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Abstract

Macadamia (Macadamia integrifolia, M. tetraphylla and hybrids) is an Australian native nut

crop and has a significant economic value in the food industries worldwide. Long juvenility

along with traditional breeding strategies impede quick genetic improvement of this crop.

The existing cultivars constitute only second to fourth generation of the wild germplasm in

the rainforest. The utilisation of molecular markers for genomic selection and genome-wide

association studies may accelerate genetic gains. Identification of a robust, reproducible,

and cost-effective marker system is instrumental in increasing the efficiency of genomic

studies. This study is the first to report the potential of two ultra-high-throughput diversity

array technology (DArT) markers (silicoDArT and SNP) in macadamia. Both markers were

used to identify the genetic diversity and population structure in 80 macadamia cultivars.

Parentage analysis of 25 scions in a rootstock trial was conducted to confirm plant identity

where recorded identities did not corroborate with phenotypic field observations. A total of

22,280 silicoDArT and 7,332 SNP markers were reported, of which 11,526 silicoDArT and

3,956 SNP markers were used for analyses after screening with quality control parameters

including >95% call rate, >95% reproducibility, and >0.05 one ratio. The average polymor-

phic information content (PIC) values of silicoDArT and SNP markers were 0.29 and 0.21,

respectively. Genetic variance among the cultivars ranged from 0.003 to 0.738 in silicoDArT

and 0.004 to 0.412 in SNP markers. Four distinct population groups were identified from

SNP data analysis. Most of the accessions used in this study were descended from two or

more populations. Cluster analysis clearly separated genotypes of distinct origins, such as

the Hawaii Agricultural Experiment Station and Hidden Valley Plantation accessions. Two

wild accessions of Macadamia jansenii and M. ternifolia were found to be distantly related to

the cultivars. Wild germplasm individuals and their hybrids with cv. ‘660’ formed separate

clusters, suggesting that crossing between wild and cultivated genepools can extend

genetic diversity. DArTseq-based SNP markers were successfully utilized to confirm the

genetic identity of 25 scions in a rootstock trial. Our study suggests that DArT platforms are

a robust system for the facilitation of genomic studies with regard to macadamia.
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Introduction

Macadamia is a cross-pollinated tree and constitutes a nut crop industry with a high value

kernel [1, 2]. Its unique flavours, multipurpose uses, and long shelf life have increased the

demand for macadamia nuts worldwide. The genetic improvement of Australian macada-

mia cultivars is still at an early stage. Though the crop was first domesticated one and a half

centuries ago [1, 3, 4], existing cultivars are only second to fourth generations from their

wild progenitors [4, 5]. Until recently, worldwide macadamia improvement programs were

mostly dependent on pedigree analysis and phenotypic characterization [6–9], subjected to

the inaccuracy involved in the selection of elite accessions due to the effects of environment

and genotype-environment interactions. To reduce inaccuracies in selection procedure and

to accelerate breeding efficiency, genomic techniques may be used as a tool of macadamia

breeding program [10].

Molecular markers have been utilized in several crop species to ascertain the genetic diver-

sity in the gene pool [11], identify QTLs and candidate genes conferring valuable traits [12,

13], authenticate plant identity and the parentage of hybrids [14], generate data for gene

expression profiling [15], and predict the genetic potentiality/performance of individual culti-

vars [16]. Over the last few decades, several marker technologies have been developed for mac-

adamia, primarily for the study of genetic diversity. Some of the important markers used in

macadamia are isozyme [17], randomly amplified DNA fingerprinting (RAF) [18, 19], random

amplified polymorphic DNA (RAPD) [20, 21], amplified fragment length polymorphism

(AFLP) [22, 23], randomly amplified microsatellite fingerprinting (RAMiFi) [24] and micro-

satellite [25–27] markers. Limitations associated with these marker systems include low

marker density, poor genome coverage, and less cost-effectiveness. In this perspective,

sequence-based single nucleotide polymorphism (SNP) markers developed through auto-

mated sequencers can constitute an important choice for molecular studies due to their wide

and uniform genome coverage with high-throughput and cost-effectiveness [28]. There is an

increasing demand for the development of ultra-high-throughput low cost assays to facilitate

the genotyping of individuals with the use of a large number of high-density markers that

cover the entire genome. High-density array-based oligonucleotide markers such as single fea-

ture polymorphisms (SFPs), restriction site-associated DNA (RAD), and diversity array tech-

nology (DArT) provide a way to achieve this goal of development of cost-efficient ultra-high-

throughput genotyping systems.

