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Abstract. An understanding of processes regulating wheat floret and grain number at higher temperatures is required to
better exploit genetic variation. In this studywe tested the hypothesis that at higher temperatures, a reduction infloret fertility
is associated with a decrease in soluble sugars and this response is exacerbated in genotypes low in water soluble
carbohydrates (WSC).Four recombinant inbred lines contrasting for stemWSCweregrownat 20/10�Cand11 hphotoperiod
until terminal spikelet, and then continued in a factorial combination of 20/10�C or 28/14�C with 11 h or 16 h photoperiod
until anthesis. Across environments, HighWSC lines had more grains per spike associated with more florets per spike. The
number of fertile florets was associated with spike biomass at booting and, by extension, with glucose amount, both higher
in High WSC lines. At booting, High WSC lines had higher fixed 13C and higher levels of expression of genes involved
in photosynthesis and sucrose transport and lower in sucrose degradation compared with Low WSC lines. At higher
temperature, the intrinsic rate of floret development rate before booting was slower in High WSC lines. Grain set declined
with the intrinsic rate of floret development before booting, with an advantage for High WSC lines at 28/14�C and 16 h.
Genotypic and environmental action on floret fertility and grain set was summarised in a model.
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Introduction

Raising wheat yield potential, i.e. yield only limited by solar
radiation, temperature, photoperiod and cultivar maturity, is a
viable strategy to lift production. This approach has also
demonstrated spill-over effects under moderate abiotic stress
(e.g. Fischer and Edmeades 2010). Present genetic gains in
yield potential are 0.3–0.6% per year in active breeding
programs (Fischer and Edmeades 2010), falling behind the rate
needed to keep up with food demand (Reynolds et al. 2008).
Compounding the slow breeding progress, projected temperature
increase for 2050 (1�3�C), together with rainfall changes, will
negatively impact agricultural production in low latitude
agricultural systems, most vulnerable to food security (IPCC
2007; Rosenzweig 2012). As an example, in Australia, warmer

winters are predicted to shorten the wheat growing season by up
to 6 weeks, particularly during pre-flowering (Zheng et al.
2012), exerting direct negative effects on resource capture and
processes underpinning growth and yield (Dreccer et al. 2012).
Since variation in wheat yield is mainly associated with grain
number per unit area (Fischer 1985), largely defined before
flowering, an understanding of the regulation of floret fertility
and the passage of florets to grains in response to temperature
seems topical in light of the potential shortening of the critical
period for grain number formation.

A wheat spike sets about a third of the potential number of
grains based on the number of floret primordia (Kirby 1974).
Comparing the effects of long vs short photoperiod during the
spikegrowingperiod (i.e. from terminal spikelet to anthesis,when
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the majority of floret development takes place), wheat floret
fertility has been positively associated to (i) their
developmental and anatomical status at the beginning of the
period of rapid biomass accumulation of the spike (González
et al. 2005) and (ii) increased sugar concentration in the growing
spike (Ghiglione et al. 2008) or spikeweight at anthesis (Miralles
et al. 2000; Gonzalez et al. 2011). The idea that floret death is a
process triggered by the stage of development of the most
advanced floret in the spike has also been proposed (Bancal
2008, 2009). Longdays after terminal spikelet accelerated the rate
of floret development, brought forward the maximum growth
rate of the spike and resulted in a reduced number of fertile florets
per spikelet at anthesis (González et al. 2005). Ghiglione et al.
(2008) proposed that the acceleration of spike growth under
long days led to depletion of the spike carbohydrate pool and
floral programmed cell death by autophagy. Dougherty et al.
(1975) and Fischer and Stockman (1980) have shown that
increased levels of water soluble carbohydrates (WSC) in the
spike were concurrent with higher grain number per spikelet
and per spike in crops responding to shading, thinning, irrigation
and fertilisation. Subsequently, Fischer (1985) captured the
response of grain number m–2 to resource availability during
the period of rapid spike growth in the photothermal quotient,
the ratio between daily photosynthetically active radiation (PAR)
and average temperature. Essentially, a higher amount of
radiation absorbed during that period was positively related to
grain number, whereas higher temperatures had the antagonistic
effect of shortening the period, leading to a lower spike biomass
and grain number per unit area (Fischer 1985). Temperature
effects on floret fertility at the spike level have not yet been
explored to the depth that photoperiod effects have, except for the
shortening of the spike growth period and its indirect impact on
spike biomass.

It is likely that genotypic factors related to sugar metabolism
influence the final number of fertile florets. Under drought,
carbohydrate metabolism enzymes play a crucial role in grain
set in tolerant maize germplasm (Boyer and McLaughlin 2007)
and pollen viability in wheat (Ji et al. 2010). Inmaize under water
stress, functional reversion analysis by sucrose feeding (see
Boyer and McLaughlin 2007) confirmed the role of glucose in
floral abortion and identified a cell wall and a soluble invertase
among the few genes controlling sugar uptake by the ovary.
In wheat, Ji et al. (2010) observed a difference in storage
carbohydrate accumulation in drought-sensitive and drought
tolerant wheat. Interestingly, genotypic variation for WSC
accumulation in the stem, mainly fructans, is well established
inwheat (Rebetzke et al.2008;Dreccer et al.2009) and consistent
with different levels of expression in fructanmetabolismenzymes
(Xue et al. 2008). It is unclear whether a higher level of WSC in
stems also extends to more simple sugars in the spike, such as
glucose, which have been related with floret fertility, nor what
the associated gene expression profile may be. Furthermore, the
interaction between genotypes accumulating contrasting WSC
and temperature has not been investigated.

