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Abstract. Many aquatic species are linked to environmental drivers such as temperature and salinity through processes

such as spawning, recruitment and growth. Information is needed on how fished species may respond to altered
environmental drivers under climate change so that adaptive management strategies can be developed. Barramundi (Lates
calcarifer) is a highly prized species of the Indo-West Pacific, whose recruitment and growth is driven by river discharge.

We developed a monthly age- and length-structured population model for barramundi. Monte Carlo Markov Chain
simulations were used to explore the population’s response to altered river discharges under modelled total licenced water
abstraction and projected climate change, derived and downscaled from Global Climate Model A1FI. Mean values of

exploitable biomass, annual catch, maximum sustainable yield and spawning stock size were significantly reduced under
scenarios where river discharge was reduced; despite including uncertainty. These results suggest that the upstream use of
water resources and climate change have potential to significantly reduce downstream barramundi stock sizes and harvests
and may undermine the inherent resilience of estuarine-dependent fisheries.
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Introduction

Fish stocks and fisheries will be affected by global climate
change (Brander 2010; Koehn et al. 2011), with freshwater and

estuarine ecosystems suggested to be among thosemost affected
(Pittock et al. 2008). Processes that are fundamental to fish
population dynamics, such as reproduction, spawning, recruit-
ment, growth, mortality, distribution, migration, catchability,

predation and competition, are expected to be affected by
changes in physical and chemical environmental parameters
(Ottersen et al. 2010; Gillanders et al. 2011). The environmental

parameters that are expected to change include air and water
temperatures, sea level, wind fields, upwelling, ocean currents,
atmospheric circulation, storm frequency, rainfall, evaporation

rates, salinity, ocean pH and UV-radiation levels (Harley et al.

2006; Poloczanska et al. 2007; Koehn et al. 2011). How these
parameters change as a consequence of increased concentrations

of greenhouse gases is complex, uncertain and variable. How-
ever, there is consensus that the global air temperature will
increase above the 1961–1990 average by between 0.98C and

2.68C (IPCC 2007). This will have consequences for sea levels,
ocean acidification and extremes of weather that will vary
regionally throughout the world.

Australia’s climate has already changed since the mid-20th
century (Lough and Hobday 2011). Examples include warming
of ocean sea-surface temperatures (Lough 2009), lowered ocean
pH (Howard et al. 2009), strengthening and extension of the East

Australian Current (Ridgway and Hill 2009) and reduced river
discharges (Gräwe et al. 2010). These changes have been linked
to changes in Australian fisheries. For example, changes to the

western rock lobster fishery (Panulirus cygnus) are variable,
depending on the frequency of El Niño events and the degree to
which water temperature increases (Caputi et al. 2010). Predic-

tions of future impacts of climate change on Australian fisheries
vary among regions and species. Fishery catches may increase
as a consequence of climate-driven changes to primary produc-

tion in Australia’s marine ecosystems (Brown et al. 2010),
whereas temperate stocks of school prawns (Metapenaeus

macleayi) may not be significantly affected (Ives et al. 2009).
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In south-eastern Australia, altered water temperatures will be a
key driver of change, whereas in northern Australia, altered
rainfall and river discharges will be an important driver of

change (Hobday et al. 2008).
Barramundi (Lates calcarifer) is an economically important

wild harvest, recreational and aquaculture species of the tropical
Indo-West Pacific (Fishbase 2009). Investigating the impacts of

climate change on this species is useful because barramundi is a
euryhaline, top-order carnivore that occupies an ecological
niche similar to American common snook (Centropomus unde-

cimalis) and African Nile perch (Lates niloticus) (Greenwood
1976), giving the case study widespread significance. Early
predictions of the impacts of climate change can inform vulner-

ability assessments and in combination with socioeconomic
information, can be used to develop adaptive management
strategies (Koehn et al. 2011; Plagányi et al. 2011).