In 2001 [29], Diversity Array Technology Pty Ltd (DArT, Canberra, ACT, Australia) devel-

oped cost-effective sequence-independent ultra-high-throughput marker systems. DArT

develops markers through a microarray hybridization method and can produce thousands of

polymorphic loci in a single assay. This marker platform has been used for whole-genome

scanning of a range of crop species [30–36]. Over the last decade, DArT has generated two

types of markers: i) silicoDArT and ii) SNP markers. SilicoDArT markers are microarray

markers that are dominant and scored for the presence or absence of a single allele. DArTseq-

based SNPs are co-dominant markers. Both types of markers have been successfully applied in

several crop species for genetic diversity [37–41], genetic mapping [36, 42–44], and population

structure [45, 46] studies. The present study is the first to utilize the DArT platforms in maca-

damia; we present the development of DArT marker platforms, and compare and analyse the

usefulness of silicoDArT and SNP markers for genomic studies. DArT markers were applied

to investigate the genetic diversity in cultivated and wild germplasm. DArT markers were also

tested for utilization in plant identification.
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Materials and methods

Plant materials

Macadamia cultivars of multiple origins including from Hawaii Agricultural Experiment Sta-

tion (HAES), Hidden Valley Plantation (HVP), Israeli and Australian selections, accessions

from wild germplasm, and progeny from the Australian industry macadamia breeding pro-

gram (Australian elite selections, dwarves, breeding progeny and hybrids of wild germplasm)

were employed for genetic diversity and population structure analysis (Table 1). Leaf samples

from seven cultivars were collected from each of two different plants to use as biological

Table 1. List of macadamia cultivars used in genetic diversity study. HAES Hawaiian Agricultural Experiment Station; HVP Hidden Valley Plantation.

Accessions Origin Female Male Reason of study

333 HAES Unknown Unknown Cultivar

344 HAES Unknown Unknown Cultivar

660 HAES Unknown Unknown Cultivar

741 HAES Unknown Unknown Cultivar

762 HAES Unknown Unknown Cultivar; Technical replicate

781 HAES Unknown Unknown Cultivar

791 HAES Unknown Unknown Cultivar

804 HAES Unknown Unknown Cultivar

814 HAES Unknown Unknown Cultivar

816 HAES Unknown Unknown Cultivar

842 HAES Unknown Unknown Cultivar

849 HAES Unknown Unknown Cultivar

842/H2 HAES/Australian cultivar Unknown Unknown Technical replicate

A16 HVP Release Unknown Cultivar

A203 HVP 344 Unknown Cultivar

A268 HVP 344 Unknown Cultivar

A4 HVP Release Unknown Cultivar; Technical replicate

AM-4-8 Australian industry breeding 705 A16 Technical replicate

AM-9-28 Australian industry breeding 660 NG18 Technical replicate

Beaumont Australian cultivar Unknown Unknown Cultivar

D4 Australian cultivar Unknown Unknown Cultivar

Daddow Australian cultivar Unknown Unknown Cultivar; Technical replicate

DW1 Australian industry breeding NG8 762 Dwarf

DW2 Australian industry breeding NG8 762 Dwarf

DW3 Australian industry breeding Yonik NG8 Dwarf

DW4 Australian industry breeding Yonik NG8 Dwarf

H2 Australian cultivar Unknown Unknown Cultivar

IMCDW Australian industry breeding Unknown Unknown Dwarf

Mjan Wild germplasm Unknown Unknown Wild M. jansenii
Mtern Wild germplasm Unknown Unknown Wild M. ternifolia
NG18 Australian cultivar Unknown Unknown Cultivar

NG29 Australian cultivar Unknown Unknown Cultivar

NG8 Australian cultivar Unknown Unknown Cultivar

Own Venture Australian cultivar Unknown Unknown Cultivar

QB-10-111Q Australian industry breeding 246 A16 Australian elite

QB-10-93J Australian industry breeding A16 781 Australian elite

(Continued)
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Table 1. (Continued)

Accessions Origin Female Male Reason of study

QB-11-14 Australian industry breeding 660 NG18 Technical replicate, Breeding progeny

QB-11-35T Australian industry breeding 849 Daddow Australian elite

QB-11-80C Australian industry breeding 814 A16 Australian elite

QB-13-115R Australian industry breeding 842 Daddow Australian elite

QB-14-25P Australian industry breeding A16 814 Australian elite

QB-14-93G Australian industry breeding Daddow 246 Australian elite

QB-15-14 Australian industry breeding 660 NG18 Technical replicate, Breeding progeny

QB-15-37M Australian industry breeding Daddow A16 Australian elite

QB-16-41H Australian industry breeding Daddow A16 Australian elite

QB-19-14 Australian industry breeding 705 A16 Technical replicate, Breeding progeny

QB-2-14 Australian industry breeding NG8 762 Technical replicate, Breeding progeny

QB-2-46E Australian industry breeding 246 A16 Australian elite

QB-26-3 Australian industry breeding 660 NG18 Technical replicate, Breeding progeny

QB-31-5 Australian industry breeding A4 781 Technical replicate, Breeding progeny

QB-35-10 Australian industry breeding Yonik NG8 Technical replicate, Breeding progeny

QB-36-3 Australian industry breeding 741 Daddow Technical replicate, Breeding progeny