This study tested the hypothesis that at higher temperatures, a
reduction in floret fertility is associated with a decrease in soluble
sugars and this response is exacerbated in genotypes known
to have low WSC. Recombinant inbred lines differing in WSC
accumulation in the stems (Dreccer et al. 2009)were grownunder

different photoperiod and temperature from terminal spikelet to
anthesis and diverse techniques, from 13C labelling to gene
expression, were utilised to test the hypothesis.

Materials and methods
Treatments and experimental design

A glasshouse experiment was conducted at The University of
Queensland, Gatton (27�340S, 152�200E). Four recombinant
inbred lines, here also called genotypes, from the Seri/Babax
population (Olivares-Villegas et al. 2007) were chosen due to
contrasting water soluble carbohydrate concentration (WSCc,
mg WSC g–1 DW) in the stem+ sheaths at anthesis while fairly
similar in height and phenology (Dreccer et al. 2009; Rattey et al.
2009). The genotypes SB003 and SB165 were ‘low’, and
SB062 and SB169 were ‘high’ in stem WSCc at anthesis (e.g.
~100mg g–1 vs 200mg g–1, Dreccer et al. (2013)). Genetic map
and quantitative trait loci (QTL) information (Mathews et al.
2008; McIntyre et al. 2010) was used to select the lines such that
they contained as many High and Low WSCc QTL as possible
and were as genetically diverse as possible for all marker loci
(CL McIntyre, pers. comm.). The objective was to try to sample
different combinations of genes leading to either low or high
WSC accumulation, i.e. not to select genetically ‘similar’ lines.
The lines had the same genotype for vernalisation (VRN-A1,
VRN-B1, VRN-D1) and one photoperiod gene (PPD-D1), and
were classified as ‘spring wheats’ (B Trevaskis, pers. comm.).

The genotypes were sown in four glasshouse compartments,
at 20/10�C (day/night) and 11 h photoperiod (0600–1700 h)
until terminal spikelet, then continued at 20/10�C or 28/14�C
combined with 11 or 16 h photoperiod until anthesis. After
anthesis, all cabinets were switched to 16 h, continuing at the
same previous temperature regime. Photoperiod was extended
using a mixture of incandescent and fluorescent lamps of low
intensity. Radiation blockage curtains were closed at 11 h
photoperiod in all compartments, to standardise the amount of
daily PAR. Temperature and photoperiod treatments were
imposed from terminal spikelet to avoid any impact on the
total number of spikelets per spike. The experiment was fully
irrigated, fertilised weekly with a full strength nutrient solution
and kept pest and disease free. Plant density was 98 plantsm�2.

The nature of the photoperiod and temperature treatments
prevented them from being randomised to different experimental
units (groups of 24 pots of the same genotype) within the
glasshouse. Therefore, a variant of the split-plot design
where a systematic arrangement of the photoperiod and
temperature treatments is applied to the experimental units was
chosen (Cochran and Cox 1992). The experimental units were
arranged according to a randomised complete block design
with three replicates for each of the photoperiod by
temperature combinations.

Phenology and harvests

Phenological stages using the decimal code (DC) by Zadoks
et al. (1974) and leaf appearance using the Haun index (Haun
1973) were recorded twice a week until anthesis. Thermal time
accumulation was calculated using Tbase = 0�C. Plant apices
were dissected regularly until terminal spikelet. Plants were
harvested at the start of the treatment, during stem elongation
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(52 days after emergence, DAE), booting (DC45), anthesis
(DC65) and maturity. On each occasion, two to four pots with
two plants each were harvested, organs counted (stems and
spikes) and separated. Green leaf area was measured, and
organs dried at 70�C for 3 days and weighed. At maturity,
main shoot and tiller spikes were threshed separately. The
number of fertile and sterile spikelets was recorded as well as
the number of grains per spikelet in main shoot spikes. Harvest
index was calculated on a DW basis at maturity.

Gas exchange

Gas exchange measurements were taken with a LI-6400
(Li-Cor Biosciences, Lincoln, NE, USA) on the flag leaf at
anthesis, between 1000 and 1500 hours. Flow rate was
500mmol s–1, light intensity (LED red-blue light source) was
800mmolm–2 s–1, and CO2 concentration 400mLL–1.

Floret development and grain set

Twomain shoot spikes per treatment and replicate were collected
at 52 DAE, booting and anthesis, kept in 70% ethanol at 4.0�C
until observation under a stereomicroscope (SZ61 Olympus,
Notting Hill, Vic., Australia). Floret development in the
Waddington scale (Waddington et al. 1983) was recorded at
52 DAE and booting, in three pairs of spikelets per spike, central
(middle of the spike), apical (third and fourth spikelet from the
top), and basal (second and third fertile spikelets from the base).
At anthesis, all fertile florets in each spikelet were scored.