In the current study, we developed a regional population

model for barramundi that incorporated variable recruitment
and growth that was a function of observed river discharge.
Then, we investigated the response of the modelled population

to river-discharge sequences that were modified to reflect
(1) total abstraction of all licenced water and (2) projected
regional climate change derived from downscaled outputs of

Global Climate Model A1FI, as suggested by Clark et al. (2003)
and Keyl and Wolff (2008). In addition, river discharge has not
been previously included in population models of barramundi

(Grace et al. 2008). Intuitively, we would expect stock size and
fishery yields to be negatively affected when discharges are
reduced; however, we have no information on the significance
or order-of-magnitude of these changes.

Materials and methods

Study species

Barramundi is a long-lived and fast-growing species (Dunstan
1959; Russell and Garrett 1985; Griffin 1987). It is a catadro-

mous opportunist (Pender and Griffin 1996; Milton et al. 2008),
whose catch rates are statistically significantly and positively
correlated with river discharge (Robins et al. 2005; Balston

2009). Barramundi recruitment is statistically significantly and
positively related to discharge (Staunton-Smith et al. 2004;
Halliday et al. 2011), as are its seasonal growth rates (Robins

et al. 2006). An important wild-capture fishery for barramundi
occurs in the Fitzroy River region (,238230S, 1508280E) and the
population dynamics of barramundi in this region are typical of
stocks in northern Australia (Dunstan 1959; Robins et al. 2005).

Study area

The Fitzroy River region is located on the boundary of the
tropical and temperate convergence zones (Ford et al. 2005) and
has a highly seasonal pattern in river discharge (Table 1). The

region’s average annual climate has become warmer and drier
over the past 50 years (Cai et al. 2005). Regional median cli-
mate-change projections based on results from 23 global climate
models under high-emissions scenarios for a 30-year period

centred on 2050 include a 2% increase in average annual tem-
perature, a 7% decrease in average annual rainfall and a 7%
increase in average annual potential evaporation (QCCCE

2009). These changes in climate are projected to have an impact
on the discharge of the Fitzroy River, although the scale of the
impact varies seasonally (Table 1). Other projected changes

include a 30-cm rise in sea level, a 10% increase in cyclone
intensity and frequency and a 130-km southwards shift in
cyclone tracks (QCCCE 2009).

Operating model

Modelling involved the following two stages: (1) constructing
parameter posterior distributions for a monthly age- and length-

structured population model, using Markov Chain Monte Carlo
sampling (MCMC with Metropolis–Hastings algorithm) cali-
brated to data for the Fitzroy River region from 1945 to 2005;

and (2) running likely parameter values and uncertainty in
simulations through the population model (i.e. the projection
stage). The 1st-stage MCMC calibration process provided a

large sample of parameter values for the spawner–recruitment
and discharge–recruitment relationships, and for model process
uncertainty. In the 2nd stage, the model moved into a 45-year
projection phase, driven by simulated parameters (i.e. resam-

pled from the MCMC chain) and process uncertainties to assess
the impacts of different discharge sequences on the modelled
population. The time series for modelling commenced in 1945

and assumed that the population was in an equilibrium unfished
state because no prior catch records were available and fishing
effort at this time was limited (Leigh et al. 2006). The dynamics

of the population were tracked monthly by applying recruit-
ment, growth and mortality functions (for details, see Supple-
mentary Material, available on the web).

Incorporating the effects of river discharge on recruitment

Summer and spring river discharge affects barramundi
recruitment, with high discharges resulting in relatively

Table 1. River discharge to the Fitzroy River estuary

LCCDry¼ hypothetical latentþ climate change dry, LCCMed¼ hypothetical latentþ climate change median, LCCNil¼ hypothetical

latentþ no climate change, LCCWet¼ hypothetical latentþ climate changewet, status quo¼ historicmean (�s.e.) observed discharge

to the estuary

Season Status quo (m3 s�1) Percentage change mean discharge (relative to status quo)