QB-5-7 Australian industry breeding A4 781 Technical replicate, Breeding progeny

QB-5-81 Australian industry breeding NG8 762 Technical replicate, Breeding progeny

QB-6-16S Australian industry breeding A16 814 Australian elite

QB-6-17 Australian industry breeding Own Venture NG7 Technical replicate, Breeding progeny

QB-6-71 Australian industry breeding 816 842 Breeding progeny

QB-6-73N Australian industry breeding 842 A16 Australian elite

QB-6-79I Australian industry breeding A16 814 Australian elite

QB-7-109L Australian industry breeding 842 Daddow Australian elite

QB-7-11 Australian industry breeding NG8 762 Technical replicate, Breeding progeny

QB-7-5 Australian industry breeding NG18 695 Technical replicate, Breeding progeny

QB-7-74O Australian industry breeding Daddow A4 Australian elite

QB-8-87F Australian industry breeding 816 A4 Australian elite

QB-9-5 Australian industry breeding A4 781 Technical replicate, Breeding progeny

QB-9-72K Australian industry breeding 842 Daddow Australian elite

RQB-8-3-22 Australian industry breeding 741 Unknown Technical replicate, Breeding progeny

TF-11-1 Australian industry breeding 660 Wild M. jansenii Hybrid of wild M. jansenii
TF-15-1 Australian industry breeding 660 Unknown Breeding progeny

TF-23-4 Australian industry breeding 660 Wild M. ternifolia Hybrid of wild M. ternifolia,

TF-23-9 Australian industry breeding 660 Wild M. jansenii Hybrid of wild M. jansenii
TF-34-11 Australian industry breeding 660 Wild M. jansenii Hybrid of wild M. jansenii
TF-37-1 Australian industry breeding 660 Wild M. ternifolia Hybrid of wild M. ternifolia
TF-43-23A Australian industry breeding A16 781 Australian elite

TF-44-15D Australian industry breeding Daddow 246 Australian elite

TF-47-16 Australian industry breeding 660 Unknown Breeding progeny

TF-48-8 Australian industry breeding 660 Unknown Breeding progeny

TF-9-20 Australian industry breeding 660 Unknown Breeding progeny

TF-9-22B Australian industry breeding 849 Daddow Australian elite

Yonik Selection from Israel Unknown Unknown Cultivar

https://doi.org/10.1371/journal.pone.0203465.t001
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replicates. All 21 cultivars were genotyped twice to use as technical replicates. Twenty-five sci-

ons from a rootstock trial at Bundaberg, Queensland, were also tested for plant identity to

solve a mismatch with phenotypic characteristics observed in the field.

DNA extraction

Samples obtained from newly flushed young leaves were collected from arboretums and

progeny trials of the Australian industry macadamia breeding program [47] in 2013 and

2014 growing seasons. Leaf samples were sealed in a zip-lock bag labelled with the corre-

sponding tree barcode, kept cool in insulated bags with freezer blocks and sent to DArT

(next day) for DNA extraction. Total genomic DNA was extracted by adhering to the modi-

fied CTAB protocol [48, 49] as described by Kilian et al., (2012) [50]. The quality and quan-

tity of the DNA samples were evaluated through a spectrophotometric analysis in DS-11FX

series spectrophotometer/fluorometer (Denovix, Wilmington, DE, USA), followed by run-

ning agarose gel electrophoresis (1.2% agarose). The DNA concentration was adjusted

within the range of 50–100 ηg μl–1.

Genotyping macadamia accessions using silicoDArT and SNP markers

The high-throughput DArTseq technology was used to genotype macadamia cultivars. In this

technology, the PstI-based complexity reduction method [39] was applied for the enrichment

of genomic representation with single copy sequences. This method involved the digestion

of DNA samples with a rare cutting enzyme PstI, paired with a set of secondary frequently cut-

ting restriction endonucleases (RE), ligation with site-specific adapters, and amplification of

adapter-ligated fragments. The secondary frequently cutting RE enzymes employed in this

study were AluI, ApoI, BanII, Bsp1286I, BstNI, HaeIII, MseI, RsaI, MspI, HpaII, MseI, TaqI,

and HhaI. Post digestion with a PstI-RE pair, a PstI overhang compatible oligocleotide adapter

(50-CAC GAT GGA TCC AGT GCA-30 annealed with 50-CTG GAT CCA TCG TGC A-30)

was ligated, and the adapter-ligated fragments were amplified in adherence to the prescribed

standard procedures [39]. To develop SNP and silicoDArT markers, the DArTseq technology

was optimized using two PstI-compatible adapters corresponding to two different RE over-

hangs. The genomic representations were generated following the procedures described by

Kilian et al. [50] and PstI+HhaI was selected as the most appropriate complexity reduction

method. Next-generation sequencing technology was implemented using HiSeq2000 (Illu-

mina, USA) to detect SNPs and silicoDArT markers. The sequence data was analyzed using

DarTsoft14, an automated genotypic data analysis program and DArTdb, a laboratory man-

agement system. Markers were scored ‘1’ for presence, and ‘0’ for absence and ‘-’ for failure to

score. Two technical replicates of the DNA samples of each of 21 cultivars were genotyped to

calculate the reproducibility of the marker data.