The relative floret development rate (day–1) between stem
elongation (52 DAE) and booting was calculated as:

relative floret development rate ¼ lnðw2Þ � lnðw1Þ
T2� T1

; ð1Þ

where w2 and w1 were the floret score in the Waddington scale
at booting and 52 DAE, respectively; and T2 and T1 days from
emergence to booting and 52 DAE respectively.

Grain set was calculated as the ratio between the grain number
at maturity and fertile florets at anthesis in main shoot spikes.

Sugars

In plants growing at both temperatures and 11 h photoperiod,
samples from flag leaf and spike at booting and anthesis, with the
addition of peduncle at anthesis were frozen and kept at �20�C
until freeze-dried for sugar analysis and gene expression.
A subsample was extracted in 10mL of water at 95�C for
10min to inactivate microbial contamination and hydrolysing
enzymes. This step was followed by two incubations overnight at
70�C, with the supernatant from the first extraction stored at
�20�C. Sucrose, glucose, and fructose were measured by HPLC
using the method by Bonnett et al. (2001).

WSC in stems plus sheaths (referred to as ‘stems’ throughout
the text) at anthesis were determined by sequential extraction of
ground tissue in 80% ethanol and water (van Herwaarden et al.
1998) followed by determination using anthrone (Yemm and
Willis 1954) with fructose as the standard.

Gene expression

RNA was extracted and cDNA synthesised following the
method by Xue et al. (2008). The samples taken for sugar

analysis were also analysed for gene expression, with the
addition of the internode below the peduncle and the omission
of spike at booting due to insufficient sample. Real-time PCRwas
performed using TaRP15 (RNA polymerase I, II and III, 15 kDa
subunit) as an internal reference gene and seven selected wheat
genes (see Table S1, available as Supplementary Material to this
paper) (Xue et al. 2008). For each of the four genotypes and
corresponding treatment, each gene was analysed separately in
two replicates (each replicate comprising two plants), each of
these was then sub-sampled three times after extraction. The
expression level of each gene was calculated relative to the
expression of the internal reference gene (Shaw et al. 2009);
the internal reference is known to be stably expressed in
different tissues and genotypes (Xue et al. 2008). This
approach was adopted to provide an approximate estimation of
relative expression levels among various wheat genes as
absolute quantification of mRNA levels for this number of
genes and tissue samples using cRNA or cDNA calibration
curves was not possible. The genes were chosen for their
role in photosynthesis (TaRbcS, ribulose-1,5-biphosphate
carboxylase oxygenase, small subunit), sucrose transport
(TaSuT, sucrose transporter), sucrose degradation (TaSuSy,
sucrose synthase; TaSAInv, soluble acid invertase; TaCWInv,
vacuolar invertase) and fructan synthesis (Ta1-SST, sucrose:
sucrose 1 fructosyltransferase; Ta6-SFT, sucrose:fructan 6-
fructosyltransferase) (Table S1).

13C labelling

Plants were labelled with 13CO2 at booting and anthesis at 20/
10�Cand28/14�Cunder 11 h (Palta et al.1994; Palta andGregory
1997). A Mylar film (Dow Co., Melbourne, Vic., Australia)
chamber was placed over the plants and sealed with masking
tape to the ground sheet of polyethylene films beneath the pots.
Air inside the chamber was stirred with a 20 cm diameter fan.
Canopy labelling of 13CO2 was conducted between 1000 and
1500 hours on clear sky days. 13CO2 (99% atom) was injected
until air CO2 concentration reached 800–900mLL–1. Total CO2

concentration in the chamber was monitored with a LI-6251 CO2

infrared gas analyser (Li-Cor Biosciences). Forty-eight hours
after 13CO2 feeding, spike,flag leaf and penultimate leaf and stem
of the main shoot, and green leaves and spike and stems from
tillers were sampled to measure the allocation of fixed 13C (Palta
2001). Unlabelled plants were simultaneously sampled for
natural 13C abundance. Samples were dried at 70�C for 3 days
and weighed, ground with a ball mill, and analysed for C content
and 13C atom% by an automated nitrogen carbon analyser–mass
spectrometer, consisting of a 20/20mass spectrometer connected
to an ANCA–SL preparation system (Europa Scientific Ltd,
Crewe, UK).

Statistical analysis

Under thevariant of the split-plot designused, it is onlypossible to
test for the significance of the interaction between photoperiod,
temperature and their interaction with genotype and calculate
least significance differences (l.s.d.) for multiple comparisons.
The linear model fitted to each of the traits comprises a blocking
structure including the effect of replicate within each of the
photoperiod by temperature combinations, and a treatment
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structure. The treatment structure includes the main effects of
WSC level and genotype within WSC level, as well as their
interactions with photoperiod and temperature. The sugar, gene
expression and 13C traits were measured only for the 11 h
photoperiod. The linear model fitted to these traits includes
main effects of WSC and temperature and their interaction.

