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Developing effective fumigation protocols to
manage strongly phosphine-resistant
Cryptolestes ferrugineus (Stephens)
(Coleoptera: Laemophloeidae)

Ramandeep Kaur®®” and Manoj K Nayak®®

Abstract

BACKGROUND: The emergence of high levels of resistance in Cryptolestes ferrugineus (Stephens) in recent years threatens the
sustainability of phosphine, a key fumigant used worldwide to disinfest stored grain. We aimed at developing robust fumigation
protocols that could be used in a range of practical situations to control this resistant pest.

RESULTS: Values of the lethal time to kill 99.9% (LT, ,, in days) of mixed-age populations, containing all life stages, of a
susceptible and a strongly resistant C. ferrugineus population were established at three phosphine concentrations (1.0, 1.5 and
2.0 mg L") and three temperatures (25,30 and 35 °C). Multiple linear regression analysis revealed that phosphine concentration
and temperature both contributed significantly to the LT,, , of a population (P < 0.003, R? =0.92), with concentration being
the dominant variable, accounting for 75.9% of the variation. Across all concentrations, LTy, , of the strongly resistant C.
ferrugineus population was longest at the lowest temperature and shortest at the highest temperature. For example, 1.0 mg L™’
of phosphine is required for 20, 15 and 15 days, 1.5mgL~" for 12, 11 and 9 days and 2.0 mgL~" for 10, 7 and 6 days at 25, 30
and 35 °C, respectively, to achieve 99.9% mortality of the strongly resistant C. ferrugineus population. We also observed that
phosphine concentration is inversely proportional to fumigation period in regard to the population extinction of this pest.

CONCLUSION: The fumigation protocols developed in this study will be used in recommending changes to the currently
registered rates of phosphine in Australia towards management of strongly resistant C. ferrugineus populations, and can be
repeated in any country where this type of resistance appears.
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1 INTRODUCTION

The fumigant phosphine is used across the globe for disinfestation
of stored grains and other durable commaodities. Its popularity as a
fumigant over several decades can be attributed mainly to its ease
of application, use on a wide range of commodities, low cost and,
most importantly, its universal acceptance as a nearly residue-free
treatment.! Although several alternatives have been explored in
recent years, they have failed to match the combined advantages
offered by phosphine.2~> Moreover, the recent phase-out of the
ozone-depleter methyl bromide has left phosphine as the only
economically and environmentally viable fumigant for the indus-
try for routine disinfestation of stored commodities. However, this
overreliance on a single fumigant has resulted in the development
of high levels of resistance to phosphine in key storage pest species
across the globe 571

counterparts. The level of resistance in C. ferrugineus is the highest
ever detected in any stored-product insect species'® and needs
special attention. A proactive approach, however, has resulted
in proposed successful management of the strong resistance in
R. dominica,"® Sitophilus oryzae’ and Liposcelis bostrychophila®
in Australia through proper characterisation of each of these
resistances and development of effective fumigation protocols by
manipulation of phosphine concentration, exposure period and
temperature. The Australian grain industry is currently facing a
problem of highly resistant C. ferrugineus surviving currently reg-
istered rates of phosphine used in bulk grain storages, particularly
in the northern and southern grain belts.' Therefore, we aim to
investigate the interaction of a range of phosphine concentrations
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In Australia, a high level of resistance to phosphine has been
reported in a strongly resistant strain of Rhyzopertha dominica
(F.) (600x) over a 48 h fumigation,® Tribolium castaneum (Herbst)
(431x) over a 20h fumigation'” and Cryptolestes ferrugineus
(Stephens) (1450x) over a 72 h fumigation, calculated on the basis
of the LCy, of each strain relative to their respective susceptible
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and fumigation temperatures against strongly resistant C. ferrug-
ineus and to use this information to establish practical fumigation
protocols to manage resistance.

2 MATERIALS AND METHODS

The response of mixed-age cultures of C. ferrugineus to phosphine
was evaluated at three temperatures (25, 30 and 35 °C) and three
phosphine concentrations (1.0, 1.5 and 2.0 mg L™"). In total, nine
different combinations of temperature and phosphine concentra-
tion were tested for exposure periods of up to 19 days, and each
combination was replicated 3 or 4 times.