LCCNil LCCWet LCCMed LCCDry

Summer 362.4 (�77.9) �12 þ37 �18 �39

Autumn 227.3 (�44.1) �3 þ28 �13 �42

Winter 42.3 (�12.1) �12 �15 �51 �76

Spring 26.7 (�9.1) �29 �44 �55 �82
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strong year classes, and low discharges resulting in relatively
weak year classes (Halliday et al. 2011). In the current study,

expected recruitment (Ry) was based on the spawning stock
size of the previous year (R̂y, derived from a Beverton–Holt
recruitment function, see Eqn S1, available as Supple-

mentary Material on the web), adjusted by the effect of anom-
alies in total summer discharge (i.e. December to February) and
total spring discharge (i.e. September to November), and

defined as

Ry ¼ R̂y exp½f1ĉ1ðlog sumflowstd
y�1Þ

þ f2ĉ2ðlog sprflowstd
y�1Þ þ ey�; ð1Þ

where f1 and f2 are logic functions (explained below), ĉ1 and
ĉ2 are coefficients estimated in the 1st stage (i.e. the calibration

phase) by MCMC, log sumflowstd
y�1 and log sprflowstd

y�1 are total
summer and spring discharge (natural logarithm transformed
and standardised to the mean total summer discharge and mean

total spring discharge, respectively) in the previous year (y�1),
with discharge representing the observed historic discharge to
the Fitzroy River estuary (see Supplementary Material for

details), and ey was random process error (explained below).
The logic functions f1 and f2 determined whether seasonal
discharges exceeded lower or upper seasonal thresholds. Upper

thresholds for total seasonal discharge in summer and spring
were 128.6m3 s�1 and 0.8m3 s�1, respectively, and resulted in
barramundi recruitment that was ‘stronger’ than average.
Lower thresholds for total seasonal discharge in summer and

spring were 20.4m3 s�1 and 0.2m3 s�1, respectively, and
resulted in recruitment that was ‘weaker’ than average.
Threshold values were based on the quantitative results of

Staunton-Smith et al. (2004) and Halliday et al. (2011).
Recruitment was further modified to include random process
error (ey) to account for environmental fluctuations to recruit-

ment that were additional to and independent of discharge. In
the 2nd stage (i.e. the projection stage) recruitment error (ey)
was randomly sampled every year from a log-normal distri-
bution of (,ln(N(0,0.31))). An ey with a standard deviation of

0.31 resulted in recruitment variation of,50% because of river
discharge (Halliday et al. 2011) and 50% because of random
error. Monthly recruitment was the product of the within-fish-

ing-year recruitment pattern (Fm) and the total annual number
of barramundi recruits.

Incorporating discharge effects on growth

The growth of fish older than 12 months was determined by a
discharge-dependent size-transition matrix (Pl,l0). The operating

model applied an extended von Bertalanffy growth function
developed by Robins et al. (2006), which included the effects of
season and discharge. Monthly historic discharge to the estuary

between 1945 and 2005 inclusive was used to calculate all
possible growth increments per length class per calendar month,
using discharge as an input parameter (see Eqn S10, available as

Supplementary Material on the web). Possible growth incre-
ments were used to construct length-class transition matrices
representing the discharge- and season-specific probabilities of
an individual growing from one length class to another.

A gamma-probability density function was used to construct the
length-class transition matrices, as follows:

Pl;l0 ¼ f ðlja; bÞ ¼ 1

baGðaÞ l
a�1e�

l
b; ð2Þ

where a is the shape parameter and b is the scale parameter,
which are equivalent to ml0

2/s2 and s2/ml, respectively (where

ml¼mean expected growth increment of length class l, s¼
standard deviation). The final length-class transition matrix was
normalised for each length class (Pl;l0=

PLmax

l¼Lmin
Pl;l0 ).

Variability around the mean expected growth increment was
assumed constant for all length classes.

Calibrating the operating model

Three parameters were estimated in the 1st stage, including
virgin recruitment (R̂0), and the coefficients for summer and
spring discharge (ĉ1 and ĉ2, respectively) of Eqn 1. A quasi-

Bayesian approach was used for parameter estimation. As we
knew little about the distributions of the free parameters, we
used uniform (non-informative) priors for each parameter.

A Monte Carlo Markov Chain (MCMC) algorithm was used to
obtain the ‘posteriors’ from tracing the log-likelihoods for the
following data: (1) standardisedmonthly barramundi catch rates
between 1990 and 2005; (2) the observed proportion of barra-

mundi catch-at-age between 2000 and 2005; and (3) the
observed proportion of barramundi catch-at-length between
2000 and 2005 (see Supplementary Material for details).

