Ecological risk assessment of the # East Coast Otter Trawl Fishery in the Great Barrier Reef Marine Park R J Pears, A K Morison, E J Jebreen, M C Dunning, C R Pitcher, A J Courtney, B Houlden and I P Jacobsen 2012 Ecological risk assessment of the ## East Coast Otter Trawl Fishery in the Great Barrier Reef Marine Park ### Data report #### 2012 R J Pears¹, A K Morison², E J Jebreen³, M C Dunning³, C R Pitcher⁴, A J Courtney³, B Houlden¹ and I P Jacobsen³ - ¹ Great Barrier Reef Marine Park Authority - ² Morison Aquatic Sciences - ³ Department of Agriculture, Fisheries and Forestry Queensland - ⁴ CSIRO Wealth from Oceans Flagship #### © Commonwealth of Australia 2012 Published by the Great Barrier Reef Marine Park Authority ISBN 978 1 921682 93 3 (eBook; pdf) This work is copyright. Apart from any use as permitted under the *Copyright Act 1968*, no part may be reproduced by any process without the prior written permission of the Great Barrier Reef Marine Park Authority. #### This publication should be cited as: Pears, R.J., Morison, A.K., Jebreen, E.J., Dunning, M.C., Pitcher, C.R., Courtney, A.J., Houlden, B. and Jacobsen, I.P. 2012, *Ecological risk assessment of the East Coast Otter Trawl Fishery in the Great Barrier Reef Marine Park: Data report*, Great Barrier Reef Marine Park Authority, Townsville. #### **DISCLAIMER** The views and opinions expressed in this publication do not necessarily reflect those of the Australian Government, Morison Aquatic Sciences, the Queensland Government or CSIRO. While reasonable effort has been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication #### Requests and enquiries concerning reproduction and rights should be addressed to: Director, Communication 2-68 Flinders Street PO Box 1379 TOWNSVILLE QLD 4810 Australia Phone: (07) 4750 0700 Fax: (07) 4772 6093 info@gbrmpa.gov.au #### Comments and enquiries on this document are welcome and should be addressed to: Director, Ecosystem Conservation and Sustainable Use info@gbrmpa.gov.au www.gbrmpa.gov.au ## **Executive Summary** An ecological risk assessment of the East Coast Otter Trawl Fishery in the Great Barrier Reef Region was undertaken in 2010 and 2011. It assessed the risks posed by this fishery to achieving fishery-related and broader ecological objectives of both the Queensland and Australian governments, including risks to the values and integrity of the Great Barrier Reef World Heritage Area. This was a comprehensive, robust and transparent assessment of the current fishery that used accepted standards and the latest scientific findings. The risks assessed included direct and indirect effects on the species caught in the Fishery as well as on the structure and functioning of the ecosystem. This ecosystem-based approach included an assessment of the impacts on harvested species, by-catch, species of conservation concern, marine habitats, species assemblages and ecosystem processes. In total, over 900 species, 10 habitat types, 16 assemblages and 14 ecosystem processes were considered in the assessment using a hierarchical process. The assessment also considered known external pressures (i.e. non-trawl fishery-related pressures such as modification of coastal ecosystems, degraded water quality and predicted climate change vulnerabilities), which may increase the susceptibility of an ecological component to the effects of trawling. The assessment took into account current management arrangements and fishing practices at the time of the assessment. It also recognised that the ecosystem, which has been subject to multiple use for decades, is no longer pristine. The assessment was unusually well informed for an ecological risk assessment and captured a substantial range of published material as well as expert opinion from a diverse range of participants. This material included fishery-independent field studies, experimental manipulation of fishing activities to investigate impact and recovery of seabed species, modelling of the distributions of species, habitats and assemblages, and trophic interactions among the species groups affected by trawl fishing. Research and monitoring on harvested species, by-catch and protected species also informed the assessment. This broad body of knowledge provides a high degree of confidence that the findings about the remaining risk levels are robust. The main findings of the assessment were: - Current risk levels from trawling activities are generally low. Under current practices and 2009 effort levels the overall ecological risks from trawling in the Great Barrier Reef Region to harvested species and to the broader environmental values and integrity of the area are low, with most species, habitat types, species assemblages and ecosystem processes at low or intermediate-low risk from the Fishery (Figure 1). As trawl fishing effort has remained at similar levels over the period 2007 to 2011, the risk findings are still considered relevant in 2012 and it is unlikely overall ecological risks have changed from those reported here. - Some risks from trawling remain. In particular, high risks were identified for 11 species of skates and rays and two species of sea snakes. The by-product species Balmain bugs (three species of lobsters in the genus *lbacus*) were at intermediate-high risk. A poorly known upper continental slope habitat (90 to 300 m depth) in the southern Great Barrier Reef Region (that includes deepwater eastern king prawn fishing grounds) and the plant and animal communities occurring there were also assessed as at high risk. This particular upper continental slope habitat is not afforded the same levels of protection provided to other habitat types within the Region. In part, this level of protection is an artefact of the way the habitat boundary was defined for this assessment. About half of this area receives consistently high levels of trawl fishing effort. Additional ecological and biological information is required to more confidently assess the risks posed by the Fishery in this area. #### Overall pattern of ecological risk in 2009 Colour key: intermediate-high intermediate-low intermediate high low Figure 1. Overall ecological risk from activities of the East Coast Otter Trawl Fishery in the Great Barrier Reef Region. The colour indicates the risk categories used (see colour key). Each bar is shaded to represent the proportion of species or types assigned to particular risk categories. The categories are explained in Section 3 and the contexts against which risk was assessed are defined in Section 4. The figure is based on trawl fishing effort data for 2009. - Risks from trawling have reduced in the Great Barrier Reef Region. A comparison showed the overall ecological risk profile of the East Coast Otter Trawl Fishery was lower in 2009 compared to 2005 (Figure 2) as a result of a substantial reduction in trawl fishing effort over this period, principally in response to less favourable economic circumstances. - Trawl fishing effort is a key driver of ecological risk. Risk may increase if fishing effort levels increase above those in 2009. Fishery management tools that actively manage effort within sustainable levels for each of the key trawl fishery sectors could provide a mechanism to control risks and impacts on harvested species and the environment. - Zoning has been important in reducing risks. The protection afforded to the Great Barrier Reef Marine Park through zoning (particularly since rezoning in 2004) contributed to the relatively low ecological risks from the otter trawl fishery and is critical for protection of productive habitats, biodiversity conservation and maintaining ecosystem resilience. Trawling is allowed within 34 per cent, and currently occurs more than once per year in less than seven per cent, of the Great Barrier Reef Marine Park. Protection through zoning is an important measure which acts to limit spatial expansion of the Fishery and potential risk to the ecosystem. ### Risk pattern for 2009 compared to 2005 Figure 2. Comparison of overall ecological risk pattern at 2009 (top) and 2005 (bottom) trawl fishing effort levels, where data was available for both years. The colour indicates the risk categories used (see colour key). Each bar is shaded to represent the proportion of species or habitat types assigned to particular risk categories. The total annual trawl fishing effort in 2009 was over 40 per cent lower than in 2005, however 2005 levels were still allowable under management arrangements at the time of the assessment. - Reducing identified unacceptable risks requires a range of management responses. Managers and industry will need to continue to work in partnership to prioritise and address the remaining risks. The assessment findings also validated other management actions implemented to address ecological sustainability concerns about trawling, and found that risks and impacts from trawling have been significantly reduced since the introduction of a management plan for the Fishery in 1999. - The commercial fishing industry is supportive and being proactive. Positive steps have been, and are being, taken by trawl fishers to reduce the risks from trawling to the species, seabed communities and habitats of the Great Barrier Reef Region. For example, mandatory use of turtle excluder devices (TEDs) throughout the otter trawl fishery for the last decade has greatly reduced incidental catch of loggerhead turtles and other large animals such as sharks. The trawl industry is encouraged to continue to work with managers and researchers on further improvements and innovation in by-catch reduction devices (BRDs) and related efforts to further reduce the remaining risks for
