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ABSTRACT

A weather-based simulation model, called Powdery Mildew of Cucurbits
Simulation (POMICS), was constructed to predict fungicide application
scheduling to manage powdery mildew of cucurbits. The model was
developed on the principle that conditions favorable for Podosphaera xanthii,
a causal pathogen of this crop disease, generate a number of infection cycles
in a single growing season. The model consists of two components that (i)
simulate the disease progression of P. xanthii in secondary infection cycles
under natural conditions and (ii) predict the disease severity with application
of fungicides at any recurrent disease cycles. The underlying environmental
factors associated with P. xanthii infection were quantified from laboratory

and field studies, and also gathered from literature. The performance of the
POMICS model when validated with two datasets of uncontrolled natural
infection was good (the mean difference between simulated and observed
disease severity on a scale of 0 to 5 was 0.02 and 0.05). In simulations,
POMICS was able to predict high- and low-risk disease alerts. Furthermore,
the predicted disease severity was responsive to the number of fungicide
applications. Such responsiveness indicates that the model has the potential to
be used as a tool to guide the scheduling of judicious fungicide applications.

Additional keywords: temperature, vapor pressure deficit.

Powdery mildew of cucurbits caused by the obligate fungal
pathogen Podosphaera xanthii (Castagne) U. Braun & Shishkoff
(syn. P. xanthii, formerly Sphaerotheca fuliginea) is a major disease
causing extensive economic loss in cucurbit production worldwide,
including in Australia (McGrath 2001; Pérez-Garcia et al. 2009).
The disease affects all commercially grown cucurbit species and
causes premature senescence of leaves and consequent exposure of
fruit to sunscald. Fruit produced from severely infected plants are
often small in size, with poor taste and texture qualities.

The application of fungicides is an essential practice to control
powdery mildew on cucurbits such as zucchini (Cucurbita pepo L.)
in many parts of the world (Keinath 2015; McGrath and Staniszewska
1996; O’Brien et al. 1988). For example, growers in Queensland,
Australia, schedule weekly alternated contact and systemic fungicide
applications after initial disease symptoms are observed in crops (Dal
Santo and Holding 2009). This practice ignores the fact that pathogen
development is critically influenced by environmental conditions that
can result in low- or high-risk disease events (Madden et al. 2007).
Scheduled application of fungicides during low-risk periods and
delayed application under high-risk situations can lead to unjustified
applications and poor timing of applications, respectively. Such
practice can also lead to problems such as fungicide resistance (Ben-
Naim and Cohen 2015; McGrath 2001) and ecosystem disturbance
because frequent use of fungicides and direct applications to soil
likely affect one or more aspects of nutrient cycling and soil
microbiota (Cheatham et al. 2009). There is a need for strategic and
tactical disease management programs to minimize disease severity
(DS) and prevent fungicide resistance from happening.
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Weather variables such as temperature, relative humidity (RH),
and vapor pressure deficit (VPD) can greatly affect powdery mildew
incidence and severity on cucurbits. A study by Reuveni and Rotem
(1974) reported that P. xanthii displayed optimal conidial germina-
tion (GER) and infection on squash leaves at temperatures of 20 and
25°C and RH of 50 to 55%. Low and high temperatures on the order
of £15°C and >31°C, respectively, prolong the incubation and latent
period (LP) of P. xanthii and result in low disease inoculum levels.
The LP is the interval between inoculation and production of a new
conidial generation, and the length of the LP is an important factor
affecting inoculum production (Vanderplank 1982; van Maanen and
Xu 2003). It determines the number of potential infection cycles
(ICY) that can be completed by a pathogen within a growing season
(de Vallavieille-Pope et al. 2000). The shorter the LP, the higher the
number of ICY the pathogen can complete per growing season,
resulting in high DS in cucurbits. Weather patterns can vary between
and within seasons, influencing the disease and its management. A
reliable weather-based disease warning system based on understand-
ing the interrelationship of the pathogen, host, and environment could
offer an improved management approach for powdery mildew in
cucurbits. Ideally, this system would be used to warn growers when
crop conditions are favorable or unfavorable for disease develop-
ment, assist growers in making rational crop protection decisions, and
potentially reduce the number of fungicide applications and minimize
development of fungicide resistance. Weather-driven simulation
models which use microclimate data to predict disease development
have been created as a first step in developing a disease warning
system for powdery mildews of crops such as wheat (Cao et al. 2015;
Rossi and Giosué 2003), grape (Arafat 2015; Caffi et al. 2012; Moyer
etal. 2016), and apple (Xu 1999). To the authors’ knowledge, no such
model has been reported for powdery mildew on cucurbits.