The total objective function (TOF) for model calibration was
calculated by adding normal negative log-likelihoods (Haddon
2001) for barramundi catch per unit effort (Lcpue), catch-at-

length (Llength) and catch-at-age (Lage), as follows:

TOF ¼ 2��log Lcpue
� �þ 0:1��log Llength

� �þ 0:1

��log Lage
� �þ 1��log l1ð Þ þ 1��log l2ð Þ ð3Þ

l1 ¼
0 if catchðmÞ � BðmÞ
P

catchðmÞ � BðmÞð Þ2 otherwise

�

;

where catch(m) was the total monthly catch and B(m) was the

monthly exploitable biomass. A penalty function (l2) was used
(Hall and Watson 2000) to avoid the operating model tracing
unrealistically large population sizes, with improbably low

estimates of exploitation, and was calculated as follows:

l2 ¼
0 if

Cy

Ry
� hf

1000 hf � Cy

Ry

� �2

otherwise

8
<

:
; ð4Þ

where Cy is the total annual catch (number of fish) in Year y, Ry

is recruitment adjusted by anomalies in summer and spring

discharge from the previous year, y�1; and hf is the minimum
harvest fraction. The value 1000 in Eqn 4 ensured adequate
weighting in the MCMC process (Hall and Watson 2000).

Because each log-likelihood term varied in magnitude, different
weightings were imposed so that each term contributed equally
and ensured that the age and length data did not compromise the
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model fit to standardised catch rate (Francis 2011). The age and
length log-likelihood data were measured by a cumulative dis-

tribution function, using the proportion of fish in each catch-at-
age or catch-at-length category (Leigh et al. 2006).

Assessing the satisfactory convergence to the posterior

distribution is a potentially major problem with the use of the
MCMC algorithm (Punt et al. 2006). Therefore, assessment of
satisfactory model convergence was based on (1) visual exami-

nation of traces for key model outputs, (2) comparing the
posterior means of the free parameters at the start (runs 5000–
10 000) with those at the end of the sequence (runs 20 000–
40 000) and testing for statistical difference based on the

standard deviations of each (Geweke 1992), and (3) computing
the Gelman–Rubin diagnostic statistic for each free parameter
(Gelman et al. 2004). The results of the model calibration were

based on a minimum annual harvest fraction (hf ) of 0.05.

Simulation of barramundi production under hypothetical
discharges

The 2nd stage of modelling (i.e. the projection stage) was
designed to explore the magnitude and direction of impacts on
barramundi production of (1) total abstraction of all licenced

water and (2) projected regional changes to river discharge
derived from downscaled outputs of the Global Climate Model
A1FI. The projection stage was initialised by fish abundance

estimated from the last year of the MCMC calibration of the
operating model (i.e. Stage 1). For projections, alternative
values of R̂0 (virgin recruitment), ĉ1 (summer-discharge coef-
ficient) and ĉ2 (spring-discharge coefficient) were randomly

selected 1000 times from the MCMC chain of posteriors, to
allow uncertainty in the model parameters to be included in
projected sequences.

River-discharge scenarios

We considered five scenarios for river discharge to the Fitzroy
River estuary. The first scenario, referred to as ‘status quo’, was

the observed historic discharge to the estuary (Robins et al.

2005), and included actual levels of upstream water abstraction
(see Supplementary Material for details). Four other modified
scenarios were considered. All were supplied by the Queensland

Department of Environment and Resource Management, which
undertakes detailed quantitative modelling of water resources
for water-management purposes (for details, see Water

Assessment Group 2009). The four modified scenarios all
assumed total abstraction of all licenced water (including latent
licences), plus the following levels of projected climate change:

(1) no change (latentþ nil climate change; LCCNil), (2) 10th
percentile projected climate change (latentþ climate change
wet; LCCWet), (3) the 50th percentile of projected climate

change (latentþ climate change median; LCCMed) and (4) the
90th percentile of projected climate change (latentþ climate
change dry; LCCDry). Discharge scenarios that included cli-
mate change were based on the historical-discharge time series

modified by the parameter-change percentages to rainfall and
potential evaporation in the central Queensland region under
Global Climate Model A1FI for the 2050 projection period

(QCCCE 2009). Outputs of this climate model most closely
follow current trends in emissions and assume a high reliance on

fossil fuels. For projected climate change discharge secnarios,
the 10th percentile case is where the flow is exceeded 10%of the

time (i.e. thewetter case), while the 90th percentile case iswhere
the flow is exceeded 90% of the time (i.e. the drier case).

Generating projected hypothetical sequences

Outputs of Global Climate Models relate to mean changes in
climate parameters and do not provide a future time series that
encapsulates inter- and intra-annual climate variability. There-

fore, we generated hypothetical discharge sequences by ran-
domly selecting (with replacement) 45 annual sequences of
monthly discharge (i.e. 1 year – July to June) from the historic
(or modified) discharge time series. This procedure was

repeated 50 times to generate replicates. We applied the same
random selection of annual discharge sequences across
scenarios (e.g. status quo, LCCNil) for any given replicate

(i.e. ‘same-year selection’). This provided (1) plausible
within-year variability in discharge and (2) the same level of
inter-annual fluctuation in climate variability between scenari-

os. Therefore, the main differences between the hypothetical
discharge sequences of the five scenarios considered were
the level of water use and the degree of climate change. The

hypothetical discharge sequences were used as input to the
population model, in combination with 50 randomly selected
sets of R̂0, ĉ1 and ĉ2 taken from the 1000 length chain of
posteriors derived from the ,40 000 MCMC calibration chain.

Evaluation of changes in barramundi production

The effects of changed discharge on barramundi were evaluated

by comparing relative differences in equilibrium maximum
sustainable yield (MSY) among scenarios, as well as the fol-
lowing indicators averaged over the last 20 years of the simu-

lations (i.e. 2030–2050): exploitable biomass, spawning stock
size (number of eggs� 106), annual catch, mean catch-at-age
and mean catch-at-length. The effect of the discharge scenario

on these indicators was tested using a residual maximum-
likelihood model (REML, GENSTAT 2008), with scenario as a
fixed effect and replicate as a random effect. Data for all fishery
indicators except mean catch-at-age and mean catch-at-length

were natural-logarithm transformed before analysis to normal-
ise residuals. Predictedmeans for each fishery indicator from the
REML analysis were tested for significant differences among

scenarios, using the criterion of means having differences
greater than twice the average standard error for each term
(i.e. estimated l.s.d.).

Sensitivity of the model to variation in the stock–recruitment
relationship

For most species, the relationship between spawning biomass

and subsequent recruitment is poorly known (Hilborn and
Stokes 2011). We recognised that the shape of the stock–
recruitment curve had potential to significantly influence the
outputs of the operating model and assessment of the impacts of

the hypothetical discharge scenarios. Therefore, we incorpo-
rated uncertainty in the spawner–recruit relationship by tuning
and projecting the model with alternate values of steepness (h)

of 0.5, 0.7 and 0.9. We considered a h of 0.7 to be the base case
for barramundi because of (1) expert consensus (Grace et al.
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2008) and (2) similarities to common snook (i.e. diadromous,

protandrous, longevity .20 years, and maturity at 5–7 years),
for which 0.7 is considered to be the base case (Muller and
Taylor 2006).

Assumptions – simplification of ecological processes

The current work did not consider all the potential effects of
climate change on barramundi population dynamics because

many effects are not known or quantified (Gillanders et al.