skates, rays and sea snakes in particular. Measures that improve the efficiency with which the catch is taken (such as better by-catch reduction measures) or reduce the Fishery's ecological impact also tend to have economic benefits for industry (e.g. improved product quality leading to higher market price or lower fuel usage). • Further reductions in trawl by-catch, high compliance with rules and accurate information from ongoing risk monitoring are important. Risk monitoring would be assisted by improved reporting via logbooks, monitoring of discard levels and species composition through fishery observer programs and ongoing compliance programs. Measures to ensure adoption of best practice TEDs and BRDs throughout the Fishery and other related efforts to reduce remaining risks for species of conservation concern should be promoted. These are important for effective management of the Fishery, for any future re-evaluation of the ecological risks within the Great Barrier Reef Region and for public confidence in the sustainability of the Fishery. • Trawl fishing is just one of the sources of risk to the Great Barrier Reef. Continuing to take positive actions to further improve trawl fishery management and practices is important for maintaining the resilience of the Great Barrier Reef, for which the overall outlook has recently been assessed as poor, in the light of serious threats, especially from climate change. ## **CONTENTS** #### DATA REPORT | EXECUTIVE SUMMARY III | |---| | Data Report: Appendix 1. Resilience of principal species | | Data Report: Appendix 2. Resilience of other permitted species | | Data Report: Appendix 3. Fishery impact profile of principal species 2005 | | Data Report: Appendix 4. Fishery impact profile of principal species 2009 | | Data Report: Appendix 5. Fishery impact profile for other permitted species 2005 44 | | Data Report: Appendix 6. Fishery impact profile for other permitted species 2009 56 | | Data Report: Appendix 7. Resilience of by-catch species | | Data Report: Appendix 8. Fishery impact profile of by-catch species 2005 | | Data Report: Appendix 9. Fishery impact profile of by-catch species 2009 107 | | Data Report: Appendix 10. Resilience of marine turtles | | Data Report: Appendix 11. Fishery impact profile of marine turtles | | Data Report: Appendix 12. Resilience of sea snakes | | Data Report: Appendix 13. Fishery impact profile of sea snakes | | Data Report: Appendix 14. Resilience of seahorses and pipefish | | Data Report: Appendix 15. Fishery impact profile of seahorses and pipefish | | Data Report: Appendix 16. Resilience of sharks and rays | | Data Report: Appendix 17. Fishery impact profile of sharks and rays | | Data Report: Appendix 18. Impact and recovery of the main living habitat elements 185 | | Data Report: Appendix 19. Resilience of marine habitats | | Data Report: Appendix 20. Fishery impact profile of marine habitats 2005 | | Data Report: Appendix 21. Fishery impact profile of marine habitats 2009 | | Data Report: Appendix 22. Resilience of species assemblages | | Data Report: Appendix 23. Fishery impact profile for species assemblages 2005 199 | | Data Report: Appendix 24. Fishery impact profile for species assemblages 2009 | | Common Name | Species Name Penaeidae | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or
P | |---------------------|------------------------|--|-----------------|--|-----------------|---|--------|---|-----------| | Brown tiger prawn | Penaeus
esculentus | 50% mature at 32mm
CL with mean
fecundity of 186 000
eggs | A | Good ability to maintain/ rebuild population. Continuous spawning with seasonal variation. | A | Widespread Indo-Pacific: Australia.(http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/taxa/Penaeus_(Penaeus)_esculentus) | A | Widespread. Occur over
mud or sandy mud
substrates in 8–20 m
depth, juveniles occupy
shallow waters in
estuaries. Some reports
indicate juveniles prefer
seagrass along exposed
coastlines. | A | | Grooved tiger prawn | Penaus
semisulcatus | 50% mature at 39mm
CL with mean
fecundity of 365 000
eggs | A | Good ability to maintain/ rebuild population. Continuous spawning with seasonal variation. | A | Widespread Indo-West Pacific and the Mediterranean: southeast Africa to Japan, the Malay Archipelago and Australia. (http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/taxa/Penaeus_(Penaeus)_monodon) | A | Widespread. Occur over
sand to mud substrates,
juveniles found in shallow
waters generally
associated with seagrass
beds, depth 2–130 m. | A | | Black tiger prawn | Penaeus
monodon | >800 000 eggs for large females | А | Good ability to maintain/ rebuild population. Continuous spawning with seasonal variation. | A | Widespread do-West Pacific and Atlantic Ocean: from southeast Africa and Pakistan to Japan, the Malay Archipelago and Australia. (http://www.environment.gov.au/bi odiversity/abrs/online-resources/fauna/afd/taxa/Penaeus _(Penaeus)_semisulcatus) | A | Widespread. Occur over
mud to sand substrates,
juveniles occasionally
enter rivers, depths to 110
m. | A | | Common Name | Growth rate | A or
P | Longevity /
Natural mortality | A or
P | Cumulative pressures | A or
P | Variance | Comments | Risk
prone
score | Resilience level | |---------------------|------------------------------|-----------|---|-----------|--|-----------|--|--|------------------------|------------------| | Brown tiger prawn | Reach maturity in 5-6 months | А | Although tiger prawn species can live for several years the proportion of stock that survives longer than about 12 months due to natural and fishing mortality is very small. Evidence for this is the very small proportion of animals in the fishery that are larger than average size of 12 month old individuals. (CT, DEEDI) | | There is potential for cumulative pressures but not known. | | Concern about low
prawn catches in
Bowen area by
industry | There are examples of decline due to high effort; Exmouth Gulf and the Northern Prawn Fishery | 0 | Н | | Grooved tiger prawn | Reach maturity in 5-6 months | A | Although tiger prawn species can live for several years the proportion of stock that survives longer than about 12 months due to natural and fishing mortality is very small. Evidence for this is the very small proportion of animals in the fishery that are larger than average size of 12 month old individuals. (C Turnbull, DEEDI) | | None known | | Concern about low
prawn catches in
Bowen area by
industry | There are examples of
decline due to high effort;
Exmouth Gulf and the
Northern Prawn Fishery | 0 | Н | | Black tiger prawn | Reach maturity in 5-6 months | A | Although tiger prawn species can live for several years the proportion of stock that survives longer than about 12 months due to natural and fishing mortality is very small. Evidence for this is the very small proportion of animals in the fishery that are larger than average size of 12 month old individuals. (C Turnbull, DEEDI) | A | None known | | Concern about low
prawn catches in
Bowen area by
industry | Collection of brood stock for aquaculture | 0 | Н | | Common Name | • | Fecundity | A or P
or PP | Life history strategy | | Geographic distribution | | Habitat specificity or ecological niche | A or
P | |--------------------------|---------------------------|---|-----------------|---|---|---|---|---|-----------| | Blue endeavour prawn | Metapenaeus
endeavouri | 296 000 eggs at 30
mm CL | A | High ability to recover, rapid turnover, probable multiple spawnings annually, winter, summer, all year at some level especially in north (C Turnbull, DEEDI) | A | Widespread Indo-West Pacific and Atlantic Ocean: India to Japan, Malay Archipelago
and Wallis and Futuna Islands. (http://www.environment.gov.au/bi odiversity/abrs/online-resources/fauna/afd/taxa/Metapen aeus_endeavouri) | A | Juveniles in shallow
estuarine areas, seagrass
meadows on reef tops in
north; adults in deeper
water to 50m +. | A | | False endeavour
prawn | Metapenaeus
ensis | Highly fecund | A | High ability to recover, rapid turnover, continuous spawning with seasonal variation. | A | Widespread Indo-West Pacific: the Philippines and Australia and New Guinea. (http://www.environment.gov.au/bi odiversity/abrs/online-resources/fauna/afd/taxa/Metapen aeus_ensis) | A | Juveniles in shallow
estuarine areas, seagrass
meadows on reef tops in
north; adults in deeper
water to 50m +. | A | | Eastern king prawn | Melicertus
plebejus | Log(10) ripe
oocytes=0.0199xCL+4
.7528. Works out to
~300 000 at 40 mm CL
and ~800 000 at 60
mm CL (TC).