All statistical analyses were performed using the analysis of
variance procedure in GENSTAT, 14th edn (VSN International,
Hemel Hempstead, UK). Residual diagnostics were performed
to check the validity of the model assumptions (normality and
constant variance) as well as to detect outliers.

Results

Genotypes ranged from flowering on the same date to up to
4 days earlier depending on the environment (Table 1). Increased
temperature reduced the emergence-anthesis period up to 3 days
under 11 h and 9 days under 16 h. Extended photoperiod only
reduced the emergence-anthesis period at 28/14�C. The
genotypes grouped per WSC level consistently differed
(P = 0.006) in stem WSCc at anthesis (High WSC= 96.1, Low
WSC=78.7mg WSC g–1), the interaction with temperature or
photoperiod was not significant.

Yield and components

As plants were grown in pots, only differences in yield
components also shown in the field (Dreccer et al. 2009) or
relevant to the hypotheses were highlighted. Yield was 9% lower
at 28/14�C compared with 20/10�C and 7% lower at 11 h
compared with 16 h photoperiod. The 28/14�C temperature
regime reduced individual grain weight by 8% and grain
number per plant by 7% with respect to 20/10�C (Table 1).

Grain number per plant was 14% lower when plants were
grown under 16 h compared with 11 h photoperiod; hence, the
grain yield advantage at 16 h was due to a more than proportional
increase in grain weight (~25%).

Differences between genotypes dominated the results
(Table 1). High WSC lines yielded 24% more than low WSC
ones (P < 0.001) on average across environments, associatedwith
a higher harvest index (14%, P< 0.001) and heavier grains (21%,
P< 0.001), but did not differ in grain number per plant. Therewas
no treatment effect on the final number of spikes per plant; the
average for the experimentwas 5.3 spikes plant–1.However,High
WSC lines had on average 10% higher grain number per spike
(High WSC= 35.9, Low WSC=32.5, P< 0.05).

Differences in grains per spike were analysed for main shoot
and tillers (Fig. 1). Differences in spikelet number betweenWSC
levels within an environment and stem cohort were in the order of
0.5 spikelets, consistent with environmental treatments starting
at terminal spikelet (Fig. 1a). Variations in grains per spike were
explained by changes in the number of grains per spikelet
(Fig. 1b) and associated to the spike weight at anthesis across
stem cohorts (Fig. 1c).

Floret development in main shoot

HighWSC lines had ~10 fertile florets more per main shoot spike
at anthesis than LowWSC lines, on average across environments
(P< 0.001) (Fig. 2a), with genotypic differences based on the
number of fertile florets per spikelet (High WSC= 3.2, Low
WSC= 2.9 florets per spikelet, P = 0.008, l.s.d. = 0.2) (Fig. 2b).
High WSC lines had 18% more fertile florets at 11 h, compared
with 9% across temperature levels at 16 h, but the interaction of
genotype� temperature� photoperiod was not significant.

Table 1. Yield and yield components, biomass, harvest index and phenology
Levels of significance are shown: ***, P< 0.001; **, P< 0.05; *, P< 0.1; NS, not significant

Photoperiod
(h)

Temperature
(�C)

Genotype WSC
level

Yield
(g plant–1)

Biomass
(g plant–1)

HI Grain number
(no. plant–1)

Grain weight
(mg grain–1)

Anthesis
date

(DAE)A

Booting
date

(DAE)A

11 20/10 SB003 Low 7.0 19.1 0.37 239 29.6 78.0 70.0
SB165 Low 5.8 16.5 0.34 196 28.6 78.0 67.7
SB062 High 7.2 17.8 0.41 201 35.7 78.0 64.0
SB169 High 7.4 17.2 0.43 186 40.3 78.0 64.0

11 28/14 SB003 Low 5.0 13.7 0.37 177 28.7 75.7 64.0
SB165 Low 5.1 17.6 0.43 168 30.4 77.0 64.0
SB062 High 7.7 12.8 0.39 210 37.6 73.0 64.0
SB169 High 6.9 15.1 0.47 180 38.2 73.0 64.0

16 20/10 SB003 Low 7.1 18.4 0.38 183 39.4 79.3 69.3
SB165 Low 5.7 15.4 0.37 132 43.0 79.3 67.0
SB062 High 7.9 18.8 0.42 178 44.1 76.0 63.3
SB169 High 8.4 19.0 0.44 186 45.3 76.0 63.0

16 28/14 SB003 Low 5.4 12.9 0.42 145 38.1 70.0 58.3
SB165 Low 6.0 13.4 0.45 171 34.6 70.0 57.0
SB062 High 7.1 14.5 0.49 157 45.3 70.0 57.0
SB169 High 7.4 15.2 0.48 162 46.7 66.0 57.0

F-value G **a NS *** NS *** *** ***
Ppd�G NS NS NS NS NS ** NS
T�G NS NS NS NS NS ** ***

Ppd�T�G NS NS NS NS NS *** NS

ADays after emergence.
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At 52 DAE, floret development scores in the Waddington
scale were more advanced at 28/14�C and 16 h photoperiod,
particularly in High WSC lines (Fig. 3a). However, externally,
High and Low WSC lines were similar in terms of leaf
appearance (Haun scores, data not shown). At booting,
genotypic differences were only observed at 28/14�C (Fig. 3b),
with Low WSC lines scoring 9% less developed compared with
High WSC lines.

