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Hepatocystis parasites are close relatives of mammalian Plasmodium species and infect a range of primates and
bats. Here, we present the phylogenetic relationships of Hepatocystis parasites of three Australian flying fox
species. Multilocus phylogenetic analysis revealed that Hepatocystis parasites of Pteropus species from Australia
and Asia form a distinct clade that is sister to all other Hepatocystis parasites of primates and bats from Africa and
Asia. No patterns of host specificity were recovered within the Pteropus-specific parasite clade and the
Hepatocystis sequences from all three Australian host species sampled fell into two divergent clades.

1. Introduction

The life-threatening disease malaria is caused by single-cell eu-
karyotic parasites of the genus Plasmodium. The human-infecting
Plasmodium species belong to a large monophyletic group of haemos-
poridian parasites (Haemosporida) that comprise 200 formally de-
scribed species of Plasmodium and almost 300 closely related species
(Martinsen and Perkins, 2013; Galen et al., 2018). These parasites infect
a diverse array of dipteran invertebrate as well as vertebrate hosts.
Mammalian haemosporidian parasites are currently classified in ten
different genera, including Plasmodium and Hepatocystis, whereas the
mammalian Plasmodium clade is paraphyletic, because it contains the
parasites of the genus Hepatocystis (Perkins and Schaer, 2016; Galen
et al., 2018). The large group of haemosporidian parasites not only
differs in host preferences, but also in morphology, life history and
effects on their hosts. Uncovering the evolutionary history and biology
of these parasites will help define their biological adaptations, host
switches and acquisitions of novel life-history traits. For example, er-
ythrocytic schizogony or the multiplication of parasites in the blood,
the life cycle stage that is associated with the characteristic clinical
signs of malaria in humans, is exclusive to parasites of the genus Plas-
modium (that infect several groups of vertebrates) and is absent in all

other haemosporidian parasite genera.

Bats (Chiroptera) are hosts to perhaps the most diverse array of
haemosporidian parasites among mammals, with nine different genera
described in this mammalian order. The parasite genera in bats com-
prise species of Plasmodium and Hepatocystis, and seven genera thought
to exclusively infect chiropteran hosts (Perkins and Schaer, 2016). Due
to this diversity, bat malaria parasites are of particular interest for the
study of the taxonomy and systematics of malaria parasites. Recent
molecular studies have mainly focused on bat malaria parasites from
African and European bat hosts (e.g Witsenburg et al., 2012; Schaer
et al., 2013; Lutz et al., 2016; Schaer et al., 2017). In contrast, our
knowledge of haemosporidian parasites of Australian bats is very lim-
ited and restricted to morphological investigations, with no molecular
data available for any of the haemosporidian parasites in these bats.
Molecular studies have greatly improved our understanding of hae-
mosporidian parasites. They are particularly needed for the character-
ization of the understudied haemosporidians of wildlife to recover the
evolutionary history of key life-history characters of the whole group,
to determine host specificity patterns and the transitions among the
different dipteran and vertebrate host groups (Martinsen and Perkins,
2013). Further, molecular identifications allow the differentiation of
parasites that are morphologically indistinguishable and are essential
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for any taxonomic revisions of described morphospecies (Galen et al.,
2018). Based on morphological criteria, four haemosporidian genera
have been reported in Australian bat hosts: Hepatocystis, Poly-
chromophilus, Johnsprentia and Sprattiella (Table S1). The conception of
the two genera Johnsprentia and Sprattiella has only been introduced
very recently (Landau et al., 2012a, b). The parasite observations that
led to the description of these two new parasite genera were gathered
from infected Pteropus alecto individuals collected in Townsville,
Queensland, Australia in 1978. Both Johnsprentia and Sprattiella await
independent confirmation. Polychromophilus parasites only infect in-
sectivorous bats of the bat families Miniopteridae and Vespertilionidae
(suborder Yangochiroptera) and display a wide distribution in tempe-
rate and tropical areas worldwide. In contrast, Hepatocystis is restricted
to two bat families of the suborder Yinpterochiroptera, fruit bat/flying
fox species (Pteropodidae) and hipposiderid bats (Hipposideridae) of
Africa, Asia and Australia (c.f. Perkins and Schaer, 2016). The first re-
ports of Hepatocystis in Australian flying foxes date back to 1909 and
1911, with “Plasmodium” infections independently reported in Pteropus
alecto gouldi (Breinl et al., 1912). The parasite species was originally
described as Plasmodium pteropi, and later reclassified as Hepatocystis
pteropi (Manwell, 1946; Garnham, 1966). Four Australian flying fox
species of the genus Pteropus (Pteropus alecto, Pteropus poliocephalus,
Pteropus scapulatus, Pteropus conspicillatus) were subsequently identified
as hosts for H. pteropi (Mackerras, 1959). A second species of Hepato-
cystis, Hepatocystis levinei was described from P. poliocephalus (Landau
et al., 1985) and more recently, a study reported the same species from
P. alecto, sampled in Queensland in 1978 (Landau et al., 2012a).
Mammalian haemosporidian genera that lack asexual replication in the
blood (all haemosporidian genera except Plasmodium) are generally
considered as benign infections in their mammalian hosts. The blood
stages of Hepatocystis, Sprattiella and Johnsprentia parasites are confined
to gametocytes, whereas the schizonts occur in different tissues. Ac-
cording to the authors, Sprattiella-infected bats feature schizonts in the
lumen of renal veins of the kidney and Johnsprentia parasites develop
schizonts in the lungs (Landau et al., 2012a,b), whereas schizont stages
of Hepatocystis are limited to hepatocytes (Landau et al., 2012a,b).
This study investigated the phylogenetic relationships of haemos-
poridian parasites of three mainland Australian flying fox species.