134637 at 33 mm CL
(CT) | A | Eggs released externally into the water column. Benthic eggs, pelagic larvae. Benthic post-larvae and juveniles. | A | Widespread Indo-West Pacific: Australia. Victoria, NSW, north to about Swains Reefs (21 degrees) QLD. Migratory. (http://www.environment.gov.au/bi odiversity/abrs/online- resources/fauna/afd/taxa/Penaeus _(Melicertus)_plebejus) | A | Widespread. Juveniles: estuarine. Adults: marine. Found over sandy substrates, depth 2–350m and maybe deeper. Juvenile: bare & vegetated substrates in estuaries and oceanic embayment's. Adult: ocean. Highly migratory, generally northwards. | A | | Red spot king prawn | Melicertus
Iongistylus | high | A | Rapid turnover | A | Widespread Indo-West Pacific: Malaysia, Philippines and Australia (http://www.environment.gov.au/bi odiversity/abrs/online- resources/fauna/afd/taxa/Penaeus _(Melicertus)_longistylus) | | Trawled near coral reefs, shallow 10m to 50+m. | A | | Common Name | Growth rate | A or
P | Longevity /
Natural mortality | A or
P | Cumulative pressures | A or
P | Variance | Comments | Risk
prone
score | Resilience level | |--------------------------|--|-----------|---------------------------------------|-----------|--|-----------|---|---|------------------------|------------------| | Blue endeavour prawn | Estimates of
growth rates from
tagging data for
NT and Torres
Strait. Size at
maturity
estimates. Less
than 2 yrs | А | high natural maturity, rapid turnover | A | coastal development,
water quality, but
generalists /
opportunists | Α | Seasonality in spawning, possible regional populations all along coast, | Appear to have positive trawl effect (anecdotal information and Seabed Biodiversity Project). No indication of overfishing of endeavour prawn stocks in Torres Strait or on the Qld east coast. | 0 | Н | | False endeavour
prawn | Less than 2 yrs | Α | high natural maturity, rapid turnover | Α | coastal development,
water quality, but
generalists /
opportunists | Α | Seasonality in
spawning, possible
regional populations
all along coast, | Appear to have positive trawl effect (anecdotal information and Seabed Biodiversity Project). No indication of overfishing of endeavour prawn stocks in Torres Strait or on the Qld east coast. | 0 | Н | | Eastern king prawn | Less than 2 yrs. Male K=0.34 per month. Linf 41 mm CL. Female K=0.25 per month. Linf=53 mm CL Reaches Linf in < 2 years | Α | M=0.2 per month | А | Experiences other trawl pressure outside the GBR - all part of the one stock hence included in scoring. No significant nonfishing pressures. Change in rain fall patterns (correlated with good season) in response to climate change? | Р | There is one stock of this species on the east coast of Australia. The complementary ecological risk assessment project is considering the full stock, for which the fishery impact profile may vary. | considered the component of the stock of eastern king prawns within the Great Barrier Reef Marine Park only. | 1 | H-I | | Red spot king prawn | Adult size in less
than 2 yrs. Growth
rate estimates
available from
Townsville in the
~1985 & PCB in
~1990 | A | Short lived, high mortality | A | None known | A | | | 0 | н | | Common Name Blue legged king prawn | Species Name
Melicertus
latisulcatus | Fecundity
high | A or P
or PP
A | Life history strategy Rapid turnover | A or P
or PP
A | Geographic distribution Widespread Indo-West Pacific: Southeast Africa to Japan, Malay Archipelago and Australia. (http://www.environment.gov.au/bi odiversity/abrs/online- resources/fauna/afd/taxa/Penaeus _(Melicertus)_latisulcatus) | A or P | Habitat specificity or ecological niche Trawled over hard substrates, sand, sandy mud or gravel, depths of 0–90 m, Juveniles can occupy nursery areas in shallow waters of high salinity. | A or
P | |------------------------------------|--|--|----------------------|--|----------------------|---|--------|---|-----------| | White banana prawn | Fenneropenaeu
s merguiensis | Number of ova = 19944.7xCL-441097. 100 000-450 000 | | Eggs released externally into the water column. Benthic eggs, pelagic larvae. Benthic post-larvae and juveniles. | A | Widespread. Indo-West Pacific, including northern Australian coast al waters. Persian Gulf, Thailand, Hong Kong, Philippines, Indonesia and New Caledonia. (http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/taxa/Penaeus_(Fenneropenaeus)_merguiensis) | A | Trawled over muddy substrates 10-45m. Juveniles enter shallow rivers and estuaries as part of life cycle. Juveniles prefer mangroves. Sub adults in shallow estuaries. Adults in coastal waters to about 45m. | P | | Common Name Blue legged king prawn | | P | Longevity / Natural mortality Short lived, high mortality | Р | | A or
P | Variance | Risk
prone
score | Resilience level
H | |------------------------------------|---|----------|---|---|--|-----------|--|------------------------|-----------------------| | White banana prawn | Reaches Linf in < 2 years. Male K=0.136 per week. Linf 29.4 mm CL. Female K=0.116 per week. Linf=35.3 mm CL | | M=0.2 per month | | No significant non-
fishing pressures | | Population size is probably markedly affected by rainfall. | 1 | H-I | | Common Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or
P | |--|--|--|-----------------|--|-----------------|---|--------|---|-----------| | | | bugs, squid, scallops) | | | | | | | | | Moreton Bay bug
(spotted legs/reef bug) | Thenus
australiensis | Number of
eggs=1273.2*CL -
67049 Works out to
range from ~5 000 to
45 000 eggs | P | Eggs attached externally to endopods. Eggs hatch on mother. Phyllosoma larvae are part of plankton. Larval stages last about 40 days, then settle on bottom. | Р | Northern Australian coastal waters north of Fraser Is. to about 70 m depth. This species, or very similar species may also occur through southeast Asia to India. | A | Sand bottom, sub littoral. Soft substrate sometimes with shells or gravel, depth 8 to 70 m, usually 10 to 50 m. | | | Moreton Bay bug
(mud bug) | Thenus
parindicus | Number of
eggs=658.7*CL - 26
329 Works out to
range from ~4 000 to
20 000 eggs | P | Eggs attached externally to endopods. Eggs hatch on mother. Phyllosoma larvae are part of
plankton. Larval stages last about 40 days, then settle on bottom. | Р | Widespread - 200 m bathymetric: Gulf of Carp., N coast, NE coast (http://www.environment.gov.au/bi odiversity/abrs/online-resources/fauna/afd/taxa/Thenus_i ndicus) Northern Australian coastal waters to about 40 m depth. This species, or very similar species may also occur through southeast Asia to India. | | Benthic, sub tidal. Muddy-
sand substrates.
Shallow inshore muddy
waters to a depth of about
40 m. | A | | Squid spp (Pencil,
Tiger & Arrow) | Uroteuthis
(Photololigo)
spp &
Sepioteuthis
lessoniana | A few thousand | Р | Catastrophic spawners, short
life span (< 12 months),
population likely to spawn year
round. Attached eggs, hatch at
an advanced stage | A | Widespread northern Australia | A | Demersal during day,
broad habitat use,
probably prefer structured
habitats | A | | Tropical saucer
scallop | Amusium
japonicum
balloti | These are a broadcast spawner with high fecundity | A | Broadcast spawners of eggs and sperm. External fertilization. Sexes usually separate. Eggs float. Planktonic oceanic larval stage of ~20 days. Limited or no abyssal stage. Juveniles settle on bare sand, rubble or soft sediments, unattached. | | A. balloti are distributed throughout the GBRMP, south of the Park to NSW, across Northern Australia and down to Shark Bay in Western Australia. Also present in New Caledonia. | | Juvenile and adults
generally found on sandy,
rubble or soft sediments in
depths 10 to 70 m. | A | | Asian moon (mud)
scallop | Anusium
pleuronectes | These are a broadcast spawner with high fecundity | А | Assume similar to saucer scallop | A | Widespread- tropical Indo-West
Pacific (fishbase).
(http://www.eol.org/pages/4739561
) | | Depth range 10 – 80 m | Α | | Common Name | Growth rate | A or
P | Longevity /
Natural mortality | A or
P | Cumulative pressures | A or
P | Variance | Comments | Risk
prone
score | Resilience level | |---|--|-----------|---|-----------|--|-----------|----------|--|------------------------|------------------| | Other principal species Moreton Bay bug (spotted legs/reef bug) | Male K=0.0014 | | Approach Linf in 3-6 years M=0.918 per year. | A | No significant non-
fishing pressures | A | | | 2 | H-I | | Moreton Bay bug
(mud bug) | Male K=0.0026
per day, Linf =
61.23 mm CL.
Female K=0.0023
per day and Linf =
72.44 mm CL.