Quality analysis of marker data

The markers were tested for reproducibility (%), call rate (%), polymorphism information con-

tent (PIC) and one ratio. Scoring of reproducibility involved the proportion of technical repli-

cate assay pairs for which the marker score exhibited consistency. The call rate determined the

success of reading the marker sequence across the samples and was estimated from the per-

centage of samples for which the score was either ‘0’ or ‘1’. PIC is the degree of diversity of the

marker in the population and showed the usefulness of the marker for linkage analysis. One

ratio constitutes the proportion of the samples for which genotype scores equalled ‘1’.
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Genetic dissimilarity analysis

Genetic dissimilarity matrices were constructed in DARwin v. 6.0.13 [51] to identify the

genetic relationships among the cultivars. Weighted neighbour-joining dendrograms were

constructed in both marker platforms. Clade strength in the dendrograms was tested by

20,000 bootstrap analyses. Biological and technical replicates of 28 accessions were compared

to identify the reliability of the markers using the dissimilarity index between the replicates of

each accession.

Population structure and genetic diversity analysis

The genetic structure of the germplasm was analyzed using STRUCTURE v.2.3.4 [52] and

GenAlEx v.6.5 [53]. The number of hypothetical subpopulations (K) was estimated with the

STRUCTURE software through the application of a Bayesian clustering approach for the orga-

nisation of genetically similar cultivars into the same subgroups. Ten individual Markov Chain

Monte Carlo (MCMC) simulations were conducted for each K-value from 1 to 10 with a burn-

in length of 50,000, followed by 100,000 iterations. The admixture model was applied without

using any prior population information. The log-likelihood of the observed data for each K-

value was calculated and compared across the range of K values. The best K-value was esti-

mated based on the membership coefficient (Q) for each individual in each cluster. The Q val-

ues indicate the level of relatedness of each accession to various subgroups. The STRUCTURE

results were subsequently analyzed by the STRUCTURE HARVESTER application [54]

(http://taylor0.biology.ucla.edu/structureHarvester/) to identify a distinct peak in the change

of likelihood (ΔK) at the true value of K. GenAlEx was used to perform Principal Coordinates

Analysis (PCoA), based on the standardized covariance of genetic distances calculated for the

markers under evaluation, using 999 permutations. PCoA explains the genetic distances

among the accessions.

Determining plant identity

In a rootstock trial at Bundaberg we identified that the phenotypic characteristics of 25 scions

did not corroborate with their recorded variety. Using SNP markers we conducted PCoA and

parentage analysis of all the mismatched scions and the results were compared with pheno-

typic variety allocations.

To determine plant identity, initially allelic variations were observed between the possible

varieties and the mismatched cultivars using PCoA in GenAlEx. Later, the analysis of plant

identity was performed with Cervus v.3.0.7 [55] to detect and confirm the candidate plant ID.

In cases where the plant ID remained indeterminate, parentage analysis was conducted, allow-

ing 40 simulated parents and 10,000 simulated offspring. The natural logarithm of the likeli-

hood ratio, logarithm of odds (LOD), scores were provided for each candidate parent and the

offspring-parents trio along with the confidence of these scores at strict (95%) and relaxed

(80%) levels. Based on the analysis, the parent with the highest LOD is denoted as the putative

parent. A positive LOD score indicates that the parent is more likely to be the true parent in

comparison to one drawn at random from the population; negative LOD scores indicate that

the parent is less likely to be the parent than one drawn at random from the population [55].

Results

Marker quality analysis

Through the application of the complexity reduction method, a total of 22,280 polymorphic

silicoDArT (S1 Table) markers were generated, of which 353 were aligned with the marker
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sequence obtained from bacteria (NCBI) and 154 from expressed sequenced tags (EST) of sev-

eral plant species. We report these DArT markers for the first time, though the chromosomal

location is yet to be described. Most of the markers (22,237) showed�95% reproducibility. All

the identified silicoDArT markers had a call rate value�75% (Fig 1) with an average value of

97.44 (S1 Table). However, low frequency markers can affect the statistical analysis [56]. As

such, 10,711 markers with extremely low one ratio (<0.05) were not considered in the analysis.

In total, 11,526 silicoDArT markers cleared all the quality parameters and were selected for the

study. Among the 11,526 informative markers, around 21% were observed in PIC class 0.45 to

0.50 and 13% in 0.05 to 0.10 class (Fig 2). PIC values of the remaining markers were distributed

almost equally (8–10%) across the rest of the marker groups. Therefore, the median (0.28) was

located extremely close to the average PIC value of 0.29 (S3 Table), and the data exhibited

approximately equitable distribution on either side of the median.