2.1 Testinsects and preparation of mixed-age cultures

A reference phosphine-susceptible strain (QCF31, population col-
lected from Cecil Plains in Queensland in 1998) and a strongly
phosphine-resistant strain (QNCF73, collected from a central stor-
age at Edgeroi in New South Wales in 2007) of C. ferrugineus were
studied.'® These reference populations of C. ferrugineus were iden-
tified by a professional taxonomist within Agri-Science Queens-
land, Department of Agriculture, Fisheries and Forestry. Cultures of
susceptible and strongly resistant C. ferrugineus were maintained
on a food medium consisting of rolled oats and cracked sorghum
(95% w/w), wheat germ (4.5% w/w) and torula yeast (0.5% w/w) at
32 °Cand 70% relative humidity (RH) and a photoperiod of 12:12 h
light:dark.

To simulate the exposure of the insect population in the field,
mixed-age populations were prepared by adding 50 adults of each
strain in a jar containing 60 g of the culture medium described
above over a 3 week period. All the life stages were examined for
their presence in the mixed-age culture jar prior to fumigation. For
each temperature and concentration combination, five mixed-age
culture jars of susceptible C. ferrugineus and eight mixed-age
culture jars of strongly resistant C. ferrugineus were prepared. Each
mixed-age culture jar represented a different phosphine exposure
period.

2.2 Lethal time to kill 99.9% of population (LT,, ;) assays
2.2.1  Fumigation of mixed-age cultures and monitoring

Response to phosphine was measured by exposing mixed-age
cultures of C. ferrugineus to fixed concentrations of phosphine in
gas-tight desiccators (6 L capacity). Phosphine concentrations of
1.0, 1.5 and 2.0 mg L~" were tested at 25,30 and 35 °C and 55 + 5%
RH. Data loggers (I-buttons; Maxim Integrated Products, Inc., San
Jose, CA) were kept inside each of the test and control desiccators
for monitoring of temperature and humidity.

Three of the five mixed-age jars of the susceptible strain were
exposed to phosphine for 1, 2 and 5 days at all three temper-
atures and concentrations. Six of the eight mixed-age jars (see
Section 2.1) of the resistant strain were exposed within a range
of 7-19 days at 25 °C, 3-18 days at 30 °C and 3-16 days at 35 °C,
depending on the phosphine concentration. For example, at 25 °C,
a total of six jars were exposed for 14, 15, 16, 17, 18 and 19 days
at 1.0mg L', whereas at 2.0 mg L™" six jars were fumigated for 7,
8,9, 10, 11 and 12 days. The remaining two mixed-age jars from
each strain were used as controls, and these were exactly the same
as the treatment jars except that they were not dosed with phos-
phine. The range of phosphine concentrations and temperatures
tested represents those likely to be used in practice by industry.

Phosphine was generated in a collection tube containing
aluminium phosphide introduced in sulphuric acid (5%).2° The

phosphine concentration was measured at the start of the experi-
ment on a Clarus® 580 gas chromatograph (PerkinElmer, Waltham,
MA) using a thermal conductivity detector with nitrogen as the
standard.?' LTy, bioassays were undertaken by placing the
mixed-age culture jar containing all the life stages and culture
medium inside gas-tight desiccators (6 L) and injecting phosphine
through a rubber septum in the lid with a gas-tight syringe to give
the required concentration. The phosphine concentration inside
the desiccators was monitored daily throughout the experiment
using a Clarus® 580 gas chromatograph (PerkinElmer) fitted with
a flame photometric detector to confirm that there was no loss
of phosphine during the predetermined exposure periods. The
approximately 10-15% loss in phosphine concentration was
topped up every 3 days.

2.2.2 Post-treatment handling of insects

After fumigation, the mixed-age culture jars were removed and
placed at 30 °Cand 55% RH for 7 days to obtain endpoint mortality,
when all adults, live and dead, were removed and counted. The
mixed-age cultures were then incubated at 30°C and 55% RH
for another 3 weeks and again examined for the presence of live
adult insects. Any live adults found were removed and examined,
and the mixed-age cultures were further incubated for another 4
weeks, when they were examined for the presence of adult insects.
This period of 8 weeks was intended to allow time for surviving
immature stages to develop into adults, including those that may
have delayed development owing to phosphine fumigation.??
Experimentally observed values of time to population extinction
(TPE), i.e. time to achieve 100% mortality (no survival), to control
all life stages of C. ferrugineus at each phosphine concentration and
temperature regime, were recorded. Time to population extinction
is defined as the earliest exposure period from which there is no
emergence, provided that this is also true in samples from longer
exposure periods.?