Approach Linf in 3-
4 years. | | Approach Linf in 3-4 years M Probably slightly higher than T. australiensis. | A | No significant non-
fishing pressures | A | | Previously called Thenus
orientalis but that
species is restricted to
North Pacific | 2 | H-I | | Squid spp (Pencil,
Tiger & Arrow) | Rapid and
variable | Α | Few months lifespan | A | Very limited recreational fishing pressure | A | | | 1 | H-I | | Tropical saucer
scallop | Linf=104.31 and
K=2.02 per year. | A | A. balloti reaches Linf in 1-2 years. Maximum age of 3-4 years. M=0.02 per week | | No significant non-
fishing pressures | A | | | 0 | Н | | Asian moon (mud)
scallop | Assume similar to saucer scallop | A | Assume similar to saucer scallop | A | No significant non-
fishing pressures | A | | | 0 | Н | | Common Name | <u> </u> | Fecundity | A or
P or
PP | Life history strategy | | Geographic distribution | Р | Habitat specificity or ecological niche | A or | |------------------------------|------------------------|--|--------------------|---|---|--------------------------------------|---|--|------| | Threadfin bream
(Pinkies) | Family
Nemipteridae | Moderate fecundity | P | Protogynous, schooling (small groups), generation time < 15 moths | A | Western Pacific | A | Depending on species, occur on sand or mud bottoms in offshore waters, may also be found in inner bays, and feed on small crustaceans, molluscs and fishes etc | A | | Mantis shrimp | order | Fecundity likely to be moderate. Prolonged spawning season with at least two spawnings per season (Courtney et al 2007). One species found to be able to brood up to 5 clutches in 1 year. | Р | Usually spawn, brood and hatch their eggs inside their burrows. Female cares for eggs. Incubation period is temperature dependent (shorter with increased temp.) Once larvae form they enter the water column as feeding plankton for 1 to 2.5 months before entering juvenile stage of rapid growth and high instantaneous mortality (for one species, at 2.5 years). Some pair for life. Disruption to breeding pair could reduce reproductively. | Р | Widespread, and throughout
GBRWHA | Α | Benthic, and generally inhabit rock or coral crevices or in burrows in soft mud and sand substrates. Hunt at entrance to burrow, sea floor or swimming in water column. Feed on other crustaceans - mainly prawns, other mantis shrimps, and small fish. | A | | Common Name | Growth rate | | Longevity /
Natural mortality | _ | Cumulative pressures | A or
P | Variance | Comments | Risk prone score | Resilience
level | |------------------------------|---|---|--|---|----------------------|-----------|---|--|------------------|---------------------| | Threadfin bream
(Pinkies) | K= 1/0.47 or 1/1.04
Fishbase | A | (pinkies 5 yrs
Nemipterus peronii.
NW Shelf)) | A | trawl only | A | unknown | | 1 | H-I | | Mantis shrimp | Fast growth (stephensonii) Courtney et al 2007) | | High instantaneous mortality. For Erugosquilla woodmasoni 0.87 in Pitcher et al 2007. Oratosquilla stephensoni life span approximately 2.5 to 3 years (Courtney et al 2007). | A | Trawl only | | reported for Moreton Bay, and in other places decreased catch rates may result from reduced female out-of-burrow activity when incubating their eggs and disappearance from the | (2001) reported 146
species within 63 genera
inhabit Australian waters,
with 99 of these species
being reported from | 2 | H-I | | Common Name | Species Name | Fecundity | A or
P or
PP | Life history strategy | A or
P or
PP | Geographic distribution | A or | Habitat specificity or ecological niche | A or | |---------------------------------------|----------------------------|---|--------------------|---|--------------------|--|------|---|------| | Blue swimmer crab | Portunus
pelagicus | High fecundity: 2 million eggs / yr | A | Short life span, early maturing, guard eggs | A | Widespread (http://www.environment.gov. au/biodiversity/abrs/online- resources/fauna/afd/taxa/Port unus_(Portunus)_pelagicus) Sealifebase: Tropical, Atlantic Ocean and throughout Indo- West Pacific. | A | Demersal soft substrates and in shallow sandbanks and estuaries. {Burrowing, estuarine, low intertidal, sand bottom, sub tidal. Sandy to muddy substrates, common in seagrass beds (Zostera), depths to 65 m. Sealifebase:Inhabits sandy to sandy-muddy substrates in areas near reefs, mangroves, and sea grass and algal beds. Juveniles tend to occur in shallow intertidal areas (Ref. 343).} | A | | Three-spotted crab (Red-spotted crab) | Portunus
sanguinolentus | Presumed slightly lower than Portunus pelagicus given smaller maximum body size in QLD waters | A | Similar to Portunus pelagicus | A | Widespread (http://www.environment.gov. au/biodiversity/abrs/online- resources/fauna/afd/taxa/Port unus_(Portunus)_sanguinolen tus_sanguinolentus) Sealifebase: Tropical, Indo- West Pacific. | A | Benthic, sub littoral. Sand to sandy-mud
bottoms, to 40 m depth. Sealifebase: demersal; marine; depth range ? – 30 m. Occurs from the intertidal zone (especially juveniles) to depths of 30 m. Inhabits sandy to sandy- muddy substrates. Subtropical and tropical climates. | A | | Common Name | Growth rate | Р | Natural mortality | Р | pressures | | Variance | Risk prone
score | level | |---------------------------------------|---|---|---------------------------------------|---|---|---|----------|---------------------|-------| | Blue swimmer crab | Rapid, mature at 12 months (females ~ 110 mm CW) | A | Max 3 yrs, high natural mortality | | Trawl 60 out of
720t total
commercial catch -
crab (pot) fishery
both commercial
and recreational
accounts for
significant catch | Ф | | 1 | H-I | | Three-spotted crab (Red-spotted crab) | Rapid growth. Size at sexual maturity varies geographically | A | Unknown presumed similar to pelagicus | A | None known | A | | 0 | Н | | Common Name | Species Name | Fecundity | A or
P or
PP | | A or
P or
PP | Geographic distribution | A or
P | Habitat specificity or ecological niche | A or
P | |--|--|--|--------------------|--|--------------------|---|-----------|--|-----------| | Red champagne
lobster (Barking
crayfish) | Linuparus
trigonus | Brood
fecundity=0.1107*CL^2
.9241 Equates to
~20,000 eggs at CL=60
mm and 100,000 eggs
for 100 mm CL. | | Adults, sexes are separate. Eggs externally fertilise and held on endopods until hatching. Phyllosoma larvae hatch and disperse seaward for long oceanic phase prior to settling as postlarval puerulus and then juveniles. Move to shallower water as they grow and mature. | P | Indo-Pacific region, including
Japan, Taiwan, Philippines,
eastern and western
Australia. | A | Deepwater species 81 to 313 m. Trawled mainly off Townsville in depths of 100-200 m. Benthic, continental shelf, continental slope, sub littoral. Bottom sandy-mud, sometimes with shells, depth 30–414 m. Sealifebase: demersal; marine; depth range 30 – 318 m | A | | Slipper lobsters | Scyllarus
martensii,
Scyllarus demani,
Scyllarides
squammosus,
Scyllarides haanii | Unknown - little known
biological information.