A total of 7,332 SNP markers (S2 Table) were identified, and had an average of 99% repro-

ducibility and 76% call rate. Around 98% SNP markers had�95% reproducibility, of which

6,375 were found to be 100% reproducible (Fig 1). The call rate exhibited variance ranging

from 38% to 100%. Around 44% of SNP markers displayed a<75% call rate (Fig 1), and were

Fig 1. Distribution of silicoDArT and SNP marker data for several quality parameters.

https://doi.org/10.1371/journal.pone.0203465.g001
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therefore not considered for this study. For the remaining markers, 2,650 showed a>90% call

rate. All the identified markers had>0.5 average one ratio. Considering all the quality parame-

ters, 3,956 SNP markers were used for subsequent analysis. These markers were determined to

be highly informative with an average PIC value of 0.21, and 0.19 median (S3 Table). Around

14% of markers were in the lowest PIC value range (0–0.05) and 9% in the highest PIC value

range (0.45 to 0.50) (Fig 2). The remaining PIC value groups exhibited an approximately simi-

lar marker frequency value ranging from 10 to 12% each.

Genetic relationships among cultivars

The genetic dissimilarities among the cultivars estimated through the silicoDArT markers ran-

ged from 0.003 to 0.738 (S4 Table). The technical and biological replicates of the cultivars

revealed the least amount of genetic dissimilarity (Fig 3), ranging from 0.004 to 0.02. Among

the cultivars, ‘660’ displayed exceptionally close genetic similarity with ‘741’ (dissimilarity

indexes: 0.004 to 0.008). This value was similar to that of the biological replicates of ‘741’. The

dissimilarity indices of M. jansenii and M. ternifolia with the existing cultivars ranged from

0.590 to 0.738, suggesting that the two wild accessions are distantly related to the cultivated

gene pool. The Australian industry breeding lines (TF-11-1, TF-23-4, TF-23-9, TF-34-11 and

TF-37-1) developed through the hybridization of wild germplasm with commercial cultivars

further exhibited wide genetic distance from Australian macadamia cultivars.

Fig 2. Distribution of PIC values of silicoDArT and SNP markers used for genomic studies in macadamia.

https://doi.org/10.1371/journal.pone.0203465.g002
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The dendrogram obtained with silicoDArT markers produced several small clusters of

related cultivars, and most of them contained cultivars that shared parental lines or a similar ori-

gin (Fig 3A). We identified nine major groups of clusters. Most of the HVP cultivars clustered

in C1, while HAES cultivars were grouped in four other separate clusters. Cultivars ‘816’, ‘804’,

‘814’, ‘781’, ‘849’, ‘842’, and ‘333’ were grouped in C3. In C9, HAES cultivar ‘762’ clustered with

‘NG8’. Other three HAES cultivars (‘741’, ‘660’ and ‘344’) and an Australian selection, ‘NG29’,

were grouped in cluster C7. HAES cultivar ‘791’ constituted the sole representative of C8. Wild

M. jansenii and M. ternifolia and their hybrids (‘TF-23-4, ‘TF-15-1’, ‘TF-37-1’, ‘TF-34-11’, ‘TF-

23-9’, ‘TF-47-16,’ and ‘TF-48-8’) formed a separate cluster (C6). Australian elites and selections

were distributed across the clusters, which illustrates the wide range of diversity created by the

Australian breeding program. The Australian selection, ‘D4’, grouped with HVP cultivars in

C1. ‘Beaumont’, ‘NG18’, and ‘Own Venture’ grouped together in C5. Cultivars ‘H2’, and ‘Dad-

dow’ formed two separate clusters, C10 and C4, respectively. We further identified that four

dwarf cultivars (‘DW1’, ‘DW2’, ‘DW3’, and ‘DW4’) clustered in the same group (C9) as their

common parent ‘NG8’.

SNP markers were also useful for the identification of genetic relationships among Austra-

lian cultivars. The range of genetic dissimilarities identified through SNP markers was nar-

rower than that observed through silicoDArT markers. Among the 80 cultivars and 28

replicates, dissimilarity ranged from 0.004 to 0.412 (S5 Table). The genetic dissimilarity index

between ‘741’ and ‘660’ (0.013) fell within the range of dissimilarities between technical and

biological replicates (0.004 to 0.03).

Fig 3. Genetic relationships among 80 macadamia accessions, and 7 biological and 21 technical replicates. (a) Weighted neighbour-joining dendrogram based on

silicoDArT markers. (b) Weighted neighbour-joining dendrogram based on SNP markers.

https://doi.org/10.1371/journal.pone.0203465.g003
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Similar to silicoDArT markers, SNP markers also developed several clusters of macadamia

cultivars based on their relatedness (Fig 3B). Cultivars with common origin or those that

shared common parents were clustered together. HAES and HVP cultivars formed distinctly

separate clusters. HAES cultivars were grouped in C4, C5, C8 and C9; whereas HVP cultivars

were clustered in C1 and C3. As observed with silicoDArT markers, the wild accessions of M.

ternifolia and M. jansenii were found to be distantly related with other cultivars, and grouped

in C7 with their respective hybrids (Fig 3B). We also observed three separate clusters of ‘H2’

(C10), ‘791’ (C8), and ‘Daddow’ (C6) in the SNP analysis. Same as in silicoDArTs, four dwarf

cultivars (DW1, DW2, DW3 and DW4) were clustered together (in C9) with their common

parent ‘NG8’.