2. Material and methods

2.1. Sampling

Samples collected by Edson et al. (2015) and McMichael et al.
(2017) were provided by Biosecurity Queensland, Department of
Agriculture, Fisheries and Forestry under agreement. Molecular data of
haemosporidian parasites was generated from a total of forty infected
individuals, which included the three bat host species, P. alecto (“Black
flying fox”; n = 11), P. conspicillatus (“Spectacled flying fox”; n = 21)
and P. scapulatus (“Little red flying fox”; n = 8) (Table 1).

2.2. Microscopy

The blood stages of haemosporidian parasites were investigated and
compared to formally described haemosporidian morphospecies using
light microscopy with oil immersion and a magnification at 1,000 X .
Where thin blood smears were available, they were fixed in 100%
methanol and stained with Giemsa.

2.3. Molecular methods and phylogenetic analyses

DNA was extracted from dried blood dots on FTA cards (GE
Healthcare) or from organ tissues (lung, liver) using the QIAGEN
DNeasy blood and tissue extraction kit (Hilden, Germany). Extractions
followed the protocol for animal tissues, and samples were eluted in
60-100 pl AE buffer (depending on the intensity of the blood dots).

208

IJP: Parasites and Wildlife 7 (2018) 207-212

Table 1
List of investigated samples and corresponding blood stage morphology.