Assume moderate
fecundity | Р | Adults, sexes are separate. Eggs externally fertilise and held on endopods until hatching. Phyllosoma larvae hatch and disperse seaward for long oceanic phase prior to settling as postlarval puerulus and then juveniles. | Р | Widely distributed throughout the GBR and more broadly | A | Non specific | A | | Deepwater bug
(Velvet balmain
bug) | Ibacus
alticrenatus | 2000-15000 | P | Adults, sexes are separate. Eggs externally fertilise and held on endopods until hatching. Phyllosoma larvae hatch and disperse seaward for pelagic phase prior to settling as postlarval puerulus and then juveniles. | P | Widespread southern GBRMP - (http://www.environment.gov. au/biodiversity/abrs/online- resources/fauna/afd/taxa/lbac us_alticrenatus) Sealifebase: subtropical, Indo- West Pacific: Australia and New Zealand. (Courtney et al. 2007) 118-258m | | Benthic, burrowing, continental shelf, continental slope, sand bottom, sub littoral. Digs into substrate and covers itself with mud and sand, ovigerous females from May to October, depth 20 to 686 m. Sealifebase: demersal; marine; depth range 20 – 455 m | A | | Common Name | Growth rate | Р | Longevity /
Natural mortality | Р | Cumulative pressures | | Variance | Comments | Risk prone score | Resilience
level | |--|--|---|----------------------------------|---|--|---|---|--|------------------|---------------------| | Red champagne
lobster (Barking
crayfish) | Smallest recorded in
the fishery is
59.8mm CW and
50% maturity is
reached between 80-
85mm CW
(Courtney et al
2007) | | Unknown | P | No significant non-
fishing pressures | A | | | 3 | | | Slipper lobsters | Unknown | P | Unknown | P | Unknown | A | | Family Scyllaridae, subfamily Arctinae, genus Scyllarides, species squammosus and haanii. Family Scyllaridae, subfamily Scyllarinae, genus Scyllarus, species martensii and demani | 4 | I-L | | Deepwater bug
(Velvet balmain
bug) | | A | presumed <20 | A | Trawl only | A | Ovigerous females are
found from May to
October | | 2 | H-I | | Common Name | Species Name | Fecundity | A or
P or
PP | | A or
P or
PP | Geographic distribution | A or
P | Habitat specificity or ecological niche | A or
P | |--|---------------|---|--------------------|---|--------------------|---|-----------|---|-----------| | Shovel-nosed
lobster (Honey
balmain bug) | Ibacus brucei | 2000-60000 | P | Adults, sexes are separate. Eggs externally fertilise and held on endopods until hatching. Phyllosoma larvae hatch and disperse seaward for pelagic phase prior to settling as postlarval puerulus and then juveniles. | P | Widespread southern
GBRMP: - Southern Qld,
northern NSW; Kermadec Is.,
north of New Zealand.
(http://www.environment.gov.
au/biodiversity/abrs/online-
resources/fauna/afd/taxa/lbac
us_brucei) (Courtney et al.
2007) 117 - 230m | | Benthic, continental shelf,
continental slope, soft
bottom.
demersal; marine, Soft
substrates with stones,
depth 83–559 m. | A | | Smooth bug
(Garlic balmain
bug) | Ibacus chacei | 2 000 to 30 000 (size related) | P | Adults, sexes are separate. Eggs externally fertilise and held on endopods until hatching. Phyllosoma larvae hatch and disperse seaward for pelagic phase prior to settling as postlarval puerulus and then juveniles. | Р | Widespread southern
GBRMP (Courtney et al.
2007) - 58-238m:Central east
Aust deep shelf slope
widespread
(http://www.environment.gov.
au/biodiversity/abrs/online-
resources/fauna/afd/taxa/lbac
us_chacei) | | Benthic, continental shelf,
continental slope, sub tidal.
From 22–330 m depth. | A | | Cuttlefish | Sepia spp. | Moderate fecundity, but often very abundant | P | Generally females die after a single short spawning season (multiple egg layings). Attach grape-like eggs to hard structures. Eggs hatch as juveniles and start feeding immediately and grow to reproduce in the last 1/2 to 2/3 of the life cycle. | | most widespread in Indo-
West Pacific | A | Demersal from shallow inshore waters (inc bays but not liking freshwater) to the upper continental slope (to 600 m depth), all are ambush predators on macrocrustaceans and teleosts and perhaps other cephalopods smaller than themselves. | | | Common Name
Shovel-nosed
lobster (Honey
balmain bug) | Growth rate Studies show that Ibacus spp. would require 3 months at sea in planktonic phase. | Р | Longevity /
Natural mortality
presumed <20 | | Cumulative pressures Trawl only | A or
P | Variance | Comments | Risk prone
score | Resilience
level
H-I | |---|---|---|--|---|---------------------------------|-----------|--|----------|---------------------|----------------------------| | Smooth bug
(Garlic balmain
bug) | Mature at ~2
(Haddy), NSW
2-3
yrs. Female reaches
sexual maturity at 54
mm carapace
length. Rapid
growth in first 4
years then slows.
Both sexes Lmax 4-
7 years | | > 10 yrs NSW,
presumed <20 | А | Trawl only | A | | | 2 | H-I | | Cuttlefish | Typically show fast
growth rates and live
for less than 2 years
(most prob < 1) | | high M and short life
span | A | Trawl only | | Potentially high seasonal and interannual variability in stock size, no known regional population boundaries | | 1 | H-I | | Common Name | Species Name | Fecundity | A or
P or
PP | Life history strategy | A or
P or
PP | Geographic distribution | A or
P | Habitat specificity or ecological niche | A or
P | |--------------------------------|----------------------------------|------------|--------------------|--|--------------------|---|-----------|---|-----------| | Hammer octopus | Octopus australis | Large eggs | Р | Parental care, night active on sand and mud substrates, shells or burrows during day | Р | Restricted: New South Wales:
Central E coast &
Queensland: Central E coast
(http://www.environment.gov.
au/biodiversity/abrs/online-
resources/fauna/afd/taxa/Octo
pus_australis) | | Benthic, continental shelf.
demersal; marine | Р | | Red-spot night octopus | Callistoctopus
dierythraeus | Large eggs | P | Parental care, night active with shell lairs | P | Widespread (http://www.environment.gov. au/biodiversity/abrs/online- resources/fauna/afd/taxa/Octo pus_dierythraeus) Sealifebase: Tropical, Western Central Pacific. | A | demersal; marine. Adult:
benthic, continental shelf,
nocturnal, predator.
Juvenile: benthic,
continental shelf. | P | | Scribbled night octopus | Callistoctopus
graptus | Large eggs | Р | Parental care, night active | Р | Northern Australia tropical shelf waters | Α | Benthic, continental shelf, tropical. | Α | | Plain-spot octopus | Amphioctopus
exannulatus | Small eggs | А | Broadcast spawners, intertidal mudflats to 80m+ muddy sandy and shelly substrates inc seagrass meadows | A | Widespread nth Aust inc Gulf (http://www.environment.gov. au/biodiversity/abrs/onlineresources/fauna/afd/taxa/Octo pus_exannulatus) | | Demersal interreefal
species (sand and mud
bottoms) intertidal to 80+m | A | | Veined octopus | Amphioctopus
marginatus | Small eggs | А | Broadcast spawners, mud and sand substrates | А | Widespread in the tropical
western Pacific and coastal
waters of the Indian Ocean | А | Demersal; marine | A | | Southern star-
eyed octopus | Amphioctopus cf
kagoshimensis | Small eggs | Α | Broadcast spawners, lairs in coral rubble, crepuscular | Α | Central Queensland to central NSW | Р | Intertidal to 100m+ | А | | Common Name | Growth rate | | Longevity /
Natural mortality | A or | Cumulative pressures | A or
P | Variance | Comments | Risk prone score | Resilience
level | |--------------------------------|-------------|---|----------------------------------|------|----------------------|-----------|----------|--|------------------|---------------------| | Hammer octopus | Fast growth | А | Short life span (<2
yrs) | A | None known | A | | Many octopus have a short life cycle (< 2 years); species fit into two groups, large egg layers (maternal care) or small egg layers with pelagic dispersal. They are solitary animals with different species active during daylight or at night or in crepuscular periods. | 4 | I-L | | Red-spot night octopus | Fast growth | | Short life span (<2
yrs) | A | None known | A | | | 3 | I | | Scribbled night octopus | Fast growth | | Short life span (<2 yrs) | Α | None known | А | | | 2 | H-I | | Plain-spot octopus | Fast growth | Α | Short life span (<2
yrs) | A | None known | A | | | 0 | Н | | Veined octopus | Fast growth | | Short life span (<2
yrs) | A | None known | A | | | 0 | Н | | Southern star-
eyed octopus | Fast growth | | Short life span (<2
yrs) | A | None known | A | | | 1 | H-I | | Common Name | Species Name | Per cent caught (W/O
BRD EFFECT) | | | - | Nominal catch rate trends | A or P | Discard rate | A or
P | Stock assessment adequacy | A or
P | |--------------------------|---------------------------|---|---|---|----|---|--------|-------------------------------|-----------|--|-----------| | Prawns Brown tiger prawn | Penaeus