Population structure and genetic diversity analysis

The model-based Bayesian cluster analysis in STRUCTURE visualized the genetic structure of

the population under examination (Fig 4). The values of ΔK, which were estimated from SNP

markers peaked at K = 4 (Fig 4A); hence, four distinct groups were found to contribute signifi-

cant genetic information across cultivars. The sub-populations were denoted as POP1, POP2,

POP3 and POP4, and each sub-population contained 41%, 7%, 23%, and 29% of total acces-

sions, respectively (Table 2).

The genetic diversity within each population was explained through the estimation of the

expected heterozygosity, which varied from 0.12 (POP3) to 0.22 (POP4). The expected hetero-

zygosity of POP1 was 0.19 and that of POP2 was 0.14. The genetic divergence among the popu-

lations revealed by Nei’s net nucleotide distance (D) indicated that POP2 was widely related to

POP1 (D = 0.19), POP3 (D = 0.18), and POP4 (D = 0.18), respectively. The genetic distance

observed between POP1 and POP4 (D = 0.05) was the least among the pairs of populations

examined (Table 2).

The proportion of membership of individual cultivars in each population is illustrated in

the bar plot of the population assignment test in structure analysis (Fig 4B). The estimated pro-

portion of membership (Q) suggested that 12 Australian elite cultivars (‘QB-14-93G’, ‘QB-6-

71’, ‘QB-6-79I’, ‘QB-6-16S’, ‘QB-10-111Q’, ‘QB-2-46E’, ‘QB-14-25P’, ‘QB-11-80C’, ‘QB-10-

93J’, ‘QB-13-115R’, ‘QB-6-73N’ and ‘QB-7-74O’) were assigned entirely in POP1. M. jansenii
and M. ternifolia comprised POP2. Two Hawaiian cultivars ‘741’ and ‘660’ were included in

POP3. Australian selections ‘NG8’ and ‘Beaumont’ represented POP4 along with the dwarf

progeny ‘DW2’, and Australian elites ‘QB-7-5’ and ‘QB-5-81’. The remaining 60 cultivars

showed intermediate and/or highly mixed genetic composition and were hence determined as

heterogeneous. The hybrid progeny of ‘660’ X M. jansenii (‘TF-11-1’, ‘TF-23-9’, and ‘TF-34-

11’), and ‘660’ X M. ternifoila (‘TF-23-4’ and ‘TF-37-1’) were assigned in both POP2 and

POP3. Most of the HAES cultivars (‘333’, 344’, ‘781’, ‘804’, ‘814’, ‘816,’ and ‘849’) comprised

admixtures of POP1 and POP3. Conversely, all HVP accessions were constituted partly of

POP4. Two HAES cultivars ‘791’ and ‘762’ also shared large amounts of genetic information

with POP4. Cultivar ‘791’ was the only individual allocated to all four populations, and pos-

sessed 33% genetic information from POP1, 13% from POP2, 9% from POP3, and 46% from

POP4.

PCoA illustrated the genetic divergence among the cultivars (Fig 5). In silicoDArT and

SNP markers, the first two axes of the PCoA explained 25.64% and 37.61% of the total genetic

divergence, respectively. The population distribution determined by both markers is consis-

tent with the output of population structure analysis (Fig 4B). HAES cultivars were located in

the top two quadrants, while HVP and Australian selections were mainly located in the bottom

quadrants. Australian breeding lines displayed wide diversity, as they were mostly distributed
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throughout the three quadrants of the PCoA. Only a few accessions were in the bottom right

quadrant of PCoA, which was predominantly occupied by wild germplasm.

Plant identification using SNP markers

PCoA of the SNP markers derived from possible cultivars and mismatched scions illustrated

allelic variations among the accessions (Fig 6). Parentage analysis identified that seven scions

in the rootstock trial were planted with wrong plant ID and the remaining 18 scions were the

seedling progeny of rootstocks ‘Beaumont’ and ‘H2’ (S7 Table).

Fig 4. Population structure of 80 macadamia accessions using SNP marker data, as estimated using the model-based Bayesian algorithm implemented in

the STRUCTURE program. a) estimation of number of groups (K), b) proportion of assignment of individuals to four population groups.

https://doi.org/10.1371/journal.pone.0203465.g004
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Table 2. Genetic divergence among (net nucleotide distance) and within (expected heterozygosity) populations, and the proportion of membership of the popula-

tion samples.

