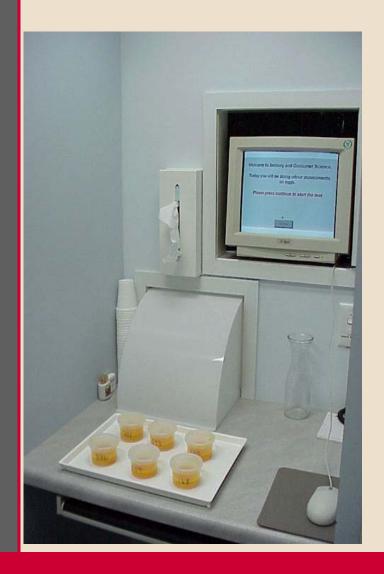
AIFST – Sensory analysis and consumer research

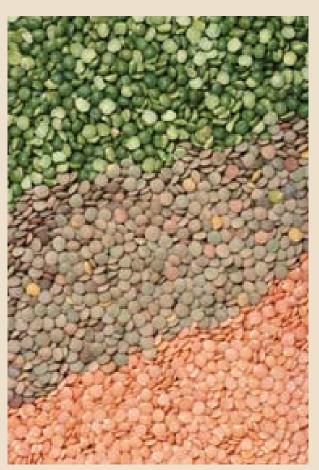
Getting value out of your sensory testing

– the difference from control test


by

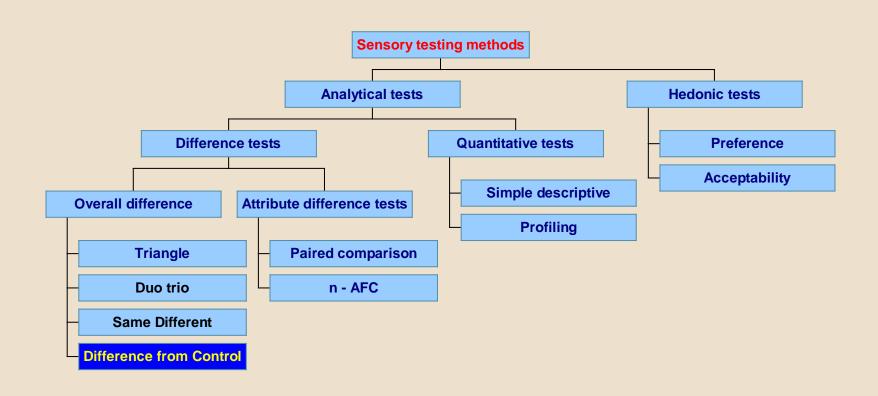
Stephen Nottingham

Sensory and Consumer Science
Innovative Food Technology – Emerging
Technologies


Outline of presentation

- √ the difference from control (dfc) test
- ✓ background
- √how it works
- ✓ advantages
- ✓ application in practice particularly quality control

Where is it currently being used?


- ✓ testing several lots of an ingredient. 2000
- ✓ effect of portion size and heterogeneity on the sensory analysis of firmness using peas and biscuits as examples. 2000
- ✓ roasted peanut flavour intensity variations among US genotypes. 1995

Where is it currently being used? cont.

- ✓ evaluation of flavour and aroma of genetically modified wine strains using DFC with an experienced panel. 1992
- ✓ shelflife extension of Michigan apples using sucrose polyester. 1992
- ✓ ingredient substitutions: how to know when you have made a "match". 1992
- ✓ comparison of control vs prototype
 products applied to the skin. 2000

Where does it fit?

Where does it fit?

- ✓ part of difference tests
- ✓ more specifically part
 of overall difference
 tests like triangle and
 duo-trio tests
- ✓ extension of the same-different or simple difference test

Typical triangle test questionnaire

TRIANGLE TEST

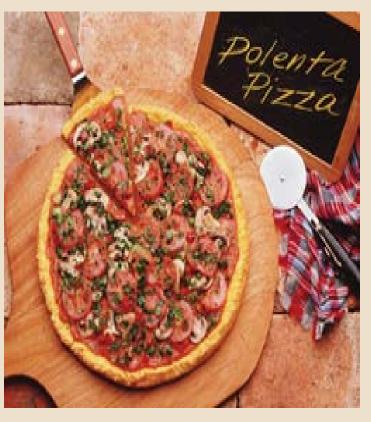
Name			Date	
Product: Flavoured Milk				
Two samples are the same an	nd one is c	different.		
Assess the samples in the ord that you think is different.	der shown	from left to right and	circle the	code of the sample
Please rinse your palate with	water betv	veen samples.		
Sample 243	Sample	344	Sample	265
You must make a choice				
Comments				