esculentus | 7 | A | 47 | Р | Triggered in the northern region in 2008 (for one month in that year - effort low may be part of explanation) | P | Not applicable (less than 1%) | A | Currently lack stock
assessment, but work
in progress | P | | Grooved tiger
prawn | Penaus
semisulcatus | 55 | Р | 174 | PP | Not triggered | A | Not applicable (less than 1%) | А | Currently lack stock
assessment, but work
in progress | Р | | Black tiger prawn | Penaeus
monodon | Not assessed in
Seabed Biodiversity
Project, however catch
and effort are
considered to be
relatively low and there
are likely to be
substantial protected
refugia. | A | Not assessed in Seabed Biodiversity Project, however catch and effort are considered to be relatively low and there are likely to be substantial protected refugia. | | Not triggered | А | Not applicable (less than 1%) | Α | Currently lack stock
assessment, but work
in progress | Р | | Blue endeavour
prawn | Metapenaeus
endeavouri | 10 | A | 46 | Р | Triggered in the northern region in 2008 (for one month in that year - effort low may be part of explanation) | Р | Low, less than 10% | А | None for NE coast
specific, preliminary
assessment for Torres
Strait (effort issue) | Р | | | Exploitation status | A or P | Interaction
throughout life cycle | A or
P | Species specific measures | A or
P | BRD effectiveness | | Proportion this
fishery takes of total
catch in GBRWHA | A or
P | |-------------------------|--------------------------------------|--------|--------------------------------------|-----------|---|-----------|-------------------|---|--|-----------| | J | No assessment of exploitation status | Р | Target as adults | A | Range of measures in place (spatial and temporal) adequate. Juvenile stages live in shallow water. Spatial and seasonal closures and mesh selectively also to protect juvenile prawns from fishing. | | No unwanted catch | A | ECTF is only fishery taking significant amount of prawns | Р | | 3 - | No assessment of exploitation status | Р | Target as adults | Α | Range of measures in place (spatial and temporal) adequate. Juvenile stages live in shallow water. Spatial and seasonal closures and mesh selectively also to protect juvenile prawns from fishing. | | No unwanted catch | Α | ECTF is only fishery taking significant amount of prawns | Р | | | No assessment of exploitation status | Р | Target as adults | Α | Range of measures in place (spatial and temporal) adequate. Juvenile stages live in shallow water. Spatial and seasonal closures and mesh selectively also to protect juvenile prawns from fishing. | | No unwanted catch | A | ECTF is only fishery taking significant amount of prawns | P | | Blue endeavour
prawn | Not fully utilised | А | Adult stages only | A | Range of measures in place (spatial and temporal) adequate. Juvenile stages live in shallow water. Spatial and seasonal closures and mesh selectively also to protect juvenile prawns from fishing. | | No unwanted catch | А | ECTF is only fishery taking significant amount of prawns | Р | #### Appendix 3. Fishery impact profile of principal species 2005 | | | A or
P | | A or
P | Refuge availability | A or
P | Variance | Comments | Risk
prone
score | Fishery
Impact
Profile level
2005 | RISK | |-------|---|-----------|--|-----------|---|-----------|--|--|------------------------|--|------| | | Don't separate and report on
separately but fishers easily identify different species. Some monitoring at species level in some years in some areas. | Р | High demand and moderate price | Р | 38 | A | Seasonal fishery
winter to September,
not caught for 4-5
months of the year | | 7 | I | INT | | | Don't separate and report on
separately but fishers easily identify
different species. Some monitoring
at species level in some years in
some areas. | Р | High demand and moderate price | Р | 26 | A | Seasonal fishery
winter to September,
not caught for 4-5
months of the year | | 8 | I | INT | | | Separate code (brood stock) but sometimes reported in general | Р | High demand and moderate price | | Not assessed in
Seabed Biodiversity
Project, however
there are likely to be
substantial
protected refugia. | A | | | 5 | I-L | LOW | | prawn | Don't separate and report on
separately but fishers easily identify
different species. Some DEEDI Long
Term Monitoring Program monitoring
at species level to 2009 in some
areas. No marketing reason to
separate | Р | Can sell them all,
but lowest value
product among
principal prawn
species. | A | 48 | A | | Daily revenue
relatively good
despite low prices
as catch rates
usually high | 5 | I-L | LOW | | Common Name
False endeavour
prawn | Species Name
Metapenaeus
ensis | Per cent caught (W/O
BRD EFFECT)
13 | A or P
or PP
A | Per cent effort
exposed
67 | A or Por PP | Nominal catch rate trends Triggered in the northern region in 2008 (for one month in that year - effort low may be part of explanation) | A or P | Discard rate Low, less than 10% | A or
P | Stock assessment
adequacy None for NE coast
specific, preliminary
assessment for Torres
Strait (effort issue) | A or
P | |---|--|---|----------------------|--|-------------|--|--------|---------------------------------|-----------|--|-----------| | Eastern king
prawn | Melicertus
plebejus | 5
Around 990t are caught
in the GBRMP annually
(figure seemed too low
to industry reps). | | 30 | Р | Not triggered | A | Around 2% | A | There is adequate information for stock assessment (2000) and a stock assessment is currently in progress. | A | | Red spot king prawn | Penaeus
longistylus | 3 (Data provided by
Pitcher in 2011) | A | 17 | A | not triggered | A | all adults kept (i.e. < 5%) | А | none | Р | | Blue legged king
prawn | Penaeus
latisulcatus | 10 | A | 49 | P | not triggered | A | all adults kept (i.e. < 5%) | Α | none | Р | | White banana
prawn | Penaeus
merguiensis/
Fenneropenaeus
merguiensis | Around 200 t are caught in the GBRMP annually. Targeted fishing is very seasonal and overall percent caught for the species in the GBR is likely to be below 25%. | A | Targeted fishing is
very seasonal and
overall percent
effort exposed for
the species in the
GBR is likely to be
below 25%. | | Not triggered. See the stock assessment report by Tanimoto et al 2006 | A | Around 2% | A | A stock assessment
which included data
from 1988-2004 was
published in 2006. | A | | Common Name
False endeavour | Exploitation status Not fully utilised | or PP | Interaction
throughout life cycle
Adult stages only | | Species specific measures Range of measures in place (spatial | | BRD effectiveness No unwanted catch | Р | Proportion this fishery takes of total catch in GBRWHA ECTF is only fishery | A or P | |--------------------------------|---|-------|--|---|---|---|---|---|---|---------------| | prawn | | | | | and temporal) adequate. Juvenile stages live in shallow water. Spatial and seasonal closures and mesh selectively also to protect juvenile prawns from fishing. | | | | taking significant
amount of prawns | | | Eastern king
prawn | Not overfished in GBR - only adult stock. | A | Only fished at adult stages in GBR | A | Spatial and temporal closures, and gear and effort restrictions | A | Not relevant for adults caught in the GBR | A | 100% of prawns taken
by ECTF | P | | Red spot king prawn | uncertain | Р | Minimal interaction with juveniles | A | Suite of measures appropriate for this species | Α | No unwanted catch | A | ~100% | Р | | Blue legged king
prawn | uncertain | Р | Minimal interaction with juveniles | A | Suite of measures appropriate for this species | Α | No unwanted catch | A | ~98% | Р | | White banana
prawn | Sustainably fished -
Biomass was generally
found to be 50-70% of
virgin biomass.
Biomass levels fell
below 40% virgin in the
late 1990s around
Townsville and Moreton. | A | Begins to experience
fishing mortality at
>=20 mm CL | А | Suite of measures appropriate for this coastal species | A | No unwanted catch | A | ~80 of total in GBR,
60% of this is otter
trawl | P | | | Species identification problem | | Market-ability | A or
P | Refuge availability | _ | Variance | Comments | Risk
prone
score | Fishery
Impact
Profile level
2005 | RISK | |---------------------------|---|---|--|-----------|--|---|---|---|------------------------|--|------| | False endeavour
prawn | Don't separate and report on separately but fishers easily identify different species. Some DEEDI Long Term Monitoring Program monitoring at species level to 2009 in some areas. No marketing reason to separate | | Can sell them all,
but lowest value
product among
principal prawn
species. | А | 33 | A | | | 6 | I-L | LOW | | Eastern king
prawn | While this species is very similar in appearance to other prawn species, its distribution is such that it can be readily identified from other species. Reported on at species level | A | Marketability is very
high. It is a principal
target species and
the most
commercially
valuable fished
species in QLD. | Р | 46
(from Pitcher et al.