“Sample/Abbreviation in Locality "blood stage morphology
phylogenetic trees
P_alecto. A17 Ayr No blood smear available
P_alecto A22 Tallebudgera No blood smear available
P_alecto L1 Boonah Category 2
P_alecto L2 Boonah Subpatent infection, no
parasites detected
P_alecto L3 Boonah Category 2
P_alecto L5 Boonah Category 2
P_alecto L7 Boonah No blood smear available
P_alecto L8 Boonah Category 2
P_alecto L10 Boonah No blood smear available
P alecto L11 Boonah No blood smear available
P_alecto L13 Boonah No blood smear available
P_conspicillatus A25 Topaz No blood smear available
P_conspicillatus L14 Gordonvale Category 1
P_conspicillatus L15 Gordonvale Category 1
P_conspicillatus L16 Gordonvale Category 1
P_conspicillatus L17 Gordonvale Category 1
P_conspicillatus L18 Gordonvale Category 1
P _conspicillatus L19 Gordonvale Category 1
P_conspicillatus L20 Gordonvale Category 1
P_conspicillatus L21 Gordonvale Category 1
P_conspicillatus L22 Gordonvale No blood smear available
P_conspicillatus L23 Gordonvale No blood smear available
P_conspicillatus L25 Gordonvale No blood smear available
P_conspicillatus L27 Gordonvale No blood smear available
P_conspicillatus L32 Gordonvale No blood smear available
P _conspicillatus L33 Gordonvale No blood smear available
P_conspicillatus_L34 Gordonvale No blood smear available
P_conspicillatus L35 Gordonvale No blood smear available
P_conspicillatus L37 Gordonvale Category 2
P_conspicillatus L40 Gordonvale Category 2
P_conspicillatus L41 Gordonvale No blood smear available
P_conspicillatus L43 Gordonvale Category 1
P_scapulatus A1 North Lakes No blood smear available
P_scapulatus A2 Caboolture No blood smear available
P scapulatus A3 Gatton Category 1 (plus possible
mixed infection with
Johnsprentia)
P scapulatus A4 Mitchell Category 1 (plus possible
mixed infection with
Johnsprentia)
P scapulatus A6 Whiteside Subpatent infection, no
parasites detected
P_scapulatus A7 Middle Park No blood smear available
P scapulatus A20 Mooloolaba Subpatent infection, no
parasites detected
P scapulatus A23 Queensland Subpatent infection, no

parasites detected

@ All samples were positive by PCR analysis.
> Morphology was assigned to categories 1 (Hepatocystis levinei/pteropi) and 2
(Hepatocystis sp., Landau et al., 2012a), as described in the main text.

Five genes from the three parasite genomes were targeted for sub-
sequent phylogenetic analysis: the two mitochondrial genes cytochrome
b (cytb) and cytochrome oxidase 1 (cox1); one apicoplast gene, case-
inolytic protease gene (clpC); and the two nuclear genes elongation
factor 2 (EF2) and pantothenate transporter (PAT). PCR primers and
corresponding cycling protocols followed Martinsen et al. (2008; nested
PCR approaches for cox1 and clpC), Schaer et al. (2013; cytb and EF2),
Perkins and Schall (2002; cytb) and Borner et al. (2016) and Galen et al.
(2018; nested PCR approach for PAT). All PCR products were sequenced
in both directions using BigDye v3.0 (Applied Biosystems) and run on
an ABI-373 sequencer (primers and GenBank accession numbers listed
in Tables S2 and S3). PCR primers were used for sequencing with the
exception of PAT, where the inner primers for the nested PCR in-
corporated CAG or M13R tags, which were used for subsequent se-
quencing, following Galen et al. (2018). The gene sequences revealed
some genetically mixed infections (different haplotypes), visible as
double nucleotide peaks in the sequence electropherograms, which has



J. Schaer et al.

also been reported in Hepatocystis infections in African bats and in
primates (Thurber et al., 2013; Schaer et al., 2017). We amplified each
locus one to three times per parasite sample and sequenced from both
directions. If double peaks could not be resolved in the individual se-
quence assemblies and still contained more than about three double
peaks across the partial gene sequence, we scored the infection as a
mixed haplotype infection and excluded this sample from the sub-
sequent phylogenetic analysis. Ambiguous base calls due to sequencing
errors in sequences of lower quality were coded as any base (N).