This article presents a weather-driven simulation model for
powdery mildew on zucchini as the first step in developing a
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warning system to manage the disease in cucurbit crops. Here, we
have described the development of the model, calibration of its
parameters, its validation, and application in fungicide scheduling.

MATERIALS AND METHODS

The Powdery Mildew of Cucurbits Simulation model
and its development. The Powdery Mildew of Cucurbits Simu-
lation (POMICS) model has two components: (i) a simulation of
the natural recurrent progression in P. xanthii secondary ICY and
final DS on cucurbit (i.e., zucchini) status within a single growing
season and (ii) prediction of DS with application of fungicides
within recurrent disease cycles. The relational diagram of the model
accounting for the relationships between the processes involved in
the ICY and the final status of the DS in zucchini is presented in
Figure 1. It is based on generally accepted understanding of the
cucurbit powdery mildew lifecycle (McGrath 1994, Pérez-Garcia
et al. 2009). In the simulation model, the GER process commences
when the symptom of white powdery patches is first observed in the
crop. POMICS considers the initial status of powdery mildew,
termed initial disease severity (IDS), as an initialization parameter
(input) in the model. The value of IDS is based on a 0-to-5 DS scale
(MacManus and Akem 2008), described later. The model assumes
that IDS occurs as a result of natural primary infection initiated
by perennating mycelia or conidia from infected alternative hosts
from families such as the Asteraceae, Lamiaceae, Scrophulariaceae,
Solanaceae, and Verbenaceae (Cunnington et al. 2004; McGrath 2001;
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Pérez-Garcia et al. 2009) and that IDS represents a large number
of potentially infective conidia. The potentially infective conidia have
the capability to germinate and infect healthy growing zucchini leaves
under favorable environmental conditions. The model’s simulation
begins with the assumption that conidia (IDS) are mature and via-
ble for germination to initiate infection. GER is controlled by four
environmental parameters. Those are thresholds of (i) low temperature
(Iow_Treshola)» (i) high temperature (high_ Ty esnola)s (iii) small VPD
(small_VPDyyreshora), and (iv) large VPD (large_VPDyesnoa)- After
IDS is recognized in the field, each subsequent hour is classified as
either favorable for the inoculation process (= 1) or unfavorable (= 0),
according to equation 1. The accumulation of temperatures and VPD
in hour will start when conidia (IDS) are observed in the field and both
parameters are favorable for the inoculation process.

GER = 1, if cumulative temperature in hour ¢ >10w_Tipreshold
and <high_Tihreshola and cumulative VPD in hour
t 2 small_VPDyyeshola and <large_ VPDiyreshold

GER = 0, if cumulative temperature in hour # <low_Tihreshold
and > high_Tihreshola and cumulative VPD in hour
t <small_VPDyyeshold and = large_ VPDypreshold (1)
Once GER is initiated, the model progresses to simulate the LP

(i.e., time period from infection to sporulation) that would influence
the length of time (hours) of the ICY which determines the number
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Fig. 1. Relational diagram of the POMICS model simulating secondary infection cycles of powdery mildew in zucchini, where DS = disease severity, H = required
hours, IDS = initial disease severity, LP = latent period, RH = relative humidity, RF= reduction factor, T = temperature, and VPD = vapor pressure deficit.
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of ICY that can be completed during a growing season (van Maanen
and Xu 2003; Zadoks 1972). LP is influenced by temperature and
quantified by two parameters: low temperature (10w_Treshola) and
high temperature (high_Tesnola)- Each hour is classified as either
favorable (LP = 1) or unfavorable (LP =0), according to equation 2.
LP requires ICY hours of cumulative favorable temperature, which
is a parameter of the model. Once LP has been achieved, POMICS
assumes that an ICY period (e.g., ICY-1) is completed and a new
ICY (e.g., ICY-2) will commence. The accumulation of tempera-
tures in an hour will start on the completion of one cycle (ICY) and
temperatures are favorable for the inoculation process.

LP = 1, if cumulative temperature in hour t=>10wW_Threshold

and <high_Tihreshold

LP = 0, if cumulative temperature in hour # <low_Threshold
and = high_Tipreshold @)

Next, POMICS simulates the final status of DS on zucchini leaves
in a single growing season according to the number of ICY achieved
and will contribute to the increase of crop DS. A logistic model
function was used to describe the relationship between ICY and the
increase in DS (equation 3):

DS = (DSmax—DSmin) /(1 + e‘”bx) (3)

where DSmax is the maximum DS achieved (the highest DS is 5,
based on a scale of 0 to 5), DSmin is the minimum DS achieved (the
lowest value of DS is 0, based on a scale of 0 to 5), a and b are
parameters, and x is the total number of complete ICY periods. The
model further predicts the reduction in DS due to the application of
fungicides at any recurrent ICY. The model assumes that, with the
application of fungicides at a recurrent ICY, DS is reduced by a
reduction factor (RF) in the following ICY. RF is a parameter that
refers to the effectiveness of fungicides in reducing DS. In this
model, RF is calculated according to Caffiet al. (2012) (equation 4):

RF (%) =100 — [(Y,/Y,) x 100] (4)

where RF is the reduction factor, Y is DS in the sprayed treatment
(industry standard practice [INS]), and Y, is DS in the unsprayed
treatment (CON). The model was written in Microsoft Excel 2007
worksheets.