The relative floret development rate between 52 DAE and
booting was calculated to derive the intrinsic developmental
progress, independent from the initial floret score. It declined
with the duration of the period between 52 DAE and booting
(Fig. 4a). HighWSC lines had a lower relativefloret development
rate compared with Low WSC lines at 28/14�C at both
photoperiods, whereas the duration of the period was similar
between genotype categories (Fig. 4a, b). In contrast at 20/10�C,
High WSC lines had only a slightly higher relative floret
development rate, but a substantially shorter duration of the
phase (Fig. 4a, b).
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The number of fertile florets per spike was associated with the
spike weight at anthesis (Fig. 5). Differently to the grain number
per spike (Fig. 1c), the number of fertile florets at a given spike
weight was higher at the higher temperature. This difference did
not translate into a proportionally higher grain number per spike
at 28/14�C or 16 h photoperiod because the grain set was lower
(see inset in Fig. 5).

13C fixation at booting and anthesis

The allocation of recently fixed C was evaluated with exposure
to 13CO2 at both temperatures under 11 h at booting and
anthesis. The interaction between WSC level and temperature
was significant (P< 0.01) for the total amount of 13C fixed per

plant at booting. While at 20/10�C, 9.2 vs 8.9mg 13C were fixed
by High vs Low WSC lines respectively, at 28/14�C High
WSC lines fixed a significantly higher amount compared with
Low WSC lines, 11.0 vs 7.1mg 13C respectively (l.s.d.TxWSC-

0.05 = 1.8).At booting,main shoot spikes and stems tended tohave
a higher amount of 13C in High WSC lines (Fig. 6a, b). The total
amount of 13C in main shoots increased in high and decreased in
LowWSC lines, respectively, at 28/14�Ccomparedwith 20/10�C
(Fig. 6b). At anthesis, the net 13C assimilation per plant decreased
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with higher temperature (7.8 vs 5.6mg 13C per plant at 20/10 vs
28/14�C), the interaction between temperature and genotype
was not significant (Fig. 6c, d). No differences in flag leaf
photosynthesis rate were detected at anthesis, the average of
treatments was 12.4mmolm–2 s–1 (s.e.T�WSC = 0.574).

The excess 13C, equivalent to a concentration of 13C above
normal abundance levels, was markedly higher at booting
compared with anthesis (see Fig. S1, available as
Supplementary Material to this paper). Data on relative
allocation of 13C excess between organs are available in Fig. S2.

Sugars per organ at booting and anthesis

The flag leaf sucrose amount (Fig. 7a, c) and concentration
(Fig. S3) declined from booting to anthesis. At booting, the
interaction WSC level� temperature was significant for
sucrose and glucose amount (Fig. 7a, c) and concentration
(Fig. S3a, c) (P < 0.001) in the flag leaf, with similar values at
20/10�C, but higher at 28/14�C in HighWSC vs LowWSC lines.
A similar interaction was observed for fructose concentration
(P = 0.009) and amount (P = 0.002) in the flag leaf at booting.

Spike glucose and fructose amounts and concentrations were
higher at booting than anthesis, whereas the reverse was true for
sucrose; consistent with the spike having high metabolic activity
but no photosynthetic capacity at booting (Fig. 7b, d and S3).
High WSC lines had a higher amount of glucose (P< 0.002) and
fructose (P < 0.001) in the spike at booting than the Low WSC
lines (Fig. 7), but similar concentrations (Fig. S3). At booting,
spikes from Low WSC lines had higher sucrose concentration
(P < 0.001) across temperatures compared with High WSC
lines; although this was true only at 28/14�C at anthesis

(PT�WSC = 0.03). There were no significant differences in the
amount of sucrose in the spike at booting or anthesis between
contrasting WSC lines (Fig. 7).

Sugars were also analysed in the peduncle at anthesis, but the
organ was not weighed separately, hence concentrations rather
than amounts are reported (Fig. S4). The glucose (P = 0.003) and
fructose (P = 0.0035) in thepeduncle at anthesiswerehigher in the
high than the LowWSC lines; sucrose concentration was higher
in low than the High WSC lines (P = 0.036).

Sugar related gene expressionprofiles at booting and anthesis

The mRNA transcript levels of genes with roles in
photosynthesis, sugar transport and metabolism were measured
in the flag leaf at booting, and flag leaf, spike, peduncle and
internode at anthesis (Table 2). In theflag leaf at booting, theHigh
WSC lines had higher levels of expression of enzymes involved
in photosynthesis (TaRbcS) and sugar transport (TaSuT) than
the Low WSC lines at both temperatures. The interaction
between temperature and WSC level was significant for the
expression of the two invertases, TaSAInv and TaCWInv, and
a fructosyltransferase (Ta1-SST). Ta1-SST had significantly
higher levels of expression in High vs Low WSC lines at
20/10�C but no significant difference at 28/14�C. TaSAInv
was more highly expressed in High vs Low WSC lines at
20/10�C but the reverse was observed at 28/14�C. Lower
expression of TaCWInv was also observed in the High vs Low
WSC lines at 28/14�C but there was no difference at 20/10�C.