2.3 Statistical analysis

At each phosphine concentration and temperature regime, LTyq,
was calculated using the probit method incorporating Wadley’s
model.2*% The 99.9% mortality level was chosen because the
aim of phosphine fumigation is to achieve high levels of control,
and statistically LTy, values are more accurate than TPE values.
Wadley’s model was used to determine the mortality of individuals
in the mixed-age cultures comprising an unknown number of
immature and hidden life stages. The mortality estimate was
obtained by comparison with untreated controls. Wadley’s model
calculates LTy4, values based on survival data. The analysis was
performed using the GenStat 15 statistical package.?® A lethal time
ratio test?” was undertaken to determine significant differences
between LTy, values for each phosphine concentration across
the three temperature regimes, and vice versa. The resulting 95%
confidence interval (Cl) was used to test the equality of the two
LTyq4 values (i.e. if the value 1 is contained in the lower and upper
levels of Cl for the lethal time ratio, then the LTy, 4 values are not
significantly different).

The relationship between LTy, and the variables phosphine
concentration and temperature was examined by multiple linear
regression analysis using the GenStat 15 statistical package.?® A full
model was fitted, including two-way interaction. Using backward
selection, terms that were not significant at the 5% level were
omitted from the final model.
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Table 1. Effective phosphine protocols to achieve 99.9% mortality in strongly phosphine-resistant Cryptolestes ferrugineus in a range of temperatures
and concentrations
Phosphine
concentration Equation Time to
Temperature ——— LTgq o (days) population
Insect (°Q) mgL~"  ppm  Deviation df Constant(+SE)  Slope (+SE) (95% fiducial limits)?  extinction (days)®
Strongly resistant 25 1.0¢ 718 16.0 16 —6.15(+1.64) 0.48(+0.11)  19.26 (17.70-23.06)2A 18,15,16, 16
Cryptqlestes 1.5¢ 1077 —14.74(+5.54) 1.53(+0.54) 11.66 (10.98-15.06) PA 11,12,11,10
ferrugineus 2.0 1436 —10.04(+3.54)  132(+043)  9.98(9.22-13.08) A 10,10,9
30 1.0¢ 718 20.0 20 —20.72(+6.69) 1.69(+0.53) 14.13(13.54-16.36) 28 16,13,14,15
1.5 1077 —4.13(x£1.07) 0.68(+0.14) 10.64 (9.54-13.16) P8 10,10,10
20 1436 —6.80(+2.32) 1.47(£0.45) 6.72 (6.05-9.17) B 6,6,6
35 1.0¢ 718 18.1 18 —4.71(+0.92) 0.55(+0.09) 14.21(13.21-16.00) 28 15,12,13,11
1.5¢ 1077 —4.05(+0.90) 0.83(+0.15) 8.62 (7.87-10.04) b€ 7,10,10,10
2.0¢ 1436 —5.14(x£1.23) 1.47(+0.29) 5.59 (5.10-6.64) <€ 57,74

b Experimentally observed times to population extinction.
¢ Replicated 4 times (the other treatments were replicated 3 times).

@ 1Tg99 values followed by the same lower-case letter across three concentrations for an individual temperature are not significantly different, and
LTqq 9 values followed by the same upper-case letter for an individual concentration across three temperatures are not significantly different, based
on the lethal time ratio test [95% confidence intervals (lower and upper levels) for LTyg g are omitted for clarity] (see Section 2.3).

3 RESULTS

The mortality of mixed-age populations of susceptible C. ferrug-
ineus that were fumigated for 1, 2 and 5 days at all temperature
and concentration combinations was 100% for all exposure peri-
ods. No emergence of susceptible adults was observed after 8
weeks for any temperature and concentration combinations in any
exposure periods. Therefore, data obtained from the susceptible
strain were not suitable for probit analysis using Wadley's model
to calculate LTy, 4 values.

Probit analysis using Wadley’s method of the mixed-age pop-
ulations of strongly resistant C. ferrugineus at each phosphine
concentration and temperature provided LTy, values that
decreased concomitantly as phosphine concentration and tem-
perature increased from 1.0 to 2.0mgL~" and from 25 to 35°C
(Table 1, Fig. 1). In general, experimentally observed TPEs for the
strongly resistant C. ferrugineus were shorter than LTy, ,. Probit
analysis also revealed that efficacies of phosphine concentrations
(1.0, 1.5 and 2.0mgL™") were significantly different, i.e. efficacy
was highest at 35 °C, as confirmed by 95% Cl ratio test. However,
mortalities for 2.0mgL~" were significantly different across all
temperatures. The shortest LT,y, (5.59 days) was recorded at the
highest phosphine concentration (2.0 mgL™") and highest tem-
perature (35°C). The longest time to kill 99.9% of the strongly
resistant C. ferrugineus population was 20 days at 25 °C for fumi-
gation with 1.0mgL~" of phosphine. No significant difference
was observed in 99.9% mortalities of populations at 30 to 35°C
with 1.0 mgL~" of phosphine, as confirmed by 95% Cl ratio test
(Table 1). The differences between the longest and shortest times
to kill 99.9% of a population were 6, 3 and 5 days at 1.0, 1.5
and 2.0mgL™", respectively, across all temperatures. However,
within each temperature the difference between the longest
and shortest times to population extinction were 10, 8 and 9
days at 25, 30 and 35 °C, respectively, across all three phosphine
concentrations.