Data for model calibration, validation, and simulation.
Three field studies, summarized below, were conducted to generate
data for model calibration and validation (Sapak 2012).

Field trial 1. The trial was conducted at the Queensland De-
partment of Agriculture and Fisheries (QDAF) Research Station in
Bowen, North Queensland, Australia, during spring 2008. It was
carried out by MacManus and colleagues of QDAF. The initial aims
of this trial were not for this study; however, relevant data were co-
opted for use in the POMICS model as a component of this broader
national activity. ‘Congo’ zucchini seed (Seminis Vegetable Seeds
Inc.) were sown into 96-cell seedling trays using a 3:1 ratio of peat to
vermiculite and the seedlings were raised in an evaporatively cooled
glasshouse for 2 weeks. Four experimental plots 1.52 m apart were
prepared with black plastic mulch and trickle irrigation (flow rate =
2 liters/min). These plots were assigned in a completely randomized
block design with four treatments of sequential planting dates on 26
June and 11, 24, and 30 July because the study aimed to assess the
influence of different planting times and weather variables on
disease development. Each treatment consisted of four replicate
raised beds, and 10 zucchini seedlings with three unfolded leaves
from the glasshouse were transplanted into each bed and spaced
0.55 m apart. The five centermost plants were used for DS assess-
ments. DS assessments were made weekly on leaves within the
lower third of the canopy using a 0-to-5 scale, where 0=nil and 1 =1
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t05,2=6t010,3=11t025,4=31to75,and 5=76to 100% of leaf
area covered with sporulating lesions (MacManus and Akem 2008).
Hourly weather data of temperature and RH were recorded with
a monitoring weather station. Standard agronomic practices for
weed control, fertilization, and pest management were implemented
throughout the growing season and no fungicides were applied
(MacManus and Akem 2008). Environmental conditions in Bowen
favored the rapid development of powdery mildew regardless of
planting dates and, therefore, only DS data from one plating date were
used in this study.

Field trial 2. This field trial was conducted during autumn 2011
at the QDAF Research Station, Gatton, southeast Queensland,
Australia, and planted with ‘Amanda’ zucchini (Henderson Seed
Co. Pty. Ltd). Twenty-one experimental plots were prepared with
plastic mulch and trickle irrigation (2 liters/min). These plots were
assigned in a completely randomized design with three treatments:
(i) no fungicide applications (CON), (ii) fungicide applications
according to the INS, and (iii) fungicide applications according to
the University of California-Davis powdery mildew risk assessment
index (RAI), as developed by Gubler et al. (1999). There were seven
replicated plots per treatment and each plot consisted of four raised
beds (5.0 by 1.5 m), each direct seeded for 10 plants spaced 0.55 m
apart. Four plants from the central beds were randomly selected for
the DS assessments and two outer beds were used as buffers. DS
assessments in this study were made as described for field trial 1.
Standard agronomic practices for irrigation, weed control, insect
pest management, and fertilization were applied (Napier 2009). In
the early stage of plant growth, fungicides were not applied in order
to allow natural primary infection of powdery mildew to occur.
Weather data, consisting of hourly temperature and RH, were
recorded at crop height with a SMARTLOGGER portable moni-
toring weather station (Monitor Sensors Pty. Ltd.). Initial pathogen
appearance on leaves was observed on 7 March during the flowering
stage but was very low at < 1% of leaf area covered by powdery
mildew colonies. No fungicide applications were applied until 21
March. Subsequently, the systemic fungicide Azoxystrobin (Amis-
tar 250 SC; Syngenta Australia) was applied at a rate of 120 ml
per 100 liters with a tractor-mounted boom application for the
INS treatment, as recommended by industry practice. The RAI
treatment was based on the calculated RAI (Sapak 2012). This field
trial was carried out for 7 weeks, with four applications of fun-
gicides for treatment INS and three applications for treatment RAI
(Table 1).