2011). Temperature is a key or primary climate variable (Koehn
et al. 2011) projected to increase under global climate change

and is a ‘master factor’ in many ecological processes, such as
activity, feeding, growth and reproduction (Kennedy 1990;
Jobling 1997; Pankhurst and Munday 2011). Barramundi has a
wide thermal optimum for growth and protein metabolism,

i.e. 27–338C (Katersky and Carter 2007), and a critical thermal
maximum of 44.58C (Rajaguru 2002). Therefore, it is unlikely
that projected temperature increases for the Fitzroy River region

in 2050 will be beyond the thermal limits of this species.
For simplicity, we assumed that the empirical relationship

between discharges and seasonal growth rates of barramundi

remained valid within the range of discharges considered in the
current work and that prey availability was not critically limited
in any hypothetical scenario. Barramundi is a non-specialised

predator that exploits pulses in prey availability in fresh, estua-
rine or saltwater habitats. Barramundi is also cultured widely,
where it feeds on a pellet diet. Therefore, we suggest that
barramundi is very adaptable to available food sources, but

recognise that the composition and abundance of barramundi
prey may alter with long-term climate change, and that this is an
area requiring further research.

Non-independent effects of forcing variables were not
explicitly specified, i.e. when one factor is strengthened or
weakened by variation in another and when the combined

influence of two factors pushes a population beyond a critical
threshold (Harley et al. 2006). Quantitative data on non-linear

and non-independent effects of forcing variables were not

available for the present study.

Results

Model convergence

Visual examination of theMCMC traces for estimated values of
R̂0, ĉ1 and ĉ2 suggested a reasonable fit across key model out-

puts. Geweke statistics indicated no significant differences in
the mean (and variance) of each parameter between the first and
second half of the MCMC chain. Gelman statistics for all model

parameters were ,1.05. These three indicators suggested no
convergence problems for any of the key model outputs.

Plots of observed versus predicted catch rates and age

frequencies (Figs 1, 2) suggested that the model provided a
reasonable representation of the Fitzroy River barramundi
population. At this stage, we did not favour estimating more

parameters or reweighting log-likelihoods to improve predicted
length frequencies (Fig. 2). Estimated parameter values of virgin
recruitment (R̂0), summer-discharge recruitment coefficient (ĉ1)
and spring-discharge recruitment coefficient (ĉ2) were signifi-

cant (P, 0.01; Table 2).

Barramundi simulation – fishery indicators

Values for the fishery indicators were presented as percentage
change compared with the status quo scenario because our aim
was to explore relative change resulting from altered river
discharges. Mean values for exploitable biomass, spawning

stock size (SpSS), MSY, annual catch and fish length were
greatest for the status quo scenario and reduced for all other
scenarios, with the differences significant at P¼ 0.001 (Fig. 3;

h¼ 0.7 base case). F4,196 statistics were 1085 for biomass,
1481 for SpSS, 41711 for MSY, 877 for annual catch and 558
for catch-at-length. Mean values of catch-at-age were the

reverse of this pattern (F4,196¼ 1880, P, 0.001), with the
mean age of fish (caught) youngest in the status quo scenario

90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05
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Fig. 1. Mean monthly catch per unit effort (CPUE) of barramundi in the Fitzroy River region between 1990 and

2005, showing standardised CPUE from general linear model (solid line) and fitted CPUE from themonthly age- and

length-structured population model for h¼ 0.7 (dotted line). Fishing year¼ July–June. Note the annual fishery

closure between November and January (inclusive).
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and oldest in the LCCDry scenario. This was a consequence of
fish growing more slowly under hypothetical scenarios of
reduced discharge and therefore taking longer to reach mini-

mum legal size.
Reductions in the mean exploitable biomass compared with

the status quo scenario ranged from 4% for the LCCWet

scenario up to 25% for the LCCDry scenario. On the basis of

the results for the LCCNil scenario, ,10% of the reductions in
mean exploitable biomass could be attributed to the total
abstraction of all licenced water. Mean spawning stock size

was reduced by 5–42% (Fig. 3). MSY was reduced by a 4%,
23%, 33% and 45% for the LCCWet, LCCNil, LCCMed and
LCCDry scenarios, respectively. Mean annual catch was

reduced by between 4% (LCCWet) and 23% (LCCDry), with
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Fig. 2. Frequencies of (a) catch-at-age and (b) catch-at-length for barramundi in the Fitzroy River region between October 2000 and February 2005,

showing observed frequencies (data from Halliday et al. 2011) (histogram boxes) and fitted frequencies from the monthly age- and length-structured

population model for h¼ 0.7 (solid line).
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total abstraction of all licenced water (LCCNil) accounting for
9% of the reduction.