Population Net nucleotide distance Expected heterozygosity Proportion of membership

POP2 POP3 POP4

POP1 0.19 0.08 0.05 0.19 0.41

POP2 0.18 0.18 0.14 0.07

POP3 0.09 0.12 0.23

POP4 0.22 0.29

https://doi.org/10.1371/journal.pone.0203465.t002

Fig 5. Principal coordinate analysis (PCoA) to explain the genetic diversity across macadamia accessions. a) PCoA

based on silicoDArT markers, and b) PCoA based on SNP markers.

https://doi.org/10.1371/journal.pone.0203465.g005
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The first two components of the PCoA explained 43.08% of total variation. Pair wise

comparison showed that least allelic variations were observed within the following mis-

matched scion and cultivar pairs: ‘8_1’ and ‘A268’, ‘268_2’ and ‘344’, ‘268_3’ and ‘842’,

‘814_1’ and ‘Beaumont’, ‘816_1’ and ‘814’, ‘842_1’ and ‘Beaumont’, and ‘842_12’ and ‘816’

(Fig 6 and S6 Table). The parentage analysis (S7 Table) confirmed these seven plant iden-

tities and suggested that scions labelled with ‘8_1’, ‘268_2’, ‘814_1’, ‘816_1’ and ‘842_1’

showed a completely congruous match with phenotypic plant IDs (‘A268’, ‘344’, ‘Beau-

mont’, ‘814’, and ‘Beaumont’, respectively). Plant IDs of ‘268_3’ and ‘842_12’ did not

match with phenotypic IDs. Molecular analysis confirmed scion ‘842_12’ as ‘816’, whereas

it was phenotypically identified as ‘H2’. Similarly, ‘268_3’ was suggested as ‘814’ in the

field, while it was identified as ‘842’ from SNP marker analysis. The candidate mother ID,

pair loci mismatching data, and LOD scores suggested that the remaining ‘842’ marked

plants have common candidate mother ‘H2’. Trees ‘A16_2’ and ‘268_1’ were indicated to

be the progeny of ‘Beaumont’ and ‘H2’, respectively.

Fig 6. Principal coordinate analysis of SNP markers showing allelic variation among macadamia cultivars and mismatched scions.

https://doi.org/10.1371/journal.pone.0203465.g006
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Discussion

DArT platforms provide cost-effective ultra-high-throughput reliable

markers

Our study highlights the suitability of DArT platforms that can be applied for the genomic dis-

section of macadamia cultivars. A total of 22,237 silicoDArT markers were developed, of

which 11,526 markers provided robust information of the macadamia genome in the absence

of sequence information. On the other hand, DArTseq SNPs provided 3,956 informative

markers. The development of a large number of these high-throughput markers provided an

opportunity to anchor the markers on a recently released macadamia reference genome,

which is yet to be completed [57].

The quality parameter of both silicoDArT and SNP markers in macadamia were compara-

ble with that of other species. The average PIC values of both markers in macadamia was simi-

lar to values identified in DArT markers of sugar beet (0.28) [58] and Asplenium fern (0.20)

[59], but lower than that of sorghum (0.41) [36], cassava (0.42) [60], and wheat (0.44) [61], and

higher than SNP markers in watermelon (0.13) [62] and Lesquerella (0.12) [63]. The average

PIC values of silicoDArT was greater than that of SNP markers. Around 30% of silicoDArT

and 20% of SNP markers showed PIC values within the range of 0.40 to 0.50. The silicoDArT

markers were therefore more informative than SNP markers. The abundance of silicoDArT

and SNP markers may achieve better genome coverage through the sampling of a greater num-

ber of points in the whole genome, as marker density has a high correlation with gene density

[50, 64]. Previous studies in macadamia using other platforms utilized only a small number of

molecular markers, for example, O’Connor et al. (2015) used only 11 microsatellite markers

[25]. Therefore, both silicoDArT and SNP markers may better suit for genetic diversity studies,

association/linkage mapping and/or sequence based physical mapping in macadamia. Addi-

tionally, the co-dominant inheritance pattern of SNP markers may increase the utility of

DArT platforms for genetic identity and parentage analysis.

In comparison with the other existing marker technologies like microsatellite markers, DArT

markers are pertinent to high-throughput work and have merits in terms of cost effectiveness and

time aspect [65]. The cost of marker development of silicoDArT and SNP markers are the same.

Due to the higher number of markers produced in silicoDArT, the average cost per data point is

less than SNP markers. However, the effectiveness of both platforms varies depending on the type

of application. For genetic diversity and linkage mapping large number of silicoDArT markers are

suitable. However, for genetic identity and product quality testing, both markers can perform

equally. Due to the opportunity to track alleles from parental genotypes, the co-dominant SNP

markers are more suitable in plant identity and parentage analysis than silicoDArT.