Field trial 3. This field trial was carried out during spring 2011.
The location, field procedures, and data collections were as
previously described for field trial 2. Fifteen experimental plots
were prepared and assigned in a completely randomized design with
three treatments and five replicates per treatment. The treatments
were (i) no fungicide applications (CON), (ii) fungicide applica-
tions according to INS, and (iii) fungicide applications according to
the POMICS model. In this experiment, three fungicide applica-
tions were applied for the treatment (INS) and two applications for
POMICS.

Model calibration, validation, and simulation. POMICS
has nine parameters (Table 2), of which IDS is an initialization
parameter (considered a primary input) which needs to be measured
or estimated in the field based on a 0-to-5 DS scale. Of the
remaining eight parameters, Small_VPDesnolq and Large_
VPDyyreshola Were measured in the laboratory study (Sapak 2012)
(Table 2, column 4). The ICY was valued according to Reuveni and
Rotem (1974) and Sapak (2012). The remaining four parameters
(Low_Tinreshords High_Tenresnolas @, and b) were valued through
calibration. This calibration was performed using the “solver”
function of Microsoft Excel 2007 as recommended by Salam et al.
(2007). The solver function of Microsoft Excel 2007 is designed to
define an optimal value for a formula that includes a number of
parameters. The solver function was applied in this case to
minimize the sum of the squared differences between the observed



DS in the field and simulated DS values according to the model. The
observed DS data used for the parameter calibration are the DS data
obtained from field trial 2 for treatment CON. The value of the
parameter RF was calculated using equation 4 with the same DS
data set from field trial 2. The DS data observed on week 7 in the
CON and INS treatments were used to calculate the RF value as
follows:

RF (%) = 100 — [(Y,/Y,) x 100]
RF (%) = 100 — [(0.3/3.5) x 100]
RF = 91 ~90%

where Y is minimum DS from the applied treatment (INS) and ¥, is
maximum DS from the no fungicide treatment (CON). The
parameter RF was included in POMICS to simulate DS after
fungicides were applied to the crop. The model assumes that the
application of fungicides at a recurrent ICY can reduce DS by 90%
in the next ICY. Therefore, the POMICS model suggests the fungicide
applications to control powdery mildew of zucchini according to the
number of complete ICY.

In order to judge the performance of the prediction, the model was
validated with two independent datasets, Validation of POMICS

was performed first with the DS data from field trial 1 and second
with the DS data from field trial 3 using the CON treatment. In
addition to simulating the DS, POMICS also predicts the reduction
in DS due to the application of fungicides at any recurrent ICY, as
mentioned earlier. The effectiveness of the POMICS model ap-
proach in assisting fungicide applications was tested with four
independent datasets of observed DS. Of these, the first two datasets
were from field trial 2. Here, the INS treatment with four fungicide
applications and the RAI treatment with three fungicide applica-
tions for controlling powdery mildew on zucchini were used to
compare with the POMICS simulation. Another two datasets were
used from field trial 3 with respect to the INS treatment, where three
fungicide applications were applied, and the POMICS treatment,
where two were applied.

Statistical analysis used in model calibration, validation,
and simulation. The performance of the model was evaluated
statistically by using three techniques: (i) confidence interval of DS
observation, (ii) concordance correlation coefficient (CCC) of
simulation versus observation, and (iii) deviation of simulation
minus observation. The confidence interval was calculated for each
mean value of DS observation at the 95% confidence level
(Willmott et al. 1985). The purpose of this analysis was to explore
whether the range of the true mean value of an observation
overlapped with the corresponding simulation at the confidence

TABLE 1. Changes in disease severity levels (0 to 5) on both zucchini leaf surfaces in response to fungicide treatment applied according to the risk assessment
index (RAI) and standard industry practice (INS) recommendations during 7 weeks of observation

Week* Date* Treatment? Date of fungicide application/fungicide used Mean + SE*
1 7 March RAI None 0.01 a £ 0.01
INS None 0.01 a = 0.01
CON None 0.01 a+0.01
2 16 March RAI None 0.05 a = 0.03
INS None 0.06 a = 0.03
CON None 0.06 a + 0.03
3 21 March RAI 25/Azoxystrobin 0.20 a = 0.05
INS 22/Azoxystrobin 0.20 a = 0.07
CON None 0.29 a = 0.01
4 28 March RAI None 0.29 b + 0.08
INS 29/Sulfur 0.15b = 0.08
Control None 0.64 a +0.12
5 4 April RAI 5/Sulfur 0.39 b + 0.05
INS 5/Bupirimate 0.20 b £ 0.04
Control None 144 a+0.29
6 11 April RAI 17 and Bupirimate 0.07 a = 0.10
INS 17/Sulfur 0.01 a = 0.07
Control None 2.20b £ 0.37
7 19 April RAI None 0.14 a = 0.10
INS None 0.16 a = 0.08
CON None 349b+0.21

X Week and date of disease severity (DS) observations.