2007) | A | There is one stock of this species on the east coast of Australia. The complementary ecological risk assessment project is considering the full stock, for which the fishery impact profile may vary. | It is likely to occur
in locations where
it cannot be
trawled. | 3 | L | LOW | | Red spot king
prawn | Easily identified by fishers but fishery data not generally reported at species level. | Р | High | Р | 62 | А | | | 5 | I-L | LOW | | Blue legged king
prawn | Easily identified by fishers but fishery data not generally reported at species level. | Р | High | Р | 41 | Α | | | 6 | I-L | LOW | | White banana
prawn | Readily identifiable. Reported commercial landings are unlikely to be confused with other prawn species. | A | Second lowest value - endeavours are lower | A | It is likely to occur in locations where it cannot be trawled. | A | | | 1 | L | LOW | Appendix 3. Fishery impact profile of principal species 2005 | Common Name
Other principal s | | Per cent caught (W/O
BRD EFFECT)
Bay bugs, squid, scallo | or PP | Per cent effort exposed | | Nominal catch rate trends | A or P | Discard rate | A or
P | Stock assessment adequacy | A or
P | |---|----------------------|--|-------|-------------------------|----|---|--------|--|-----------|--|-----------| | Moreton Bay bug
(spotted legs/reef
bug) | | 7 (Data provided by Pitcher in 2011).
Around 300 t are caught in the GBRMP annually. | A | 23 | А | Reef bugs are a principal species in QLD. In most cases, they are not targeted, but are commercially important by-product. They are targeted in some areas. PMS not triggered | A | Discard rate of sub-
legal size classes is
likely to vary
seasonally and is
likely to be high
when small recruits
enter the fished
population. Discard
rates used to be high
when egg-bearing
females were
prohibited (< 2009).
Now egg-bearing
females can be
retained and
marketed. | A | There has not been a stock assessment undertaken on Moreton Bay bugs in QLD. Per-recruit analyses have been undertaken and used to provide advice on minimum legal size. | P | | Moreton Bay bug
(mud bug) | Thenus
parindicus | 28 Around 100-200 t are caught in the GBRMP annually. | Р | 57 | PP | Mud bugs are a principal species in QLD. They are generally not targeted, but rather are a by-product of trawling for tiger and endeavour prawns. PMS not triggered | A | Under size (< 75 mm
CW) are discarded,
but probably have
high post-release
survival. The BRDs
used by fishers
probably have little
effect in mud bug
catch rates. | A | There has not been a stock assessment undertaken on Moreton Bay bugs in QLD. Per-recruit analyses have been undertaken and used to provide advice on size limits. | P | Appendix 3. Fishery impact profile of principal species 2005 | Common Name | Exploitation status | - | | A or
P | Species specific measures | A or
P | BRD effectiveness | | Proportion this
fishery takes of total
catch in GBRWHA | A or
P | |------------------------------|---|---|---|-----------|---|-----------|--|---|--|-----------| | | Uncertain status. Value per recruit analysis suggests that Thenus australiensis is likely to be growth overfished at a minimum legal size of 75 mm CW. Recruitment overfishing is unlikely if a high proportion of biomass is in area closed to trawling. | | Sub-adults first recruit to the fishery at about 40 mm CL. Fished from around 40-85 mm CL (equates to around 60-120 mm CW). | A | The main form of direct management is via a minimum legal size of 75 mm CW. Benthic mapping project concluded a high proportion of biomass in areas closed to trawling. | A | 100 mm square mesh codends (i.e. 50 mm x 50 mm) were shown to be highly effective in the scallop fishery at excluding sub-legal reef bugs. If these devices are made mandatory then they will significantly reduce incidental catch rates and mortality. | Р | 100% | P | | Moreton Bay bug
(mud bug) | Uncertain status. Value per recruit analysis suggests that the current minimum legal size of 75 mm CW results in maximising value for this species. Recruitment overfishing is unlikely if a high proportion of biomass is in area closed to trawling. | | Sub-adults first recruit to the fishery at about 35 mm CL. Fished from around 40-70 mm CL (equates to 60-100 mm CW). | A | Main management measure is via a minimum legal size of 75 mm CW. Benthic mapping project concluded a significant proportion of biomass in areas closed to trawling. | A | Its unlikely that the BRDs currently used by trawler operators significantly lower the catch rates of sub-legal mud bugs | Р | 100% | P | #### Appendix 3. Fishery impact profile of principal species 2005 | Common Name | Species identification problem | A or
P | Market-ability | A or
P | Refuge availability | A or
P | Variance | Risk
prone
score | Fishery
Impact
Profile level
2005 | RISK | |---------------------------------------|--|-----------|--|-----------|---------------------|-----------|----------|------------------------|--|----------| | Moreton Bay bug
(spotted legs/reef | This species is not directly differentiated by fishers or others from similar species, such as the mud bug, Thenus parindicus. | | Marketability is very high. High value species of the QLD trawl fishery. | P | 54 | A | | 6 | I-L | LOW | | (mud bug) | This species is not directly differentiated by fishers or others from similar species, such as the reef bug, Thenus australiensis. | | Marketability is very high. High value species of the QLD trawl fishery. | Р | 45 | Α | | 9 | H-I | INT-HIGH | | Common Name
Squid spp
(Pencil, Tiger &
Arrow) | Species Name Uroteuthis (Photololigo) spp & Sepioteuthis lessoniana | Extremely low | A or P
or PP
A | Per cent effort exposed Less than 10% | A or P
or PP
A | Nominal catch rate trends Not generally targeted (demersal during day, pelagic at night). PMS uncertain because of highly variable catch rates not providing a consistent trend. | A or P | Discard rate Low: no intentional discard or required discard such as for a minimum legal size | P | Stock assessment adequacy Moderate: biological information adequacy | A or P | |--|---|--|----------------------|---------------------------------------|----------------------|---|----------------------|--|----------|---|--------| | Tropical saucer scallop | Amusium
japonicum balloti | Approximately 4000-8000 t (total body weight) are caught in the GBRMP annually. This equates to around 600-1300 t of scallop meat weight annually. | A | 45 | Р | A. balloti is a principal species of the QLD trawl fishery. There is a specific fishery for it. CPUE is used regularly as an index of abundance. PMS not triggered | А | Relatively high rates of discarding occur. These can be affected by varying minimum legal sizes. Square mesh can be used to significantly reduce discarding, if square meshes of appropriate mesh size are made mandatory. | Р | There have been two quantitative stock assessments undertaken on the QLD scallop fishery over the last 10 years. Currently biological reference points are being derived for the fishery. | A | | Asian moon
(mud) scallop | Anusium
pleuronectes | 38 | P | 52 | PP | No trigger for this
species rather a
combined scallop
measure which was not
triggered | A | Relatively low
discarding of
scallops below
marketable size as
valuable product and
no minimum size for
this principal
species. | A | There are no known or current stock assessments on this species in this fishery. | P | | Common Name | Exploitation status | A or P | Interaction
throughout life cycle | A or
P | Species specific measures | A or
P | BRD effectiveness | A or
P | Proportion this fishery takes of total catch in GBRWHA | A or
P | |---|---|--------|--|-----------|--|-----------|--|-----------|--|-----------| | Squid spp
(Pencil, Tiger &
Arrow) | Uncertain | Р | Adult and potentially demersal egg capsules although no direct evidence of egg beds and spawning aggregations within the area of the ECTF for pencil squid but there is some evidence of egg beds for Tiger Squid adjacent to the trawl grounds. | | No species specific measures but none required at this stage | Α | Not applicable as all sizes
and species permitted to
be retained | Α | 99% | P | | Tropical saucer scallop | FRDC 99/120 indicated
the stock was
overfished. Since
then,
effort has declined. No
further assessment of
stock status has
currently been
completed or published | P | Size classes caught in trawl nets in QLD range from about 45 mm SH to 125 mm SH. Use of square mesh codends will significantly lower catches of sub-legal size classes. | Р | Large trawl mesh size (>3 inches). Scallop replenishment areas. minimum legal size = 90 mm SH all year round and annual seasonal closure | Α | Large (> 3 inch) diamond
mesh for use in this fishery
reduces by catch of
undersized scallop, could
be further reduced through
the use of SMC BRD's | А | The QLD scallop trawl fishery catches almost 100% of QLD scallops. There are some catches off Townsville and south of the GBRMP. | | | Asian moon