Sequence data were combined with published sequences for the
haemosporidian taxa Leucocytozoon, Haemoproteus, Plasmodium,
Nycteria, Polychromophilus and Hepatocystis, comprising representatives
of all mammal-infecting haemosporidian taxa (where sequences are
available) as well as the more distantly related bird-infecting major
haemosporidian clades (Table S3). Sequences were assembled and
aligned in Geneious 8.1.9 using MUSCLE (Edgar, 2004) with the ex-
ception of the PAT sequences, which were aligned using MAFFT version
7 (Kuraku et al., 2013; Katoh et al., 2017) following Galen et al. (2018).
The gene alignments were concatenated in Geneious. The concatenated
alignment comprised a total length of 3683bp (including 906bp of cy-
tochrome b, 951bp of cytochrome oxidase I, 528bp of the apicoplast
clpC, 516bp of the nuclear EF2 gene and 782bp of the nuclear PAT
gene). Concatenation of the individual gene sequence alignments into a
multi-gene alignment for subsequent phylogenetic analysis were chosen
over species tree methods due to the high amount of missing data of the
published reference sequences at the apicoplast and nuclear loci. Con-
catenation has been shown to be more robust to the effects of missing
sequence data (e.g. Hovmoller et al., 2013; Jiang et al., 2014). The best
partitioning schemes and models for the phylogenetic analysis of the
concatenated alignment were evaluated with the software Parti-
tionFinder v.2 (Lanfear et al., 2017) via the CIPRES Science Gateway
Web Portal V3.3 (Miller et al., 2010) (Schaer et al., 2017; Tables S4 and
S5). Phylogenetic relationships were evaluated by using Bayesian in-
ference and maximum-likelihood (ML) methods and Leucocytozoon as
outgroup taxon (Borner et al.,, 2016). RaxmlGUI (Silvestro and
Michalak, 2012) was used for the ML analysis and nodal support was
evaluated using 100 thorough bootstrap pseudoreplicates (Stamatakis
et al., 2008). MrBayes v3.2.6 (Huelsenbeck and Ronquist, 2001) via the
CIPRES Science Gateway Web Portal V3.3 (Miller et al., 2010) was used
for Bayesian inference, with two runs of four chains (three heated, one
cold, temperature = 0.02) each for 25 million generations. The first
25% of trees were discarded as burn-in. Mixing and convergence of
runs, and effective sample size (ESS > 1000) were valued with Tracer
v1.6 (Rambaut et al., 2014) and phylogenetic trees were displayed in
FigTree (http://tree.bio.ed.ac.uk/software/fgtree/).

3. Results
3.1. Phylogenetic analysis reveals distinct clade of Hepatocystis

The maximum likelihood and Bayesian analysis of the concatenated
dataset of five genes, rooted with the avian haemosporidian genus
Leucocytozoon, confirmed Hepatocystis as monophyletic clade with high
support and grouped all sequences isolated from the parasites of the
three different Australian Pteropus host species within the Hepatocystis
clade (Fig. 1). The Bayesian analysis recovered the mammalian Plas-
modium (Plasmodium) and Plasmodium (Vinckeia) clade as closest re-
lative of Hepatocystis, as shown before (e.g Borner et al., 2016; Galen
et al., 2018). Strikingly, within the Hepatocystis clade, the Australian
and Asian parasite sequences from Pteropus hosts form one distinct
clade, which groups as sister clade to the remaining primate and bat
Hepatocystis sequences (Fig. 1). Moreover, the “Pteropus” parasite clade
is separated in two groups, each comprising a mix of parasite sequences
of the different Pteropus host species. One group includes the published
parasite sequences of the Asian bat hosts Pteropus vampyrus and Pteropus
hypomelanus, and the other also contains one parasite sequence of the
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Asian P. vampyrus host (Fig. 1). These data clearly suspend host-speci-
ficity patterns.

Together, the chiropteran/primate Hepatocystis sister clade contains
the monophyletic primate Hepatocystis clade with the single parasite
sequence of the Asian bat Hipposideros larvatus and two parasite se-
quences from the Asian flying fox genus Cynopterus on the one hand and
a second subgroup that obtains again two parasite sequences from the
Asian flying fox genus Cynopterus and the whole clade of African bat
Hepatocystis parasites.