Values of all fishery indicators under alternate h values
showed similar trends in percentage change compared with

the status quo scenario, although individual values differed from
that of the base case (i.e. h¼ 0.7; P, 0.01). Greater reductions
in mean values of fishery indicators occurred for the model

tuned and projected for h¼ 0.5, whereas lesser reductions in
values of fishery indicators occurred for the model tuned and
projected for h¼ 0.9 (Fig. 4).

Discussion

Many approaches are needed to understand the possible impacts
of climate change on fishery resources and to inform planning
processes about adaptation to climate change (Plagányi et al.

2011). We explored possible population responses of a single
species by coupling downscaled outputs from a Global Climate
Model (GCM) to an environmentally responsive fishery popu-
lation dynamics model – the first of its kind for barramundi.

Simulation results were in line with our expectations; reduced
discharges resulted in significantly reduced production, with
one exception, namely, fishery production under the LCCWet

scenario. In this scenario, mean exploitable biomass was
reduced by 4%, despite a 37% increase in summer river dis-
charge. The reduction was a consequence of a 44% reduction in

spring river discharge which negatively affected the growth and
recruitment of the simulated barramundi population that could
not be compensated for by the 37% increase in summer river
discharge. The result illustrated that the projected effects of

altered river discharge on fishery production are complex and
that simple linear projections, such as might be based on
observed river-discharge–catch relationships (e.g. Robins et al.

2005; Balston 2009) could be misleading.

Analysis of validity of methods and problems encountered

Two issues were identified when simulating climate-change

impacts on fish stocks. First, large variability in regional GCM
outputs (i.e. 10th to 90th percentiles) produced large variability
in simulated impacts (Fig. 3). This was particularly true in the

Fitzroy River region where projected changes in annual rainfall
range between �24% and þ10% (QCCCE 2009). Modelling
climate systems is complicated, but until the range of uncer-
tainty in GCM regional outputs is refined, these outputs will be a

major source of uncertainty to any simulation of the potential
impacts of climate change on a fishery.

Second, the lack of predicted future time series of relevant
climate parameters (in this case, river discharge) that encapsu-
lates inter- and intra-annual climate variability limits climate-

change simulation to estimating mean responses selected from
an appropriately adjusted historical time series. Comparison of
the same time series among replicates of each climate-change

scenario (i.e. same-year selection) permitted our analyses to
focus on the effects of long-term climate change rather than
inter- or intra-year climate variability. This was important in
detecting differences among climate-change scenarios. We also

found it useful to consider the appropriate temporal grouping of
the time series, because climate-dependent parameters are often
dependent on those of the preceding month(s). In our case, we

selected 12 sequential months (of discharge) that matched the
biological year of our selected species (Staunton-Smith et al.

2004; Robins et al. 2006) and because the Australian climate

(especially rainfall) is influenced at an annual scale by El Niño–
La Niño events, which are often initiated after the Australian
winter (Chiew et al. 1998).

Implications of projected climate change for barramundi

Barramundi is a long-lived (up to 32 years) tropical species with
high fecundity and a prolonged reproductive life-span. King and
MacFarlane (2006) classified such species as long-lived (peri-

odic) strategists, capable of persisting through poor conditions
to immediately exploit good conditions, as occurs during the
flood and drought climate cycles of northern Australia. Other
characteristics of this species which indicate that it (and species

with similar traits) may be resilient to climate change include
variable growth, which provides benefits from an extended
growing season if temperatures increase (Cochrane et al. 2009),

and non-specialised dietary and habitat preferences (Rijnsdorp
et al. 2009).