In the flag leaf at anthesis, HighWSC lines had higher level of
expression of the sucrose degrading enzyme TaSuSy than Low
WSC lines. The interaction between temperature and WSC level
was significant also on the expression of TaSAInv (P = 0.012)
with a strong decrease in the expression levels in both High and
LowWSC lines at 28/14�C. In spike tissue collected at anthesis,
High WSC lines had significantly lower levels of expression of
TaRbcS,TaSuT,TaSuSy, andTaCWInv than theLowWSC lines
at both temperatures. The interaction between temperature and
WSC level was significant for TaSAinv and Ta1-SST with an
increase in expression in High WSC lines at 20/10�C. In the
peduncle at anthesis, High WSC lines had lower levels of
expression of TaRbcS, TaCWInv, and Ta6-SFT than Low
WSC lines across temperature levels. In the internode below
the peduncle at anthesis, High WSC lines had a higher level of
expression of TaRbcS than LowWSC lines at both temperatures.
There was an interaction with temperature for both TaSAInv and
Ta6-SFT with higher levels of expression of Ta6-SFT and lower
levels of expression of TaSAInv in High vs Low WSC lines at
20/10� but the reverse at 28/14�C.

Relations between reproductive organs, biomass, sugars
and development

Thenumberof fertileflorets in themain shoot spikechanged in the
same direction as the amount of glucose in the spike at booting
stage (Fig. 8b), driven by the differences in spikeweight (Fig. 8a)
as concentrations did not differ between WSC levels (Fig. S3).
Each point in Fig. 8a, b is the average of 12 observations (two
genotypes per WSC category, three replicates and two plants per
replicate). There was a trend for grain set to decline with the
relative floret development rate before booting (Fig. 8c), more
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pronouncedly with higher temperature under long photoperiod.
There was no clear relation between the floret relative
development rate before booting and the number of fertile
florets at anthesis. Grain set was not directly related to any of
thegrowthvariables or sugarpoolsmeasuredorderivedvariables,
across genotypes, temperature and photoperiod.

Figure 9 outlines themain processes influencingfloret fertility
and grain set in this study. The type of diagram and terminology
follow Tardieu et al. (2011). Three basic processes (development
rate, biomass accumulation in the spikeand sugarmetabolism) are
affected directly by temperature, photoperiod and/or genotype,
with some feedbacks. Their products influence floret fertility or

grain set. Circles are ‘hubs’ of coordination of processes, e.g.
photosynthate production and partitioning leading to biomass
accumulation per organ belong in the same hub. Solid arrows
indicate a direct functional effect, e.g. high temperatures
accelerating development rate. Dashed or dotted arrows are
feedbacks, strong (dashed) or weak/suggested (dotted). In
correspondence with the numbers in the diagram: (i) faster
development rate due to inductive conditions (high
temperature, long photoperiod) shortens the time available for
photosynthesis, photosynthate partitioning to the spike starts
earlier but generally results in lower spike biomass (compared
with low temperature, short photoperiod); (ii) higher biomass
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in the spike, e.g. by higher partitioning or Cfixation inHighWSC
lines, contributes to a higher amount of glucose in the spike;
(iii) higher sucrose production in High WSC lines at booting
affects the amount of sucrose available for transport to the spike;
(iv) the higher the biomass and glucose in the spike, e.g. in High
WSC lines, the higher the number of fertile florets; (v) the faster
the relative floret development rate before booting, the lower the
proportion of fertileflorets that transition to grains (grain set), e.g.
Low WSC lines at high temperature and long photoperiod.

Discussion

Fertile florets and grain number per spike were affected
differently by high temperature and longer photoperiod

Spike biomass at anthesis was a good predictor for grain number
per spike in response to genotypic and environmental variables

(Fischer 1984). The grain number per spike can be described as
the product of the number of fertile florets multiplied by the grain
set, i.e. the proportion of fertile florets that form a grain. Focusing
on the interaction amonggenotype, temperature and photoperiod,
while grain number per spike (both at the plant and main shoot
level)was reducedbyhigher temperature and longer photoperiod,
its precursor, the number of fertile florets per spike (observed at
main shoot level) was not. Indeed, although floret production
in the main shoot was 6% higher under 28/14�C (Fig. 2a), the
corresponding spike weight was ~20% lower in comparison to
20/10�C (Fig. 1c). In other words, spikes from the higher
temperature treatment had more fertile florets for a comparable
spike weight.

Thenumberof fertileflorets per spikewasassociatedprimarily
with spike biomass and, by extension, with the amount of spike
glucose at booting. Spike biomass and glucose levels are not
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completely independent and can be described as the result of
loosely coordinated processes with feedback (Tardieu et al.
2011) (Fig. 9). In the range of temperature explored, both
biomass and glucose amount in the spike at booting were
maintained at high temperature, within each WSC type. This
response is different to that observed for long photoperiods in
sensitive lines, where accelerated growth and sugar depletion are

the suggested cause for autophagy (e.g. Ghiglione et al. 2008).
However, it fits the description of a quantitative response to
temperature with an optimum. It is possible that at temperatures
beyond the tested range, homeostasis of sugars in the spike cannot
be maintained and floret fertility declines.