3.2. Parasite blood stage morphology does not correspond to molecular data

Hepatocystis blood stages are confined to gametocytes, whereas
schizont stages are limited to hepatocytes (Garnham, 1966). The ma-
jority of blood stages that were observed in the samples of the study
(Giemsa-stained blood smears) were mature gametocytes. In a few
samples, earlier stages (ring and immature gametocytes) occurred si-
multaneously with mature gametocytes. Ring stages exhibit large dense
nuclei, resembling typical Hepatocystis ring stages, similar to parasites
that infect African bats (Garnham, 1966). The characteristics of the
gametocyte stages of the parasites of the study can be classified in two
main groups. The first group (“category 1”7, Table 1, Fig. 2 A-E) com-
bines characteristics of descriptions of Hepatocystis levinei and Hepato-
cystis pteropi and was found in samples from P. conspicillatus and P.
scapulatus. In one sample of P. conspicillatus (P_conspicillatus_L20) fur-
ther developed immature stages were found that occupy about a
quarter of the erythrocyte and exhibit an elongate or pyriform shape,
resembling the original description by Landau et al. (1985) of tropho-
zoite stages of H. levinei (Fig. 2 C'*2). The (male) microgametocytes
feature a nucleus that consists of a well-defined area of rounded dense
pink chromatin, which is surrounded by a boundary of a lighter pink. In
smaller microgametocytes, some pigment is overlapping the boundary,
but in fully mature stages, this zone is free of pigment. The cytoplasm
stains light blue. The pigment appears coarse and brown-greenish in
colour (Fig. 2 A% B2 C*). A few microgametocytes exhibited nuclei that
were positioned towards the margin of the parasite cell. The char-
acteristics, coarse pigment and nuclei that are placed marginally,
comply with descriptions of H. pteropi, whereas the other resemble
those of H. levinei. The (female) macrogametocytes generally featured a
smaller nucleus than the microgametocytes, with a round to elongated
form and pink colour. The cytoplasm stains a dark blue with pigment
that was evenly distributed or sometimes more clustered around the
nucleus area (Fig. 2 A', B!, C3, D%).

The second group (“category 2”, Table 1, Fig. 2 F, G), found in
samples of P. alecto, differed mainly in the appearance of the nucleus,
both in micro- and macrogametocytes. The nucleus is diffuse and the
nucleus area, which is free of pigment, appears rather grey. A diffuse
nucleus was described in Landau et al. (2012a) for Hepatocystis sp. from
P. alecto that could not be assigned to any known morphospecies.

Two exceptions to the aforementioned morphologies were apparent
in two samples of P. scapulatus (P_scapulatus_A4, Fig. 2 D; P_scapula-
tus_A3, Fig. 2 E'*2), which featured gametocytes that resembled group
one, but additionally exhibited a few gametocytes that shared char-
acteristics with the descriptions of Johnsprentia (Landau et al., 2012b),
thus possibly presenting a mixed infection. The mature micro-
gametocytes stain intense pink to purple in colour, and feature a dense,
darker-staining periphery (Fig. 2 E3**). The pigment is distributed
more towards the margin of the cell and the nucleus is elongated and
peripheral, thus the peripheral regions appear denser than the centre.
Co-infections of different haemosporidian genera have been reported
from the host species P. alecto. The studies of Landau et al. (2012a, b)
documented one species of the genus Hepatocystis and the newly de-
scribed genera Sprattiella and Johnsprentia from the same host species P.
alecto and stated that the three parasite genera co-occurred within in-
dividuals. However, the parasite sequences of the two P. scapulatus
samples of the current study clearly grouped with Hepatocystis, and
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Fig. 1. Concatenated analysis. Bayesian analysis of concatenated alignment of two mitochondrial (cytb, cox1), one apicoplast (cIpC), and two nuclear genes (ef2, PAT)
rooted with Leucocytozoon species from birds. Posterior probabilities are given. (A) Clade of Hepatocystis presents the sister clade to mammalian Plasmodium
(Plasmodium) and Plasmodium (Vinckeia) species. The parasite sequences of the study from Australian Pteropus species, form one distinct clade (together with three
sequences from Asian Pteropus species) (highlighted in yellow). The sister clade contains all sequences from primate Hepatocystis (highlighted in blue), the African bat
Hepatocystis parasites (highlighted in red) and sequences of Hepatocystis from Asian flying foxes of the genus Cynopterus and Hipposideros. (B) section from (A),
uncollapsed Hepatocystis clades. Sequences of the study are highlighted in bold. Australasian Hepatocystis sequences from Pteropus hosts fall in two subclades and no
host species specificity is apparent as the sequences from all three-host species group in two main clades.(For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