The impact of climate change on a fishery will depend on the

response of a species and its supporting ecosystem, the manage-
ment structure of the fishery and capacity for change in human
behaviour. Management strategies of the barramundi fishery of
the Fitzroy River region exemplify the qualities that are likely to

make a fishery stock more resilient to the impacts of climate
change, at least in the medium term (i.e. next 50 years). These
include the following: (1) a conservative harvest rate (King and

MacFarlane 2006) achieved by limited-entry commercial fish-
ing, spatial closures near sites of non-spawning aggregation,
e.g. downstream of dams and weirs, and minimum and maxi-

mum size limits; (2) protection of the spawning stock (i.e. a
maximum size limit to conserve large highly fecund females and
an annual spawning closure); and (3) harvesting acrossmany age

classes, i.e. 2–32 years (Staunton-Smith et al. 2004). Managers
of other fisheries within Australia and worldwide may need to
consider using some of these strategies (if not already enacted)
to enhance the resilience of fish stocks to climate change.

The challenge for managers of barramundi fisheries
(or species with similar traits) will be to distinguish among
variations in fishery-performance measures (e.g. annual catch)

that are a consequence of regional inter-year climate variability
from those that are a consequence of long-term, global climate

Table 2. Parameters estimates (median ± s.d.) for the Beverton]Holt

recruitment function modified by anomalies in summer and spring

discharge (Eqn 1) for pre-specified values of recruitment-curve

steepness (h)

Values were generated from their posterior distributions of 1000 random

Markov Chain Monte Carlo samples

h Virgin recruitment, R̂0

(no. of fish� 106)

Summer-discharge

coefficient, ĉ1

Spring-discharge

coefficient, ĉ2

0.5 0.6988 (�0.1612) 0.2720 (�0.1247) 0.0508 (�0.0271)

0.7 0.6347 (�0.1486) 0.3221 (�0.1126) 0.0859 (�0.0353)

0.9 0.6477 (�0.1503) 0.2019 (�0.1210) 0.0594 (�0.0300)
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change. In Queensland, commercial landings are reported

and the age structures of key regional populations are
monitored annually. These data provide real-time indices of
trends in CPUE and year-class strength and can alert fishery

managers to periods of stock decline. This information could

identify the need for management intervention so that fishing
pressures do not amplify climate-induced changes (Möllmann
et al. 2008).
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International significance of findings

Numerous species worldwide show life-history relationships
with river discharge (Drinkwater and Frank 1994; Gillanders
and Kingsford 2002; Gillson 2011) and are consequently vul-

nerable to changes in river discharge that occur from human
development and climate change. Stocks of other tropical
estuarine opportunists and species tolerant of or dependent on
lowered estuarine salinities are likely to be similarly affected by

climate change, including species such as banana prawns
(Pennaeus merguiensis) (Vance et al. 1998), school prawns
(Metapenaeus macleayi) (Ives et al. 2009), common snook,

Atlantic white shrimp (Litopenaeus setiferus) and blue shrimp
(Litopenaeus stylirostris) (Galindo-Bect et al. 2000). Our ability
to simulate the fishery dynamics of a species under climate

change was dependent on understanding the biological
mechanisms that drive a population at regional scales (Kell et al.
2005). This reinforced the need for the collection of long-term
environmental and ecological data, because most of this data

cannot be collected retrospectively (Clark 2006).

Humans already affect the productivity of estuarine fisheries
through the upstream abstraction of water and this is likely to
happen more frequently in both time and space in the future

(Vörösmarty et al. 2000). The current study suggested that the
potential impacts of total abstraction of all licenced water
(i.e. the activation of latent effort in water abstraction) were of
the same order of magnitude as were the impacts of median

climate change. These results are similar to those of Peterson
and Kwak (1999), who found that long-term land-use changes
such as the drainage of wetlands and channelisation of rivers

modifies the storage capacity, infiltration and runoff character-
istics of a catchment. The consequence is altered discharge
regimes that they suggest are of greater detriment to riverine

fishes (e.g. smallmouth bass, Micropterus dolomieu) than
are the negative effects of increased temperature and river
discharge projected to occur with global climate change.

Estuaries and their associated fish populations require fresh-

water to function. The results of the current study highlighted
that managers of natural resources should be as concerned about
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the downstream effects of water abstraction as they are about
long-term climate change. The extraction of water for human

use and long-term changes in climate that result in reduced river
discharges may undermine the inherent resilience of estuarine
ecosystems and their dependent fisheries.
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