¥ RAl is a treatment of fungicide application according to the risk assessment index developed by Gubler et al. (1999), with modifications. INS is a treatment of
fungicide application according to the industry standard practice. CON indicates no fungicide treatment.
z DS scale of 0 to 5. Means + standard error (SE) within the column indicated with the same letter are not significantly different according to the ¢ test at a

significance level P = 0.05 at each week.

TABLE 2. List of parameters and values used in POMICS for simulating severity of powdery mildew on cucurbits

Parameter Definition Unit Parameter value

IDS Initial disease severity (DS) found in the cucurbit field, measured on the basis of a scale of 0 to 5 Unitless Various

ICY Number of favorable hours to complete the infection cycle (ICY), consisting of h 168
progress of inoculation to sporulation

Low_Threshold Lower limit of mean hourly temperature required for conditions to be favorable for the ICY °C 10

High_Tihreshold Upper limit of mean hourly temperature required for conditions to be favorable for the ICY °C 30

Small_VPDyyeshold Lower limit of mean hourly vapor pressure deficit (VPD) required for conditions to be kPa -0.02
favorable for the ICY

Large_VPDyyreshold Upper limit of mean hourly VPD required for conditions to be favorable for the ICY kPa -0.12

a Value derived from a logistic model function used to describe the relationship between ICY and DS Unitless 3.05

b Value derived from a logistic model function used to describe the relationship between ICY and DS Unitless -0.99

RF? Reduction in DS after fungicide has been applied % 90

z Reduction factor.
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level (95%). The CCC-based statistic was the pC (Lin 1989). The
purpose of this analysis was to estimate the level of variability in the
observed data that could be explained by the model’s simulation.
This was performed across all data points observed in an experiment
with the corresponding prediction from the model. The deviation-
based statistics used mean squared deviation (MSD) (equations
5o 8).

MSD = SD + SDSD+LCS 5)

12 2
SB = (- 3 (xi—y,-)) ®)
ni=1

2
12 _ 1z .
SDSD = ( " EI (xi—%) - p i; (yi—)’)> 7N

LCS:Z( ! z)(
noi=i

In equations 5 to 8, x is the model output; y is the measurement;
x; and y; are the simulated and measured values, respectively, for the
ith measurement from n number of measurements; X and y are the
means of x; and y; (i = 1,2...n); and r is the correlation coefficient
between the simulation and measurement. The purpose of this
analysis was to identify what caused the discrepancy, small or large,
between observation and prediction. MSD (equation 5) has three
additive components: (i) squared bias (SB), (ii) squared difference
between predicted and observed standard deviations (SDSD), and
(iii) lack of positive correlation weighted by the standard devia-
tions of prediction and observation (LCS). MSD measures the total
deviation between predictions and observations. The lower the
value of MSD, the closer the prediction is to the observation. SB
(equation 6) indicates the mean agreement between the model
and observation, whereas SDSD (equation 7) and LCS (equation
8) together show how closely the model predicts variability

ni=1

LS Gimp)1-r )) ()

around the mean. There are two sources of this variability: SDSD
describes the magnitude of fluctuation among the n observa-
tions and LCS describes the pattern of the fluctuation across n
observations.

RESULTS

Dynamics of progression through the ICY. The progress
through ICY as simulated by the POMICS model is shown in
Figure 2. This example is the simulation of the Gatton field study
during the autumn 2011 (field trial 2) for the first complete ICY
(ICY-1) and the beginning of the second cycle (ICY-2). The progres-
sion of ICY-1 is initiated by the GER process. The simulation graph
shows that there was no progression of ICY-1 in the initial hours of the
model because the unfavorable temperature and VPD for GER (Fig. 2,
arrow 1). The process of GER commenced at 30 h, when VPD and
temperature were favorable for the process. After initiation of the GER
process, the model simulated the progression of the LP until 21 h,
before the progression was delayed at 51 to 56 h due to the temperature
dropping below the threshold of 10°C (arrow 2). The model then
simulated the continued progression of LP until it was delayed again
by low temperature at 75 to 80 h (arrow 3), 101 to 104 h (arrow 4), and
170 to 176 h (arrow 5). With such “delay and proceed” events, LP
required more than 168 h to complete ICY-1 (arrow 6). ICY-1 was
completed in 221 instead of 168 h. The beginning of ICY-2 was also
delayed by 26 h due to unfavorable conditions of temperature and
VPD (arrow 7).