Interpreting triangle test results

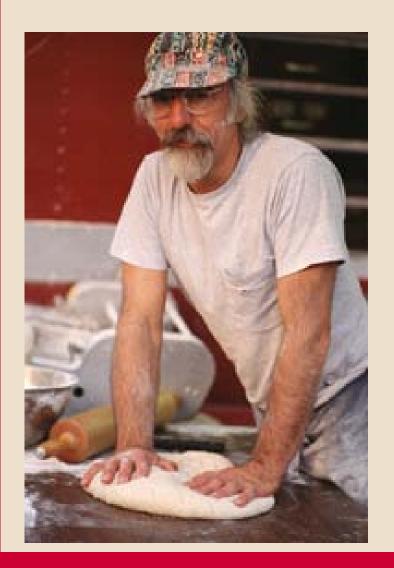
- ✓ analysis is straightforward
- ✓ alpha risk 0.05 to 0.20
- ✓ similarity testing usually more interest in this
- ✓ beta risk
- √ p_d the proportion of distinguishers

Interpreting triangle test results

- ✓ only answer the question - is there a significant difference between the samples?
- ✓ no idea of the nature of the difference.
- ✓ no idea of the size of the difference
- ✓ no idea of the direction of the difference
- ✓ comments may give a guide


What are our options?

- ✓ descriptive analysis eg profiling,
 QDA
- ✓ will tell us for example product B
 is significantly (p<0.05) sweeter
 than product A
 </p>
- √ gives us nature i.e. sweetness
- √ gives us size i.e. significance
- ✓ gives us direction i.e. B is sweeter than A
- ✓ comes at a price in terms of time and resources
- √ use DFC



The degree of difference

- √ first proposed in 1985 as degree
 of difference (DOD) by Aust et al
 in Scottsdale Arizona
- ✓ range of non-homogeneous products including devilled ham, chilli sausage, pizza and Vienna sausage
- ✓ within batch and between batch variation and test product
- ✓ concluded that DOD was more appropriate test to use on non-homogeneous product than a triangle test

Why DFC?

- ✓ batch to batch variation between days or within a day due to natural variation
- ✓ a triangle test may produce "falsely" significant differences due simply to this variation
- ✓ this can be misleading in interpretation of the result

When to use the DFC?

- √ if the product is nonhomogeneous (can also use if homogeneous)
- ✓ we wish to determine whether a difference exists between one or more samples and a control
- ✓ we wish to estimate the size
 of any such differences
- ✓ in QA/QC the relative size of a difference is important for decision-making

How does the DFC work?

- √ identified reference or control sample
- ✓ one or more coded test samples that include the reference or control (blind control)
- ✓ panellists rate the degree of difference from the identified reference on a line or category scale

Examples of scales

Verbal Category Scale

Numerical Category Scale

0 = No difference

5

6

9 = Very large difference

Very slight difference

□ No difference

Slight/moderate difference

Moderate difference

Moderate/large difference

Large difference

Very large difference

Line Scale

no difference

very large difference

How does the DFC work?

- √ 20 50 presentations required
- ✓ can be trained or untrained but not a mixture of the two
- ✓ all panellists should be familiar with the test format
- ✓ panellists should also be aware that some of the samples will be blind controls

How to analyse the results?

- ✓ easiest approach is to apply parametric tests such as Anova or t-tests
- ✓ calculate the mean
 difference from the identified
 control for each test sample
 and the blind control
- ✓ for paired data using categorical scales use nonparametric chi-squared analysis.

DIFFERENCE FROM CONTROL TEST

Date:

nstı	<i>'ucti</i>	ons:
	1.	You have received two samples, a control sample labelled C and a test sample labelled with a 3-digit number.
	2.	Evaluate the control sample, cleanse your palate and then the test sample.
	3.	Indicate the size of the difference of the test sample relative to the control on the scale below.
Asse		ample 386 and score the overall sensory difference between the two
		0 = No difference
		1
		2
		3
		4
		5
		6
		7
		8
		9 = Very large difference
	tim	
omn	nents:	

Time:

Test Sample Code:

Name:

Product: Beer

Panellist	Blind control	Beer A	Beer 1
1	1	2	4
2	3	3	6
3	0	3	3
4	2	2	3
5	1	3	6
6	4	3	6
7	2	4	3
8	1	2	3
9	0	1	5
10	0	3	4
11	1	2	6
12	3	4	5
13	5	4	5
14	0	1	2
15	1	4	4
16	2	3	6
17	1	2	4
18	1	3	8
19	0	4	6
20	3	3	4
21	3	2	5
22	3	4	7
23	2	2	3
24	2	2	5
25	4	4	5
26	0	2	2
27	3	2	3
28	3	4	4
29	2	1	2
30	1	1	2
Meana	1.90a	2.67b	4.37c

Analysis of DFC data

Source	Degrees of freedom	Mean square	F value	P Value
Panellists	29	3.15	2.72	0.0006
Samples	2	47.81	41.36	0.0001
Error	58	1.16		
Total	89			

LSD =
$$2.02 \sqrt{(2)(1.16)/30}$$

= 0.56

So what does this mean?