Multiple linear regression analysis of the strongly resistant C. fer-
rugineus data revealed that phosphine concentration and temper-
ature both contributed significantly to LTy, (P < 0.003, R? = 0.92),
with concentration being the dominant variable and accounting

for 75.9% of the variation. The two-way interaction (P = 0.523) did
not contribute significantly to the model and so was omitted.
The resulting regression equation is as follows:

LTg99 = 2751 (£3.35) —0.38 (+0.11) (temperature)
—27.41 (£3.61) (log concentration)

Based on this equation, anincrease in concentration and temper-
ature lowers the LTy, 4 of strongly resistant C. ferrugineus (Table 1).

4 DISCUSSION

The aim of the present research was to develop robust fumiga-
tion protocols that could be used in a range of practical grain
storage situations to control strongly resistant C. ferrugineus pop-
ulations. We have established fumigation protocols in the labora-
tory for three phosphine concentrations (1.0, 1.5 and 2.0mgL™")
and three temperatures (25, 30 and 35 °C) for the control of all
life stages of strongly resistant C. ferrugineus. Our results follow
an existing trend of either increasing phosphine concentration
or increasing fumigation period for the control of strongly resis-
tant populations. Moreover, it was also established that successful
control of resistant C. ferrugineus can be achieved using shorter
fumigation periods at elevated grain temperatures, irrespective
of the concentration used. Based on our data, mixed-age popula-
tions of strongly resistant C. ferrugineus can be successfully con-
trolled using a 20 day fumigation with 1.0mgL=" at 25 °C, which
is similar to the results reported by Wang etal.?® According to
Wang et al.,®® an initial concentration of 1.0mgL~" of phosphine
with a further requirement to maintain a concentration above
0.4-0.7mgL~" for 16-25 days was required to control strongly
resistant C. ferrugineus in warehouses. In another study, Li and
Yan?® recommended a phosphine concentration of 0.3 mg L™ for
more than 28 days to control strongly resistant C. ferrugineus in
warehouses. Nayak et al.'®* reported that 1.0mgL™" of phos-
phine maintained for 24 days at 20 °C was required to attain pop-
ulation extinction of strongly resistant C. ferrugineus. The LTy,
times established in the present study for the various temperature

Pest Manag Sci (2014)

© 2014 Commonwealth of Australia.

wileyonlinelibrary.com/journal/ps

Pest Management Science © 2014 Society of Chemical Industry




@)
SClI

WWW.SOCi.org

R Kaur and MK Nayak

25°C 30°C 35°C

100 + 100 A 100 1

80 1 80 1 80 T

& 60 - 60 60 1
2z
s
5

S 404 40 - 40

20 4 20 1 20 1

0 1 01 07

8 10 12 14 16 18 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16

LTyg o (days)

LTgq o (days)

LTyq o (days)

Figure 1. Response of mixed-age populations of strongly resistant Cryptolestes ferrugineus to phosphine at three concentrations and temperatures. Curves
are presented as mortality calculated by probit analysis using Wadley’s model.

and concentration combinations for strongly resistant C. ferrug-
ineus are much longer than previously established times for other
strongly phosphine-resistant stored-product pests. For example,
fumigation periods of 5 and 7 days were required for 1.0 mg L~ of
phosphine at 25 °C to attain population extinction of mixed-age
populations of strongly resistant R. dominica from Australia'® and
India.3" In the Philippines, Sayaboc et al.3? reported 98.3 and 99.1%
mortality of a strongly resistant population of R. dominica in 3
and 7 days at 1.0 and 0.71mgL"" respectively, whereas Liang
et al3® reported that 99.9% mortality of a strongly resistant Chi-
nese strain was achieved at 0.4 mg L= in 9.8 days. Similarly, it was
reported that, to achieve population extinction of strongly resis-
tant S. oryzae at 25 °C, protocols of 4 days at 1.0mgL™" and 7
days at 0.25mgL™" were required.”*' According to Nayak and
Collins,"" at 15°C and 70% RH, 19 and 11 days are required to
control the phosphine-resistant psocids L. bostrychophila using 0.1
and 1.0mg L~ respectively. At a higher temperature of 35 °C and
55% RH, however, only 4 and 2 days of fumigation were required
at the respective phosphine concentrations to achieve population
extinction of this strongly resistant pest.

