-
nificant time for individual researchers to mine the available 
literature. The time required and inefficiency of the current 
model of QTL information sharing is reflected in the limited 
number of QTL and/or GWAS studies that effectively review 
the published QTL literature in a species, with even fewer 
including cross-species comparisons. The described QTL 
Atlas can leverage analyses conducted in different popula-
tions and species to provide increased power for complex 
trait dissection. The inclusion of predicted syntenic locations 
of sorghum QTL CI in two closely related species, maize 
and rice, in the QTL Atlas, in addition to all predicted gene 
models within the syntenic QTL CI further strengthens the 
application of genomics and QTL data to powerful genom-
ics-assisted methods for cereal crop improvement. Together 
the atlas enables user to address a range of key questions 
including:

•	 Do QTL identified for a selected trait in one population 
or environment correspond to those identified in other 
populations or environments?

•	 For a selected chromosomal region where a QTL has 
been detected, what other traits have been associated with 
the same region?

•	 Do QTL locations identified in one species correspond 
to QTL or candidate genes detected in corresponding 
regions of other related species?

•	 Can a meta-analysis across studies improve the resolution 
of the QTL/GWAS output for selected traits?

The first three of these questions were identified as criti-
cal for maximising the utility of QTL data over 20 years ago, 
before either comprehensive data sets or structured data-
bases were available (e.g. Byrne et al. 1995; Bigwood 1997). 
The questions are still highly relevant today, as acknowl-
edged by more recent studies describing QTL resources 
(e.g. Lawrence et al. 2007) and enable users to develop new 
hypotheses for QTL in addition to leveraging the power of 
comparative genomics to identify candidate genes for com-
plex traits.

Dynamic approaches characterise the identification 
of significant marker–trait associations

Cataloguing, standardising, summarising and integrating 
information across studies are very time consuming. Fur-
ther work is required by global crop research communities 
to standardise trait ontologies across existing databases and 
future studies which would allow for automated data col-
lection, integration and meta-analysis, including adopting 
standardised approaches for identifying and reporting sig-
nificant marker–trait association and for controlling the rate 
of false discoveries (FDR). However, the platform presented 
in this paper is unique in integrating data in a standardised 
format across traditional QTL studies and association map-
ping studies in plants. To date only a very limited number 
of databases have attempted to do this, with most progress 
being made in animal research, e.g. Animal QTLdb which 
was recently updated to include GWAS studies in addition 
to QTL data, and e-QTL (Hu et al. 2013), and is described 
by the authors as an animal QTL/association database which 
serves as a bridge between genotypes (genes) and pheno-
types (traits). The comprehensive and effective synthesis 
across studies, however, is critical for maximising value and 
potential impact of the QTL information in crop improve-
ment activities. Any synthesis must therefore provide oppor-
tunities to assess the reliability of the component studies, 
including the significance thresholds used. The QTL search 
tools enable users to compare QTL across studies; users can 
select either specific traits to compare within a population or 
select the same trait to compare across populations and stud-
ies. This enables the identification of QTL clusters for key 
traits, e.g. QDR traits, and enables users to identify common 
versus population–specific traits.

Combining QTL from previous studies facilitates the 
identification of genomic regions that are enriched for QTL, 
also known as QTL clusters, across traits. In most cases, it 

Fig. 2   Genetic region on SBI-03 with two major effect stay-green 
QTL highlighted in addition to major effect genes for grain colour 
(R) and awns (A), together with the results from a simulation study to 
investigate the impact on stay-green QTL frequency across five differ-
ent selection strategies. Figure modified with permission from Mace 
and Jordan (2010) (color figure online)