Both floret and grain number per spike had a strong genotypic
component. HighWSC lines had higher spike biomass, fixed 13C

Table 2. Expression level of target gene relative to expression level of internal reference gene
Note:Highervalues indicatehigher levelsofmRNAexpression.Abbreviations:TaRbcS, ribulose-1,5-biphosphate carboxylaseoxygenase, small subunit;TaSuT,
sucrose transporter; TaSuSy, sucrose synthase; TaSAInv, soluble acid invertase; TaCWInv, vacuolar invertase; Ta1-SST, sucrose:sucrose 1 fructosyltransferase;

Ta6-SFT, sucrose:fructan 6-fructosyltransferase. Levels of significance are indicated: ***, P< 0.001; **, P< 0.05; *, P< 0.1; NS, not significant

WSC level TaRbc TaSuT TaSuSy TaSAInv TaCWInv Ta1-SST Ta6-SFT

Flag leaf booting
20/10�C Low 1518.00 1.66 0.29 0.54 0.64 0.12 0.33

High 4037.00 2.21 0.16 0.81 0.58 0.28 0.18
28/14�C Low 962.00 2.32 0.10 0.21 1.29 0.11 0.05

High 2666.00 3.31 0.03 0.05 0.42 0.06 0.02
F-value WSC ** ** NS NS ** NS NS

T�WSC NS NS NS * ** * NS
l.s.d.WSC 1221.60 0.56 –A 0.25 0.34 0.06 –

l.s.d.T�WSC 1727.60 0.79 – 0.35 0.48 0.08 –

Flag leaf anthesis
20/10�C Low 347.20 1.75 0.34 0.35 1.02 0.07 0.15

High 278.20 1.60 0.45 0.99 1.41 0.12 0.20
28/14�C Low 173.00 1.17 0.06 0.07 0.81 0.05 0.18

High 168.50 1.16 0.06 0.09 1.40 0.01 0.09
F-value WSC NS NS * ** NS NS NS

T�WSC NS NS NS ** NS NS NS
l.s.d.WSC – – 0.36 0.21 – – –

l.s.d.T�WSC – – 0.51 0.30 – – –

Spike anthesis
20/10�C Low 100.99 1.01 0.94 0.53 0.13 0.006 0.53

High 37.82 0.49 0.17 0.80 0.02 0.011 1.26
28/14�C Low 111.23 1.03 1.46 0.20 0.17 0.007 1.04

High 37.68 0.69 0.22 0.13 0.06 0.005 0.89
F-value WSC ** ** ** NS *** NS NS

T�WSC NS NS NS ** NS ** NS
l.s.d.WSC 57.90 0.33 0.49 0.15 0.04 0.004 –

l.s.d.T�WSC 81.80 0.46 0.70 0.21 0.06 0.005 –

Peduncle anthesis
20/10�C Low 560.30 1.94 15.23 4.55 0.64 0.019 0.24

High 510.40 1.79 2.70 5.23 0.10 0.013 0.22
28/14�C Low 291.80 1.29 5.87 0.37 0.64 0.008 0.24

High 114.90 1.34 3.96 0.17 0.09 0.003 0.06
F-value WSC *** NS NS NS ** NS *

T�WSC NS NS NS NS NS NS NS
l.s.d.WSC 110.10 – – – 0.47 – 0.11
l.s.d.T�WSC 155.70 – – – 0.67 – 0.16

Internode anthesis
20/10�C Low 11.21 0.90 2.06 0.27 0.067 0.005 0.71

High 24.25 1.07 5.88 0.18 0.111 0.011 1.18
28/14�C Low 7.83 0.41 3.97 0.09 0.420 0.003 0.42

High 16.90 0.53 1.67 0.36 0.050 0.001 0.05
F-value WSC ** NS NS NS NS NS NS

T�WSC NS NS NS * NS NS *
l.s.d.WSC 9.57 0.43 4.25 0.211 0.150 0.005 0.46
l.s.d.T�WSC 13.54 0.61 6.01 0.299 0.213 0.007 0.65

ANot applicable.
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and glucose amount at booting, florets and grains per spike across
environments. In previousfield experiments, not only differences
in spike WSC content but also WSCc between High and Low
WSC lines had been observed (Dreccer et al. 2009). High WSC
lines also had a slower relative rate of floret development leading
up to booting and a more advanced floret development score
during stem elongation (52 DAE) under extended photoperiod
and higher temperature even when external phenology in both
WSC types was similar. Since major effects of VRN and PPD
geneshavebeen ruledout, this suggests thatHighWSC lineswere
able to advance floret development further than LowWSC lines,
on top of the effect of environmental factors. This study was
conducted with very well characterised but few contrasting
recombinant inbred lines for the trait of interest, further work
is needed to corroborate these findings on a larger number of
genotypes.