In relation to LTy, of the strongly phosphine-resistant C. fer-
rugineus and the interactions of the two variables investigated in
this study (temperature and concentration), phosphine concen-
tration exerted the maximum effect, accounting for 75.9% of the
variation in response. Irrespective of the phosphine concentra-
tions used, LTyq4 and TPE in strongly resistant C. ferrugineus were
longer at lower temperature and shorter at higher temperature.
This observation of increased phosphine toxicity with increasing
temperature is in accordance with previous studies undertaken on
arange of stored-grain beetles, moths and psocids.'’16-34736 Based
on our data, for example, 1.0mgL~" of phosphine is required
for 20, 15 and 15 days, 1.5mgL™" for 12, 11 and 9 days and
2.0mgL™" for 10, 7 and 6 days at 25, 30 and 35 °C, respectively,
to attain 99.9% mortality of the strongly resistant C. ferrugineus
population. This phenomenon of increased phosphine toxicity
with increasing temperature has been correlated with increase in
insect respiratory rate, metabolic rate and oxygen consumption in
response to increasing temperature, which increases the uptake
of phosphine and leads to higher mortalities.>*3¢ Bond et al.?” also
demonstrated that environmental factors that lower the rate of
metabolism, such as reduced oxygen atmosphere or decreased
temperature during fumigation, would lead to increased tolerance

to phosphine in insects. Further evidence of this phenomenon was
observed in studies of resistant Caenorhabditis elegans (Maupas),
where it was found that an increase in metabolic rate conferred
increased susceptibility to phosphine,*® while a constitutively low-
ered metabolic rate conferred resistance.>

The protocols developed in this study aimed at recommending
practical minimum fumigation periods and phosphine concentra-
tions that would control all life stages (eggs, larvae, pupae and
adults) of strongly resistant C. ferrugineus in Australia. The LTy,
data give us guidelines for achieving a successful fumigation. They
can be used to determine the phosphine concentrations required
to attain complete control of resistant populations within a certain
time period needed for a specified temperature. Failure of fumi-
gation normally occurs when phosphine concentrations are not
maintained at the required levels, and generally this is the case for
large bunker (pad) storages or old leaky silos, where it is difficult
to achieve airtightness. There have been changes to the cylinder
phosphine label in Australia over the last decade to address the
development of strong phosphine resistance in R. dominica. For
example, the current label of phosphine (ECOZFUME®) in Australia
recommends that, to control a strongly resistant population of R.
dominica, fumigation with a concentration of 1 mgL~" of phos-
phine should be undertaken within a gas-tight storage structure
for 10, 9, 5 and 3 days at temperatures of 20, 25, 30 and 35°C
respectively. Given that they are much higher than the current reg-
istered protocols, we suggest that the protocols developed in the
present study to manage strongly resistant populations of C. fer-
rugineus need to be incorporated in the label through changes
to the current registration. To achieve this, it is imperative that
industry-scale trials be undertaken.

In conclusion, protocols developed in the present study pro-
vide industry with some flexibility in application of phosphine
at a range of temperatures of the stored commodity for man-
agement of infestations of strongly resistant C. ferrugineus. This
type of flexibility allows grain storage managers to operate more
economically, provided that the storage structures are properly
sealed and gas is monitored during the course of fumigation. In
large commercial bulk storage structures, high concentrations of
phosphine such as the ones we are suggesting from this study
(e.g. 2mg L™ for 10 days) can be practically maintained by using
a cylinderised formulation (e.g. ECO,FUME® and VAPORPH,05°®).
Moreover, connecting a recirculation system enables rapid and
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even distribution of the gas throughout the storage structure. This
approach also has the advantage of topping up the gas during the
fumigation period if the monitoring system indicates the loss of
gas. Phosphine is generally considered to be a cheap fumigant,
and managing strongly resistant C. ferrugineus far outweighs the
additional costs involved in the higher dosages such as 2mgL™!
for 10 days. Moreover, additional costs in the form of higher phos-
phine dosages are sufficiently justified in the case of fumigating
oilseeds and pulses, where use of an alternative fumigant such as
sulfuryl fluoride is not applicable. We conclude that, given these
advantages, the research output from the present study will help
to sustain the usefulness of phosphine into the foreseeable future.
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