Model calibration. Using the calibrated parameters, the
simulated progression of DS is shown in Figure 3 along with the
DS observed in the field at Gatton (field trial 2). The calibrated
model illustrates the progress of DS of powdery mildew in zucchini
well. Quantitatively, the DS simulated by the model was within the
95% confidence limit of the observations for all except one data
point (28 March) (Fig. 3). The mean difference between the
simulated DS level and the observed DS level was extremely low at
only 0.04 for DS scales of 0 to 5. The model also closely predicted
the magnitude of fluctuation (standard deviation = 1.24) among six
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observations (standard deviation = 1.10). In addition, the relation-
ship between observation and simulation was strong at pc = 0.98,
n = 6. This was reflected in the MSD analysis, which showed
that the bias (SB) was zero and that SDSD and LCS were small
but similar (Fig. 4A). A small SDSD of 0.02 indicated that the
calibrated model largely simulated the magnitude of fluctuation
between six observations. Similarly, a small LCS indicated that the
model adequately predicted the pattern of the fluctuation between
the observations.

Model validation. The first validation with the DS data of the
Bowen field study (field trial 1) showed that the model simulated the
observed data well (Fig. 5). Quantitatively, the model’s simulation
of the DS was within the 95% confidence limit for all observations.
The relationship between simulation and observation was strong at
pc = 099, n = 4. The mean difference between the simulated
DS scale and the observed DS scale was small, at only 0.02 for DS
level O to 5. The model also closely predicted the magnitude of
fluctuation (standard deviation = 0.85) among the four observations
(standard deviation = 0.84). The root MSD (RMSD) between the
calibrated model’s simulation and the observation was reasonably
low at 0.14. The MSD analysis showed that the deviation of the
model’s simulation from the observation was attributed to a small

LCS and SB and zero SDSD (Fig. 4B). Zero SDSD indicates that the
model largely simulated the magnitude of fluctuation between the
four observations. A small SB indicates that the difference between
the mean values of the simulation and the observation is small. A
small LCS indicates that the model adequately simulated the pattern
of fluctuation across the four data points.

The second validation of the POMICS model was performed with
the DS data obtained from the CON treatment of the Gatton field
study during spring 2011 (field trial 3). This validation showed that
the model was able to simulate the observed data well (Fig. 6).
Quantitatively, except for two data points for 8 and 15 November,
the simulation of DS was within the 95% confidence limit of the DS
observations. The mean difference between the simulated DS scale
and the observed DS scale was very small (0.06) for DS levels Oto 5.
This small difference indicated that the relationship between the
simulation and the observation was strongly correlated (pc = 0.95,
n = 8). The model’s simulation overestimated three data points
at 8 and 15 November and 6 December. However, the difference
between the simulations and the observations at these two points
was small, at less than 0.5. This small deviation was reflected in the
MSD analysis that showed that the SB and SDSD were small but the
LCS was larger than that in other simulations (Fig. 4C). A large LCS
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Fig. 3. Comparison between the model’s simulation and the observation of disease severity (DS) of powdery mildew of zucchini as a part of calibration of the
POMICS model. Observation data were collected from the Gatton field trial during autumn 2011. Observed DS data from the unsprayed treatment were used in the
calibration. Each observed value is a mean of seven replicates, and confidence intervals of DS at 95% are indicated by error bars.
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Fig. 4. Mean squared deviation and its components—squared bias (SB), squared difference between standard deviation (SDSD), and lack of correlation weighted
by the standard deviations (LCS)—comparing the simulated and observed disease severity (DS) of powdery mildew in zucchini. Observed data were collected at
two locations and in two seasons. A, Observed DS data from the Gatton field trial during autumn 2011; the data from the unsprayed treatment (CON) were used to
calibrate the model. B, Observed DS from the Bowen field trial during spring 2008 were used to validate the model. C, Observed DS data from the Gatton field trial
during spring 2011; the data collected from the CON were used to further validate the model.
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was probably contributed by the model and did not adequately
simulate the pattern of fluctuation for the data points on 8 and 15
November.

Model simulation. Simulation with three versus four applica-
tions of fungicide. DS data used in this model simulation were from
the Gatton field trial during autumn 2011. The POMICS model
performed well in simulating the observed DS data from the INS
treatment with four applications (Fig. 7). At the end of the growing
season, the mean observed DS scale was recorded as 0.14, with a
95% confidence limit of 0.78, which was similar to the value
simulated by the model (0.12 DS scale). The RMSD between the
model’s simulation and the observation was low, at only 0.08. This
small deviation in the model’s simulation from the observation
was attributed to the LCS (Fig. 8A). The model also performed
very well in simulating the observed DS data from the INS
treatment with three applications of fungicide (Fig. 7). At the end
of the growing season, the observed DS scale recorded in the field
was 0.16 and the model-simulated DS scale was 0.12. This result
suggests that the relationship between the simulation and the
observation is well correlated, with a mean difference of only 0.02
for a DS scale of O to 5. This small deviation between the model’s
simulated DS scale and the observed DS scale was attributed to the
lack of positive correlation weighted by the standard deviations

(Fig. 8B). There was no significant difference between the models
that simulated a DS scale with four applications of fungicide and
those that simulated a DS scale with three applications. This result
suggests that the fourth application did not have any effect on the
final status of the DS.