◂
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has not yet been determined whether QTL clusters asso-
ciated with multiple traits represent the pleiotropic effects 
of a single gene or close linkage of different genes affect-
ing different traits. However, the synthesis of standardised, 
multi-trait, multi-study information in platforms such as this 
will provide further insights into potential pleiotropic effects 

which could explain physiological or functional interactions 
between traits. For example, the chromosomal segment on 
SBI-02 in sorghum containing the B2 gene controlling the 
presence of the high-tannin testa layer in the sorghum grain 
has been associated with QTL for grain quality (Rami et al. 
1998), grain mold resistance (Upadhyaya et al. 2013), grain 

Fig. 3   Comparison of days to 
flowering QTL in sorghum (in 
dark green) with predicted syn-
tenic CI QTL locations (in light 
green) and syntenic gene mod-
els across species (represented 
by horizontal black bars), with 
known candidate genes high-
lighted in red. a Major effect 
maturity locus Ma3 in sorghum, 
and causative gene PHYB, and 
the predicted syntenic QTL CI 
locations in maize and rice, 
and orthologous PHYB genes. 
b Days to flowering QTL 
identified in the sorghum NAM 
population and underlying 
candidate genes and predicted 
QTL CI in comparison to the 
significant marker identified in 
Buckler et al. (2009) (repre-
sented as a black bar to the left 
of the maize chromosome), and 
the underlying candidate genes 
(color figure online)

Fig. 4   The CI of the Rf5 locus 
in sorghum (Jordan et al. 2011) 
co-locates with 8 PPR genes 
in sorghum, highlighted in red, 
and the predicted syntenic loca-
tions in maize and rice co-locate 
with a single PPR gene (color 
figure online)
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composition (Shakoor et al. 2016; Rhodes et al. 2017) and 
cold tolerance (Knoll et al. 2008) and it is likely that the 
high tannin content in the sorghum contributes to grain mold 
resistance; (2) the chromosomal segment on SBI-07 contain-
ing the dw3 gene controlling plant height co-locates and 
likely has a pleiotropic effect on QTL for stem juice yield 
(Guan et al. 2011; Murray et al. 2008a), panicle exsertion 
(Zhao et al. 2016), biomass (Guan et al. 2011), panicle archi-
tecture (Pereira et al. 1995; Brown et al. 2006) and lodging 
(Murray et al. 2008b). Observations of major genes’ pleio-
tropic effects across crops have been made, e.g. the gene in 
Arabidopsis that controls cuticular wax biosynthesis, CUT1, 
was found to have a pleiotropic effect resulting in conditional 
male sterility, which Millar et al. (1999) determined was 
caused by the absence of waxes in the trypine layer of the 
pollen grain disrupting pollen-pistil interactions. A database 
that integrates QTL information across traits is critical in 
order to identify potential pleiotropic interactions. However, 
to date comprehensive, up-to-date multi-trait databases are 
very rare for crop species. Even single-trait database avail-
ability is limited, e.g. root traits in rice, Courtois et al. 2009; 
plant height in maize, Wang et al. 2006; disease resistance 
in maize, Zhao et al. 2015. Additionally, such single-trait 
databases do not provide the opportunity to look for poten-
tial pleiotropic interactions across traits. Knowledge of 
QTL clusters can also be valuable for exploiting heterosis in 
hybrid breeding. Breeders can target complementary benefi-
cial QTL allele accumulation in male and female germplasm 
pools separately, that can be deployed in hybrid combination 
resulting in maximal expression of heterosis in F1 hybrids.

The synthesis and interpretation of QTL information that 
is enabled by the sorghum QTL atlas platform potentially 
allows sorghum breeders and researchers to focus their 