Grain set decreased as a function of accelerated floral
development between stem elongation and booting (Fig. 8c),
with higher temperature and longer photoperiod. This suggests
that florets diagnosed as completely developed and
morphologically fertile lacked either the minimum size or
metabolic capacity to transition into actively dividing grains
compared with those from 20/10�C and 11 h. The process
deserves to be explored further as results suggests that an
event occurring post fertilisation, involving active cell division
and volume gain, may be influenced by prior events, i.e. earlier
than booting (when floret competency is being defined). Pollen
was observed on fertile florets, but its germination capacity was
not tested. Although it can’t be strictly ruled out from influencing
grain set, reduced pollen viability was only expected beyond
34�C (KB Wockner, data not shown).

In this study, the corollary of genotypic and environmental
action on floret fertility and grain set was reduced grain number
per spike at higher temperature and longer photoperiod, but
remaining higher in High WSC lines across environments.
This highlights the potential of this phenotype to maintain
grain number per spike in warmer climates.

Links between genotypic variation in floret fertility,
sugar levels and C metabolism genes

The expression levels of a small number of genes involved in
photosynthesis, sugar transport, fructan synthesis and sucrose
hydrolysiswere studied in different organs inHigh andLowWSC
lines to investigate the effect of high temperatures on floret
fertility. Collectively, these data suggest that, especially under
low temperature conditions (20/10�C), High vs Low WSC lines
produce more sucrose at booting via increased levels of TaRbcS
which is available for hydrolysis for growth (increased levels of
TaSAInv) or transport to storage or sink tissues (increased levels
of TaSuT and Ta1-SST and lower or similar levels of TaSuSy
and TaCWInv) (Koch 2004; Xue et al. 2013). This is consistent
with the observed amounts of sugars and 13C assimilation at
booting, in total and particularly by the main shoot spikes,
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probably contributing to the homeostasis mentioned before.
In contrast, by anthesis, High WSC lines had no advantage
in sucrose production (TaRbcS), as corroborated by lack of
differences in photosynthesis rates, or sucrose transport.
Interestingly, the capacity for sucrose degradation at anthesis
differed between organs and between genes. It was lower in spike
and peduncle of HighWSC lines, but tended to be higher in their
flag leaves and internodes (TaSuSy and TaCWInv); whereas
TaSAInv tended to be higher in the spike and flag leaf at the
lower temperature, but similar or lower at the higher temperature.
This difference is consistent with the different roles played by the
two invertases in growth and expansion or source–sink balance
(Koch 2004), the relative levels of expression of mRNA of these
genespreviouslyobserved inHigh andLowWSClines (Xue et al.
2008) and may explain the observed levels of sucrose in the flag
leaf and spike at anthesis, as discussed byXue et al. (2013).At 28/
14�C, the High WSC lines had the abovementioned generally
lower (not always significant) levels of expression of sucrose
hydrolysis and fructosyl transferases, whichmay have assisted in
the movement of sucrose to the spike. Effectively, the genotypic
avenue leading to higher growth, soluble sugars in reproductive
organs and floret number seems to differ from previous models,
where heightened invertase expression in ovaries are behind
increased glucose levels and seed set (Boyer and McLaughlin
2007; Ruan et al. 2012). It should be noted that in addition to
studying a small number of genes involved in sucrose production,
transport and utilisation, this study has only assessed mRNA
expression levels and not enzyme activity per se. Therefore,

there may be alternative explanations for the patterns of gene
expression and sugar levels including enzyme activity not
regulated at the mRNA level, factors other than the levels of
gene expression regulating the flux of metabolites such as
sucrose or, that the control of sugar levels lies with different
enzymes.

A role for simple sugars indirectly regulating lateral meristem
progress (Long et al. 2006; Turnbull 2011) or participating in
floret expansion (Vergauwen et al. 2000) has been discussed.
Thus, early carbon availability per se influencing floret initiation
andmeristem expansion (Dosio et al. 2011) or contributing to the
regulation of tissue turgor (Patrick et al. 1995; Vergauwen et al.
2000) could be a key genotypic component contributing to
higher fertile floret number per spike in High WSC lines
across environments.

Conclusions

This study highlighted the link between the success of wheat
reproductive structures in response to temperature utilising
genotypic variation in water soluble carbohydrate metabolism,
going beyond the evidence obtained by shading/light addition
(Stockman et al. 1983) and daylength manipulation and sucrose
feeding (Ghiglione et al. 2008). The corollary of the differential
spike biomass, lower relative floret development rate till booting,
together with the coordination of sucrose production, transport
and cleavagewas a higher number of fertileflorets per spike under
higher temperature and longer photoperiod for the High WSC
lines.
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There are indications that when temperature and photoperiod
are the main environmental variables (i) there may be differences
in the factors controlling floral progression from primordia to
fully fertile florets from those ensuring a fertile floret becomes a
viable grain, and (ii) grain set seemed more related to floral
development than C availability, deserving further investigation.
Further, as the genotype by environment response of floret
and grain number was quantitative and functional with respect
to biomass, sugars and/or development rates at different stages
(Fig. 9), it can be used in simulation models to predict possible
outcomes for alternative allelic variation in future climates.
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