DArT markers successfully evidenced the historical background and

pedigree relationships of the cultivars

The genetic diversity analysis illustrated the historical development of macadamia cultivars. Maca-

damia cultivars have been developed by few breeding programs. The macadamia breeding pro-

gram in Hawaii began in approximately 1948 and continued to 1990, producing many HAES

cultivars which are still dominant in plantings around the world [66]. Australian varieties includ-

ing ‘Beaumont’, ‘D4’, and ‘Daddow’ are the product of 1952-onwards seedling surveys in Austra-

lia, after observation of the Hawaiian industry success. Hidden Valley Plantation (HVP), which

commenced in 1972 in Beerwah, Queensland, Australia released successful ‘A’ series cultivars

from open-pollinated progeny of HAES and Australian varieties. Genetic diversity analysis clearly

separated most of the accessions of these three groups. Accessions of Australian industry breeding
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efforts were selected from the crossing program initiated in 1992 and included HAES, HVP and

Australian cultivars in the parentage, hence are scattered across all clusters.

The statistical analysis of DArT data sets showed highly consistent results obtained for

genetic diversity, population structure and PCoA. The pedigree relationships obtained through

genetic diversity and population structure analysis are in line with the results of previous stud-

ies [17, 18, 23]. Two HAES cultivars ‘660’ and ‘741’, which were selected from same orchard at

Glaisyer (at Hawaii) showed strong genetic similarity, as also observed by Peace et al. [18] and

Steiger et al. [23]. Cultivar ‘344’ was grouped with ‘741’ and ‘660’, which is similar to previous

observations made with RAF [18], isozyme [17], RAMiFi [24], and AFLP [23] markers. Popu-

lation structure analysis revealed that cultivar ‘791’ constituted three or four distinct popula-

tions, which was supported by the observation of Peace et al. [18]. It was identified that ‘791’ is

a tri-species cultivar containing M. integrifolia, M. tetraphylla and M. ternifolia in its ancestry.

Our results additionally showed that ‘791’ may also have M. jansenii in its genetic background.

We identified that ‘791’ shares almost equal amounts of M. integrifolia and M. tetraphylla. In

contrast, Peace et al. [18] previously reported 10% M. tetraphylla, 55% M. integrifolia and 35%

M. ternifolia in the ancestry of ‘791’. Interestingly, population structure analysis identified that

two wild species M. jansenii and M. ternifolia represented the same population (Fig 4A).

Although no historical relationships among these two wild species were evidenced, there are

some clear morphological similarities [1]. For example, both M. jansenii and M. ternifolia are

relatively dwarf accessions, produce pink red leaf flushes and flowers, and have bitter nuts. Pre-

vious isozyme analysis showed that M. jansenii and M. ternifolia are closely related [67], as

observed in RAF [68] and STMS (sequence-tagged microsatellite site) studies [3], whilst Wal-

dron et al. [68] and Peace et al. [3] suggested that M. ternifolia and M. jansenii were of sister

species. An investigation on large numbers of wild accessions would be instrumental to

explore differentiation among the four macadamia species. Identification of markers showing

the signature of domestication could be the focus of future studies.

Though Australian elite hybrids were distributed across the four clusters, the ancestral rela-

tionship determined by both silicoDArT and SNP markers was consistent. Dwarf cultivars

‘DW1’, ‘DW2’, ‘DW3’, and ‘DW4’, and selections ‘QB-35-10’, ‘QB-5-81’, and ‘QB-7-11’ were

grouped with their common parent ‘NG8’. The cultivar ‘762’ was also a common parent of

‘DW1’, DW2’, ‘QB-7-11’, and ‘QB-5-81’, and hence sub-grouped. Similarly, other elites ‘TF-9-

22B’, ‘TF-44-15D’, ‘QB-9-72K’, and ‘QB-7-109L’ clustered with common parent ‘Daddow’.

Consistency in determining pedigree relationships suggested that both DArT platforms are

highly reliable for genetic diversity study in macadamia.

DArTseq based SNP markers are useful tools for plant identity

confirmation

The use of molecular markers for plant identity and parentage analysis has increased over the

last two decades [69]. Although microsatellite markers were used previously in parentage anal-

ysis [25], this study was the first to use DArT markers in parentage analysis in macadamia.

Using SNP markers, our study successfully predicted the plant identity and probable mother

identities of plants in a rootstock trial. Most of the predictions validated field observations (S7

Table). DArTseq-based SNP markers are therefore useful to confirm plant identity through

parentage analysis of macadamia progeny.

Conclusions

Our study identified that both DArT platforms are of high quality, supported by the quality

parameters and close relationships of the replicates of each cultivar in the neighbourhood join
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dendrograms. Both DArT markers successfully reflected the parental relationships and the

extent of diversity in the population. Structure analysis clearly separated the population of vari-

ous origins. DArTseq-based SNPs successfully demonstrated population structure across culti-

vars and confirmed plant identity in a mismatched rootstock trial. We therefore suggest that

both silicoDArT and SNP markers are robust and an inexpensive option for breeders for geno-

mics studies in macadamia. Both DArT platforms developed a large number of highly poly-

morphic markers, and hence are useful for linkage mapping in macadamia.
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