efforts on high-confidence genomic regions with the high-
est percentage of phenotypic variances/large effect sizes, as 
well as providing opportunities to investigate potential unin-
tended consequences that could arise if a particular genomic 
region is used in selection decisions for crop improvement. 
This is very important as reliance on individual studies, and 
individual populations, can be problematic, due to both the 
limited genetic diversity, and allelic variation, studied in a 
single population and the possible inclusion of false posi-
tives in results. For example, the majority of sorghum QTL 
and GWAS publications (118) only studied a single popula-
tion, with the remaining 22 publications studying between 
2 and 5 populations. In addition to the use of low statistical 
threshold values, false-positive QTL can also be identified 
because of small population sizes, as discussed by Beavis 
(1994). In the sorghum studies included in this resource, the 
population sizes ranged from 70 up to 400, with an overall 
increase in population size in QTL mapping studies in the 
last two decades from an average of 98 in 1997 up to 214 in 
2018. Association mapping methodologies have been used 
increasingly for quantitative trait dissection over the last 
5 years. This provides an opportunity to sample a broader 
range of allelic variation. Additionally in the sorghum litera-
ture, the average size of the association panels was almost 
twice that of the mapping populations, with the panel sizes 
ranging from 107 to 2214. The two largest panels used to 
date are the two sorghum NAM panels developed (Mace 
et al. 2013; Bouchet et al. 2017). Marker density increased 
in both QTL and GWAS studies in the last 3 years with the 
increasing use of GBS technology, with QTL mapping stud-
ies published after 2012 having an average marker density 
of over 6300, in comparison with just 170 markers per study 
pre-2012. GWAS studies had an average marker density 

Fig. 5   Distribution of 70 height 
QTL within 4 Mb of dw3 on 
SBI-07

dw3
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tenfold greater than QTL mapping studies (80,000 markers 
per study). GWAS studies also reported, on average, double 
the number of significant marker–trait associations reported 
per study in comparison to QTL studies (82 per GWAS study 
vs 28 in QTL studies). The average number of QTL reported 
per trait per study was 5.8, slightly higher than reported for 
other meta-analysis studies, e.g. 4.6 reported by Chardon 
et al. (2004).

In order to manage the challenges raised by heterogene-
ity among QTL studies, meta-analysis methods have been 
developed (e.g. Goffinet and Gerber 2000; Arcade et al. 
2004; Veyrieras et al. 2007). These enable the integration of 
multiple diverse genetic linkage maps and QTL onto a single 
reference map through iterative projections. However, such 
approaches typically require large numbers of QTL per trait 
and also per genomic region in order to estimate the most 
likely location of a QTL in a specific region, and to date 
the approaches also do not accommodate GWAS output. As 
GWAS output represents over half (3200) of the compiled 
QTL Atlas content, a meta-analysis approach would not 
capture the extent of the genomic regions associated with a 
specific trait and hence would not contribute to increasing 
the resolution in the QTL region or increasing the value of 
the data included in this resource. We therefore decided it 
was unsuitable for inclusion in the analysis of the QTL and 
GWAS outputs for this resource. This highlights the need, 
however, for analysis methods that allow GWAS and QTL 
output to be integrated in order to increase the power of 
meta-analysis approaches.

Leveraging the power of multiple studies 
for complex trait dissection

One of the first steps taken when interpreting the results 
of a QTL or GWAS study is to determine which genes fall 
either within the QTL CI or with a pre-defined LD window 
around the SNP peaks. This generally involves manually 
going through output files to identify the coordinates of 
the SNPs or CIs, and then using these to filter large lists 
of genes. This process can be prone to errors, particularly 
when dealing with large output files from GWAS studies, as 
well as the difficulties of dealing with multiple peaks with 
complex traits. The QTL atlas provides not only all of the 
predicted gene models underlying the CIs and within a 1-cM 
LD window around significant GWAS peaks, but also the 
predicted gene models within a 1 cM window of the syntenic 
location in both maize and rice. The extent of the physi-
cal genomic region captured by the 1-cM window varies 
throughout the genome in all 3 species, influenced highly by 
recombination rate variation across the genome. For exam-
ple, in the heterochromatic regions in sorghum, 1 cM is on 
average represented by approximately forty-times the physi-
cal distance (8.46 Mbp) than 1 cM in the euchromatin (0.22 

Mbp). The use of a standardised 1-cM window, rather than 
a standardised physical window defined by base-pair coor-
dinates, has attempted to take into account the variation in 
recombination frequencies which influence linkage disequi-
librium throughout the genome. However users should be 
aware that in some contexts, a 1-cM window may be either 
too large (e.g. in a large diversity panel) or too small (in a 
structured population) and in these situations, the predicted 
gene models reported may need to be extended or reduced.