Blind Control Beer A Beer B

1.90a 2.67b 4.37b

Mean for the blind control sample was 1.90 so this is a measure of the so called "placebo" effect. This is the result when no treatment is applied and the sample is in fact a duplicate control.

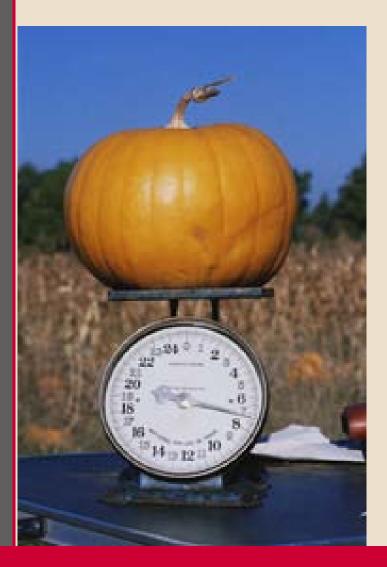
Beer A and Beer B are significantly (P<0.05) different from the control and the difference is greater for Beer B as 4.37 - 2.67 = 1.70 is larger than LSD value of 0.56

How to make it work?

✓ adjusted mean test sample scores denoted by delta ∆ expressed as

$$\overline{X}_{test} - \overline{X}_{control}$$

(average test score minus the average control score)


$$\Delta$$
 Beer A = 2.67 - 1.90 = 0.77

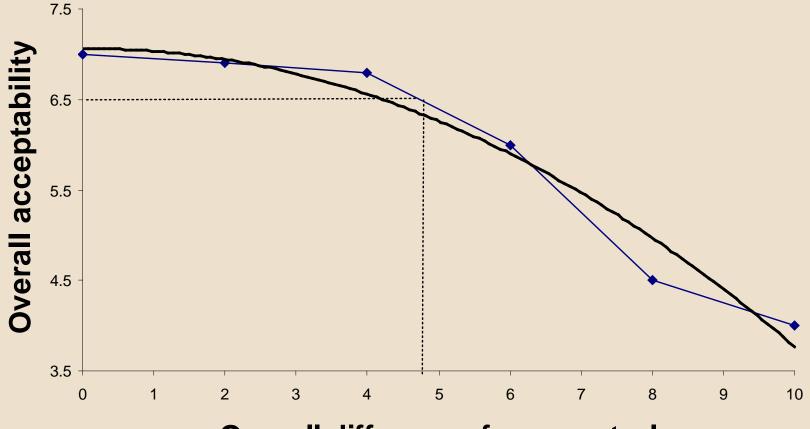
$$\Delta$$
 Beer B = 4.37 - 1.90 = 2.47

✓ removes the "placebo" effect and also removes the heterogeneity of the control product

Applications in quality control

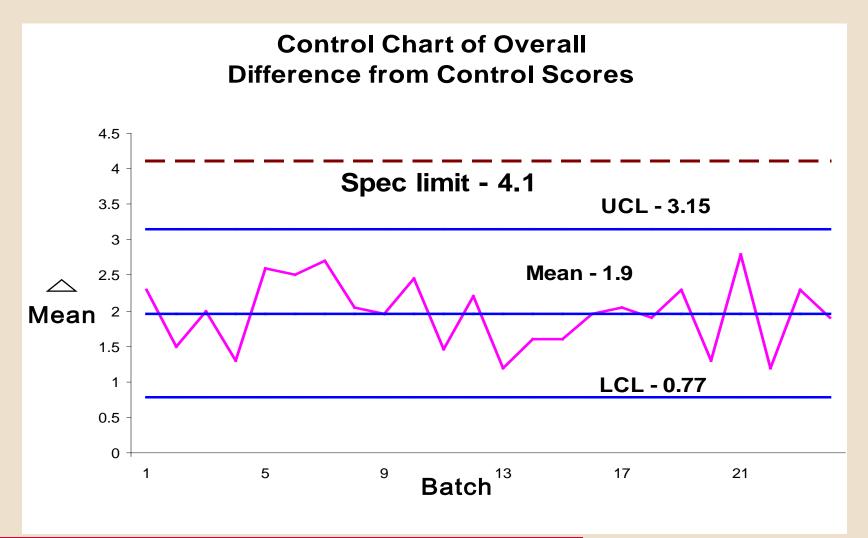
- ✓ track production in terms of the amount that any finished product differs from a control or standard
- ✓ accept product that falls below some critical difference value and is closer to the control
- ✓ reject product that falls above the critical difference value

What is this critical difference value?