Simulation with two versus three applications of fungicide. The
model simulated the observed data from the Gatton field trial
during spring 2011 from a POMICS treatment (Fig. 9). At the end
of the growing season, the DS scale recorded from the treatment
was 0.54, with a 95% confidence limit of 0.24, which was closely
simulated by the model (0.42). The RMSD between the model’s
simulation and observation was 0.17. This deviation between the
model’s simulated DS value and the observed DS values was
predominantly attributed to bias of means (SB), a small SDSD,
and zero LCS (Fig. 8D). Zero LCS indicates that the model with
the RF of 0.10 was adequate to simulate the pattern of fluctuation
between the observed data and simulated data. The large SB was
explained by the difference between the mean simulation and
observation values at two data points for 8 and 15 November. At
these two points, the model overestimated DS but the mean
difference between the simulated and observed values for both
points was less than 0.5 (Fig. 9). The difference between the mean
of the DS scale with two applications of fungicide applied as
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Fig. 5. Comparison of the model’s simulation and the observation of disease severity (DS) of powdery mildew in zucchini. Observed data were collected from the
Bowen field trial during spring 2008 (field trial 1). Each observed value is a mean of five replicates, and confidence intervals of DS at 95% are indicated by error
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Fig. 6. Comparison of the model’s simulation and the observation of disease severity (DS) of powdery mildew in zucchini. Observed data were collected at the
Gatton field trial during spring 2011 (field trial 3). Data from the unsprayed treatment were used for the POMICS model validation. Each observed value is a mean
of five replicates, and confidence intervals of DS at 95% are indicated by error bars.
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guided by the POMICS and the mean of the DS scale with three
applications of fungicide applied as guided by the industry
standard practice was low (<0.5). This result indicates that the
improved practice by the POMICS is able to reduce at least one
fungicide application during a growing season.

DISCUSSION

On the basis of a disease epidemic model, this study explored the
feasibility of curtailing one or more fungicide applications in
the commercial production of zucchini in Queensland, Australia.
The industry considers that the intensive use of fungicides is
required to successfully manage powdery mildew in this crop; thus,
there is much room for improvement.

Because epidemics of powdery mildew, as for other crop diseases,
are driven by weather conditions, a simple weather-based model
was developed to meet the objective of the study. The model
simulates the increase in powdery mildew of a zucchini crop as
secondary ICY. The POMICS model is based on the principle of
“favorable conditions” for the development of the pathogen to
generate a number of ICY in a single growing season. It may be
noted that, with a 7-day ICY, as many as seven such cycles have been

recorded in zucchini crops in Queensland over a 50-day growing
season (McGrath and Thomas 1996).

The principle of favorable conditions for progression toward
an ICY has been widely applied in modeling other crop
diseases. Examples include simulating the maturity of ascospores
of ascochyta blight (Didymella rabiei) in chickpea (Cicer
arietinum) (Shtienberg et al. 2005), blackleg disease (Leptos-
phaeria maculans; L. biglobosa) in canola (Brassica napus)
(Salametal. 2003, 2007), and ascochyta or blackspot (D. pinodes)
in field pea (Pisum sativum) (Salam et al. 2011). Five weather-
related parameters of the model (ICY complete, low_Tresholds
high_Tthreshold’ Sma“_VPDthresholda and ]arge—VPDthreshold) were
either measured or derived by calibration with the field ex-
perimental data. The values of these parameters largely fell within
the ranges that were cited in the literature (MacManus and Akem
2008; McGrath and Thomas 1996; Reuveni and Rotem 1974,
Yarwood 1957). In addition to temperature and VPD, rainfall
and free water also have an impact on powdery mildew growth,
as discussed by Sivapalan (1993) and Jarvis et al. (2002). Rain-
drops 4 mm in diameter released from a height of 2.5 m on-
to infected leaves can reduce the number of powdery mildew
conidia remaining. However, free water has a detrimental effect
only on ungerminated conidia and has minimal effect on overall
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Fig. 7. Comparison of the model’s simulation and observation of disease severity (DS) in zucchini. Observed DS datasets were from two treatments (field trial 3):
(i) industry standard practice (four applications) and (ii) POMICS (three applications). Each observed value is a mean of seven replicates, and confidence intervals