The multi-species nature of this platform is novel. Very 
few attempts have been made to integrate QTL information 
across plant species. A comparative QTL database has been 
reported for Saccharinae grasses (Zhang et al. 2013), how-
ever, at the time of publication of this study, it was not avail-
able. TropGeneDB has recently been developed containing 
data on molecular markers, QTL, maps, genotypes and phe-
notypes for 10 tropical crops (Hamelin et al. 2013); however, 
the database does not contain functionality for across species 
QTL comparisons. A mammalian multi-species QTL data-
base has been developed for mice, rat and human QTL for 
the analysis of underlying candidate genes (Star et al. 2006), 
in addition to a broader Animal QTLdb (Hu et al. 2013), 
including QTL information from cattle, chicken, pigs, sheep 
and rainbow trout, for comparison of QTL both across and 
within species studies.

One of the major goals of QTL and GWAS studies is to 
identify the causative gene responsible for the phenotypic 
variation observed for the particular trait. The integration of 
results from different mapping studies within and across spe-
cies can facilitate the identification of overlapping genomic 
regions which, when combined with information on diversity 
and selection of all the predicted gene models in the region 
in addition to orthologous candidate genes in closely related 
species, provides an opportunity to further mine the wealth 
of mapping data available for quantitative trait dissection. A 
meta-analysis across studies can also provide opportunities 
for increasing the accuracy of the QTL location, and hence 
the underlying candidate gene, as indicated with the 4.5-
fold increase in resolution around the height gene, dw3 on 
SBI-07, through a meta-analysis involving 70 height QTL 
from 26 studies. This approach is increasingly being used 
in human GWAS studies, e.g. a meta-analysis combining 
data on educational attainment from multiple sources and 
studies has now reached over 1 million subjects making it 
the largest GWAS sample ever assembled, providing a very 
powerful predictive instrument (Martin 2018). In plants the 
influence of the environment, which drives the high levels 
of context dependency observed in plant phenotypes, means 
that a meta-analysis approach will be critical to achieve more 
powerful mapping studies, with high resolution and preci-
sion. Comparative genomics also has a critical role to play 
to facilitate causative gene identification, with evidence from 
classical genetics in maize suggesting that the vast majority 
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of visible plant phenotypes result from genes conserved at 
syntenic locations across the grasses, or in other words syn-
tenic conservation between species has been shown to be 
associated with function (Schnable 2015). However, varying 
linkage equilibrium signatures genome-wide impacts on can-
didate gene identification and prioritisation within a given 
QTL CI. Previous studies have estimated that LD largely 
decays in sorghum between 10 and 50 kb, depending on 
the germplasm sets studied (Mace et al. 2013; Morris et al. 
2013; Hamblin et al. 2005; Wang et al. 2013). However, 
LD patterns differ significantly throughout the genome and 
for any given QTL CI, the extent of surrounding LD blocks 
should be considered. Comparative genomics, however, 
can provide opportunities to exploit low LD regions from 
related species to narrow down the list of candidate genes. 
For example, a recent study (Mace et al. 2013) comparing 
the maturity QTL identified in the sorghum and maize NAM 
populations identified examples where the QTL identified in 
one species occurred in a region of low recombination and 
the syntenic QTL in the other species occurred in a region 
of high recombination, providing higher resolution for can-
didate gene identification. Figure 6 highlights an example of 
four mature QTL identified in sorghum in a region of high 
recombination and a single syntenic maturity QTL identified 
in maize (Buckler et al. 2009) in a region of low recombina-
tion, demonstrating how information from one species, in 
this example sorghum, can be used to inform the other, in 
this case maize.