Suggestion by Munoz, Civille and Carr that it is set by

- using responses from both consumers and management to an array of products that differ from the control or
- 2. using management responses only

Preference is given to option 1.


Managements primary consideration is the relationship between consumer acceptance and overall difference from control

Overall difference from control

Statistical Process Control I chart

Does it stop here?

Does it stop here?

Defining the standard

- ✓ definition of the quality standard is critical in implementing a quality control program
- ✓ with foods often difficult to obtain a suitable reference
- √ use mental standard
- ✓ use written standard

Mental standards

- ✓ usually created by one or more experts
- ✓ more reliable for products such as wine, coffee, olive oil etc
- ✓ perception is that the expert's opinions are not representative of consumer's opinions
- ✓ exceptions may be with raw materials or ingredients that are not directly evaluated by the consumer
- ✓ small differences between high quality levels may be decisive in their market price

Written standards

- ✓ quality grading method when constant reliable standard not available
- ✓ most recognizable is the quality index method (QIM) scheme
- ✓ developed in Europe mainly for evaluation of fish species
- ✓ demerit point system based on freshness as a key quality parameter

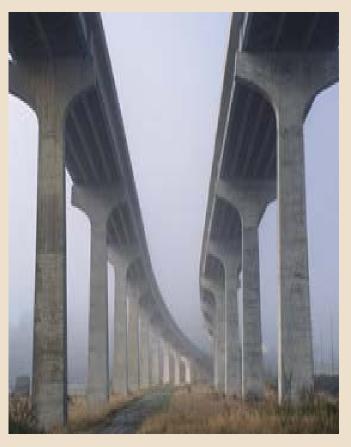
Quality Index Method (QIM) Scheme for Farmed Salmon

Quality p	arameter	Description	Score
Skin	Colour/	Pearl-shiny all over the skin	
	appearance	The skin is less pearl-shiny	
		The fish is yellowish, mainly near the abdomen	
	Mucus	Clear, not clotted	0
		Milky, clotted	
		Yellow and clotted	2
	Odour	Fresh seaweedy, nutral	0.
		Cucumber, metal, hay	1
		Sour, dish cloth	2
		Rotten	3
	Texture	In rigor	
		Finger mark disappears rapidly	1
		Finger leaves mark over 3 seconds	2
Eyes	Pupils	Clear and black, metal shiny	0
		Dark grey	1
	ingthesia, e	Matt, grey	2
	Form	Convex	0
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Flat	1
		Sunken	2
Gills	Colour	Red/dark brown	0
		Pale red, pink/light brown	1
		Grey-brown, brown, grey, green	2
	Mucus	Transparent	0
		Milky, clotted	1
		Brown, clotted	2
	Odour	Fresh, seaweed	0
		Metal, cucumber	1
		Sour, mouldy	2
· TELLYO		Rotten	3
Abdomen	Blood in	Blood red/not present	0
	abdomen	Blood more brown, yellowish	
	Odour	Neutral	0
		Cucumber, melon	1
		Sour, fermenting	2
A REPORT		Rotten/rotten cabbage	3
Quality I	ndex		0-24

Summary

- ✓ the DFC test can be used on both homogeneous and non-homogeneous product, particularly the latter
- ✓ it can provide not only an indication of any difference but also the size of that difference
- ✓ if we expand our scales by specifying sensory attributes and using the midpoint control scale we can get an indication of direction and the nature of the difference
- ✓ we can assess more than one pair of samples at a time, depending on sensory fatigue

Summary cont


- ✓ at the basic level no intensive training is required but as the questionnaire becomes more specific, training is required
- ✓ the test lends itself well to the quality assurance/control area and if a reliable suitable reference or control is not available then we have options using a mental standard or written standard
- ✓ sensory QC using DFC should be incorporated into an overall QC program

Summary cont

- ✓ quote from Gail Civille from Sensory Spectrum Inc who said "I love the DOD/DFC test for QC and shelf-life and in conjunction with descriptive when we want a sense of the distance of products to a "control" and you do need a controlled control."
- √ this really sums up the DFC test

Recommendations

- ✓ to prepare a draft Australian standard on DFC to compliment the existing standards in sensory analysis.
- ✓ there is scope for more research into developing or adapting sensory methods that are applicable in the food industry. e.g. appropriateness of small scale consumer panels