of DS at 95% are indicated by error bars.
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Fig. 8. Mean squared deviation and its components—squared bias (SB), squared difference between standard deviation (SDSD), and lack of correlation weighted
by the standard deviations (LCS)—comparing simulated and observed disease severity (DS) of powdery mildew in zucchini collected at Gatton from two field
trials. Field trial conducted during autumn: observed DS data from A, the industry standard practice (INS) treatment with four applications of fungicide and B, the
treatment with three applications, according to the risk assessment index developed by Gubler et al. (1999). Field trial conducted during spring 2011: observed DS
data from C, the INS treatment with three applications and D, the treatment with two applications, according to the POMICS model.
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Fig. 9. Comparison of the model’s simulation and observations of disease severity (DS) of powdery mildew in zucchini. Observed data were collected from Gatton
during spring 2011. Datasets were obtained from two treatments: (i) three applications of fungicide applied according to the industry standard practice and (ii) two
applications of fungicide applied according to the POMICS model. Each observed value is a mean of five replicates, and confidence intervals of DS at 95% are

indicated by error bars.

colonization and sporulation of powdery mildew. Additionally,
rainfall is rare during the growing season in the area for which the
model was developed.

In our study, the relationship between the cycle of infection and
DS, the other part of the model, was based on the logistic growth of a
typical polycyclic disease such as powdery mildew in cucurbits.
The logistic function of disease development has been used in many
studies (Correll et al. 1988; Jeger 2004; Lalancette and Hickey 1986;
Rossi and Giosué 2003). Because of the model’s calibration using
natural disease development in the field without any application of
fungicides, it was encouraging to have a small RMSD (0.2). The
POMICS model validation was performed with two datasets of field
data where the disease developed naturally. When validated with an
independent dataset collected at Bowen from a treatment without
fungicide application, the model agreed well with the field
observation (RMSD of DS level = 0.14). It may be noted that the
model was not calibrated in this environment. In a second validation
with a dataset from Gatton during the spring season in 2011, the
POMICS model was able to explain 97% of the variability in the
observed data. The model was calibrated with the data from this
environment; however this was done for autumn season conditions.
These results of validation imply that the model is significantly
robust to simulate the severity of powdery mildew in zucchini
between growing seasons and between growing environments.

POMICS performed well in simulating all five of the datasets
collected from two field studies at Gatton. These datasets included
between two and four fungicide applications. During the testing,
POMICS was able to simulate high- and low-risk disease status.
Furthermore, the model’s prediction of DS was responsive to the
number of fungicide applications. Such responsiveness indicates
that the model has the potential to be used as a tool to guide the
scheduling of judicious fungicide applications. However, there
were some discrepancies observed between simulation and
observed data, notably in predicting a part of the Gatton field trial
(field trial 3 of spring 2011) (Fig. 6). In this comparison, although
the simulation and observation were in good agreement from
22 November on, differences existed in predicting the disease in the
early period (8 and 15 November). POMICS simulated a higher
level of the disease on 8 November which remained unchanged
in the following week (15 November). In contrast, field data show-
ed low disease on 8 November which increased in the following
week; however, the difference in observed DS between 8 and 15
November was not significant. When we revisited experimental
data, we found that two replicates of § November and one replicate
of 15 November observation did not produce any disease. We
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suspect microenvironment differences between the fields in the
experiment. Unfortunately, no microclimate data were available to
run the model to further scrutinize the model’s simulation at those
points of discrepancies. However, we note that more testing of the
model using diverse disease scenarios would suggest the reasons
behind such discrepancies and advocate fine tuning parameter
values of the model if warranted.

The model proved (Fig. 9) that two applications of fungicides was
as good as three applications in terms of managing DS in zucchini.
However, the use of POMICS to control powdery mildew needs to
be reassessed in future studies for high DS. In this study, the model
was tested on two different zucchini cultivars, Amanda (Gatton
field studies) and Congo (Bowen field study). The applicability of
the model also needs to be extended to other cucurbit hosts in the
future. At this stage, it is evident that the model may be applied to
simulate powdery mildew in other cucurbit species, as based on
research findings by del Pino et al. (2002) of no significant differ-
ence between Podosphaera xanthii development on cucurbits
such as cucumber, melon, zucchini, and watermelon. Potentially,
however, the model with proper calibration or validation may also
be applied to simulate the DS of powdery mildew in a wider range of
cucurbit hosts.

In this study, the model appropriately simulated the DS of powdery
mildew in zucchini. This performance was primarily achieved for the
environment that yielded the data used to calibrate, test, and perform
simulation with the model. For its confident application in other
environments, it is advisable to perform multiseason and location-
specific testing. In modeling, reality is simplified, partly because our
understanding of basic processes is limited and partly because this
enables us to handle the model (Salam 1992). Testing would help to
refine the model for the purpose for which it is designed.
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