The number of studies reporting QTL and GWAS in 
maize and rice has grown rapidly and total several fold 
than that available in sorghum. However, due to the limited 
available of comprehensive multi-trait QTL databases for 
maize and rice, with adjusted CIs taking into account factors 
influencing the reliability of the original study, we have not 
attempted to incorporate the maize and rice QTL informa-
tion into the QTL Atlas. Users can instead search using the 
QTL locations identified for selected traits in maize and rice 
to find the QTL identified in sorghum in the syntenic loca-
tions. However, it is critical that global databases of QTL 
and GWAS outputs are established for each species to enable 
researchers to readily search for and compare QTL within 
and across species in the future.

Future developments

The goal is to keep the QTL Atlas current and useful to 
the cereal community by providing regular updates with 
QTL and significant marker–trait association from suc-
ceeding QTL and GWAS studies, in addition to updat-
ing QTL projection to the most recent genome assembly 
releases across species. In addition to search functions, 
the sorghum QTL Atlas also contains a contact form to 
enable users to alert us about new publications and to 

ensure that it is integrated as rapidly as possible into the 
atlas. Additionally we will investigate the use of new 
tools, such as QTLTableMiner++ (Singh et al. 2018), in 
addition to in-house customised programming scripts, to 
automate data collation from diverse sources. Direct data 
submission has not been provided to ensure consistency in 
data standards and in QTL CI prediction methodologies. 
Maintaining accurate up-to-date content will be critical for 
meta-analysis studies that will increase the power and pre-
cision for candidate gene identification. This is particularly 
important in plant species, where genetic by environmental 
(GxE) interactions drives high context dependencies in 
plant phenotypes, and where the number of individuals 
included in mapping studies are many folds less than in 
human studies, e.g. the largest GWAS study in plants to 
date used 12,000 individuals in comparison to over 1 mil-
lion individuals in humans. Meta-analyses in plants will 

Fig. 6   Sorghum/maize flowering time QTL synteny between sorghum 
SBI-06 and maize chromosomes 2 and 10. Sorghum QTL identified 
in Mace et al. (2013) indicated as green segments on sorghum chro-
mosome. Projected locations of the mid-point of the sorghum QTL 
onto the syntenic maize chromosomes indicated by lines between 
chromosomes. Locations of the maize DA (blue) and DS (red) sig-
nificant markers identified in Buckler et al. (2009) indicated. Co-ordi-
nates of segments of maize chromosomes detailed (based on maize 
NAM map) and orientation of maize chromosomes, relative to sor-
ghum chromosome, indicated by arrows. Asterisks indicate maize 
QTL with mid-points less than 10 cM from the location of the sor-
ghum QTL mid-point. Figure modified with permission from Mace 
et al. (2013) (color figure online)
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be critical to achieving higher power and precision for 
mapping complex traits.

There are also future opportunities to identify causal 
loci within candidate genes by linking to available whole-
genome resequencing data across multiple genomes and 
multiple species. With the increase in sequencing studies 
within and across species, researchers will have access not 
only to high-resolution sequence data genome-wide but also 
to estimated haplotype information across many thousands 
of individuals (e.g. using the Practical Haplotype Graph 
approach; Buckler et al. 2018). Linking haplotype data to 
QTL and/or GWAS studies will provide significant power 
to improve association mapping studies going forward. This 
will provide powerful approaches for causal loci identifi-
cation within QTL CI through SNP identification between 
parental lines, haplotype construction across diverse lines, 
and Genomic Evolutionary Rate Profiling Scores (GERP) 
analysis across species to identify deleterious mutations. 
Comparable QTL and GWAS databases across species will 
be a critical step for maximising the power of comparative 
genomics approaches to complex trait dissection and deploy-
ment in crop improvement activities.
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