histological investigation of various tissues of these two animals did not
demonstrate any haemosporidial schizonts. It cannot be ruled out
though that a subpatent co-infection with Johnsprentia was missed by
our PCR approach, given that no molecular references for Johnsprentia
exist to date.

Together, haemosporidian parasites of the Australian Pteropus spe-
cies P. alecto, P. conspicillatus and P. scapulatus were identified as
parasites of the genus Hepatocystis based on blood stage morphology
and molecular phylogeny. The parasite sequences did not cluster ac-
cording to host species, but grouped in two clades. Notably, both groups
contained parasite sequences of parasites with different blood stage
morphologies, which were from four to five Pteropus host species, re-
spectively. We refrained from unambiguous assignments of the para-
sites to described Hepatocystis morphospecies, as the phylogenetic
findings did not correspond to the morphology of the blood stages.
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However, blood stage morphologies resembled Hepatocystis morphos-
pecies that had been previously described from the investigated host
species: H. levinei and H. pteropi, and an undetermined species of
Hepatocystis (Manwell, 1946; Garnham, 1966; Landau et al. 1985,
2012a). The two “Pteropus”-specific parasite clades might comprise
cryptic species or present two species complexes and the Hepatocystis
morphospecies that have been described from Pteropus hosts might not
present monophyletic species. Analyses of Hepatocystis parasites of ad-
ditional Pteropus species are needed to confirm or reject the “Pteropus”-
specific clade.

Interestingly, Hepatocystis parasites of the other flying fox genus
Cynopterus seem to be more distantly related to the parasites from
Pteropus hosts and show a closer relationship to parasites from primates
and African bats. To resolve the overall Hepatocystis phylogeny, more
complete taxon sampling from Asian bat hosts with sequences from
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Fig. 2. Gametocyte blood stages of haemosporidian parasites of Australian bats. Giemsa-stained thin blood smears were investigated using oil immersion with a light
microscope at a magnification of 1,000x. A) ex P. conspicillatus (P_conspicillatus L2, A' = macro-, A% = microgametocyte), B) ex P. conspicillatus

(P_conspicillatus_L15, B! = macro-, B? = microgametocyte), C) ex P. conspicillatus (P_conspicillatus_L20, cl+2 = early gametocyte stages, C3 = macro-,

C* = microgametocyte), D) ex P. scapulatus (P_scapulatus A4, D'*? = micro-, D®** macrogametocytes), E) ex P. scapulatus (P_scapulatus_A3,
E'*2 = macrogametocytes, E>** = unusual microgametocytes) F) ex P. alecto (P_alecto L8, F'*2 = microgametocytes G) ex P. alecto (P_alectoL5,
G' = macrogametocyte, G> = microgametocyte), “ex” denotes that parasites were isolated from the respective host species. Bar = 5 yum.

additional loci is needed. Cytochrome b still remains the most used Deutsche Forschungsgemeinschaft (SCHA 2102/1-1) (to JS). The pilot
phylogenetic marker in haemosporidian phylogenies and therefore work was funded by a Macquarie Research Development Grant (to MP
available sequences for primate Hepatocystis parasites as well as for and JS).
almost all Asian bat Hepatocystis parasites are limited to cytochrome b.

Together our findings underline the important role of bats in the Appendix A. Supplementary data
evolutionary history of malaria parasites and the new molecular data

revealed, once again, unexpected phylogenetic relationships among the Supplementary data related to this article can be found at http://dx.
haemosporidian parasites. doi.org/10.1016/j.ijppaw.2018.06.001.
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