(mud) scallop | Uncertain | Р | Small and large scallops are interacted with by trawl gear much the same as with A. Balloti - by being retained in the gear and also be contact without capture. | | Limited, this species often taken as by-
product in prawn trawl gear. General
fishery measures afford appropriate
levels of protection to ensure
sustainability. | A | Current BRD's not suitable for the exclusion of scallops below marketable size particularly if taken using prawn nets. | P | 100% | P | | Squid spp | Species identification problem Yes identification issues do exist, but all species have similar life histories | Market-ability
High | A or
P | Refuge availability >70% | Α | Comments Potentially spawn near structure (e.g. coral reefs, garden bottom); major commercial species are not typically found in muddy areas | Risk
prone
score
4 | | RISK
LOW | |-----------------------------|--|--|-----------|--------------------------|---|---|-----------------------------|-----|-------------| | Tropical saucer scallop | This species is similar in appearance to Amusium pleuronectes | Marketability is very high. It is a principal target species and valuable fished species in QLD. | Р | 45 | Α | where prawn trawling principally occurs. | 7 | I | INT | | Asian moon
(mud) scallop | This species is similar in appearance to Amusium balloti | Marketability is very high. It is a principal target species and valuable fished species in QLD. | Р | cf 40 | Α | | 10 | H-I | INT-HIGH | | | 1 | F | | I | 1 | I | I | | | I | 1 | |-------------------------|---------------------------|---|--------|---|--------|---|---|-------------------------------|--------|--|--------| | | | | | | | | | | | | | | | | Per cent caught (W/O | A or P | Per cent effort | A or P | Nominal catch rate | | | | Stock assessment | | | Common Name | | | | exposed 2009 | - | trends | | Discard rate | A or P | adequacy | A or P | | Prawns | Topocioo itaiiio | 12.12 2 20.7 | | John Document | 10 | 10.01.00 | | | | | 11.0 | | Brown tiger
prawn | Penaeus
esculentus | 3 | А | 19 | | Triggered in the northern region in 2008 (for one month in that year - effort low may be part of explanation) | P | Not applicable (less than 1%) | A | Currently lack stock
assessment, but work
in progress | Р | | Grooved tiger prawn | Penaus
semisulcatus | 20 | A | 63 | PP | Not triggered | A | Not applicable (less than 1%) | A | Currently lack stock
assessment, but work
in progress | P | | Black tiger
prawn | Penaeus
monodon | Not assessed in
Seabed Biodiversity
Project, however catch
and effort are
considered to be
relatively low and there
are likely to be
substantial protected
refugia. | | Not assessed in
Seabed Biodiversity
Project, however
catch and effort are
considered to be
relatively low and
there are likely to be
substantial protected
refugia. | A | Not triggered | A | Not applicable (less than 1%) | A | Currently lack stock
assessment, but work
in progress | Р | | Blue endeavour
prawn | Metapenaeus
endeavouri | 4 | A | 18 | | Triggered in the northern region in 2008 (for one month in that year - effort low may be part of explanation) | P | Low, less than 10% | A | None for NE coast
specific, preliminary
assessment for Torres
Strait (effort issue) | P | | Common Name
Prawns | Exploitation status | A or P | Interaction throughout life cycle | A or P | Species specific measures | A or P | BRD effectiveness | A or P | Proportion this
fishery takes of
total catch in
GBRWHA | A or P | |-------------------------|--------------------------------------|--------|-----------------------------------|--------|---|--------|-------------------|--------|---|--------| | Brown tiger
prawn | No assessment of exploitation status | Р | Target as adults | A | Range of measures in place (spatial and temporal) adequate. Juvenile stages live in shallow water. Spatial and seasonal closures and mesh selectively also to protect juvenile prawns from fishing. | A | No unwanted catch | A | ECTF is only
fishery taking
significant amount
of prawns | Р | | Grooved tiger
prawn | No assessment of exploitation status | Р | Target as adults | A | Range of measures in place (spatial and temporal) adequate. Juvenile stages live in shallow water. Spatial and seasonal closures and mesh selectively also to protect juvenile prawns from fishing. | А | No unwanted catch | A | ECTF is only
fishery taking
significant amount
of prawns | Р | | Black tiger
prawn | No assessment of exploitation status | P | Target as adults | A | Range of measures in place (spatial and temporal) adequate. Juvenile stages live in shallow water. Spatial and seasonal closures and mesh selectively also to protect juvenile prawns from fishing. | | No unwanted catch | A | ECTF is only
fishery taking
significant amount
of prawns | Р | | Blue endeavour
prawn | Not fully utilised | А | Adult stages only | A | Range of measures in place (spatial and temporal) adequate. Juvenile stages live in shallow water. Spatial and seasonal closures and mesh selectively also to protect juvenile prawns from fishing. | | No unwanted catch | A | ECTF is only
fishery taking
significant amount
of prawns | Р | | Common Name | Species level data | A or P | Marketability | | Refuge
availability | A or P | Variance | Comments | Risk
prone
score | Fishery
Impact
Profile level
2009 | RISK | |-------------------------|--|--------|---|---|--|--------|--|--|------------------------|--|------| | Brown tiger
prawn | Don't separate and report on separately but fishers easily identify different species. Some monitoring at species level in some years in some areas. | P | High demand and moderate price | P | 38 | A | Seasonal fishery winter
to September, not
caught for 4-5 months of
the year | | 6 | I-L | LOW | | Grooved tiger prawn | Don't separate and report on separately but fishers easily identify different species. Some monitoring at species level in some years in some areas. | Р | High demand and moderate price | Р | 26 | A | Seasonal fishery winter
to September, not
caught for 4-5 months of
the year | | 7 | I | INT | | Black tiger
prawn | Separate code (broodstock)
but sometimes reported in
general | P | High demand and moderate price | | Not assessed in
Seabed
Biodiversity
Project, however
there are likely to
be substantial
protected refugia. | A | | | 5 | I-L | LOW | | Blue endeavour
prawn | Don't separate and report on
separately but fishers easily
identify different species.
Some DEEDI Long Term
Monitoring Program
monitoring at species level to
2009 in some areas. No
marketing reason to separate | Р | Can sell them all, but
lowest value product
among principal
prawn species. | А | 48 | A | | Daily revenue
relatively good
despite low prices
as catch rates
usually high | 4 | L | LOW | | Common Name
False endeavour
prawn | Species Name
Metapenaeus
ensis | Per cent caught (W/O
BRD EFFECT)
6 | | | or PP | Nominal catch rate trends Triggered in the northern region in 2008 (for one month in that year - effort low may be part of explanation) | A or P | Discard rate Low, less than 10% | A or P | Stock
assessment
adequacy
None for NE coast
specific, preliminary
assessment for Torres
Strait (effort issue) | A or P | |---|---|---|---|--|-------|---|--------|---------------------------------|--------|--|--------| | Eastern king
prawn | Melicertus
plebejus | 3 | A | 18 | A | Not triggered | A | Around 2% | A | There is adequate information for stock assessment (2000) and a stock assessment is currently in progress. | A | | Red spot king
prawn | Penaeus
Iongistylus | 2 | A | 8 | А | not triggered | A | all adults kept (i.e. < 5%) | A | none | Р | | Blue legged king
prawn | Penaeus
latisulcatus | 5 | A | 25 | А | not triggered | A | all adults kept (i.e. < 5%) | A | none | Р | | White banana
prawn | Penaeus
merguiensis/
Fenneropenaeu
s merguiensis | Around 200 t are caught in the GBRMP annually. Targeted fishing is very seasonal and overall percent caught for the species in the GBR is likely to be below 25%. | | Targeted fishing is
very seasonal and
overall percent effort
exposed for the
species in the GBR
is likely to be below
25%. | | Not triggered. See
the stock
assessment report
by Tanimoto et al
2006 | A | Around 2% | А | A stock assessment
which included data
from 1988-2004 was
published in 2006. | A | | Common Name
False endeavour
prawn | Exploitation status Not fully utilised | or PP | Interaction throughout life cycle Adult stages only | A | Species specific measures Range of measures in place (spatial and temporal) adequate. Juvenile stages live in shallow water. Spatial and seasonal closures and mesh selectively also to protect juvenile prawns from fishing. | Α | BRD effectiveness No unwanted catch | | Proportion this fishery takes of total catch in GBRWHA ECTF is only fishery taking significant amount of prawns | A or P | |---|--|-------|--|---|---|---|---|---|---|--------| | Eastern king
prawn | Not overfished in GBR - only adult stock. | A | Only fished at adult stages in GBR | A | Spatial and temporal closures, and gear and effort restrictions | A | Not relevant for adults caught in the GBR | A | 100% of prawns taken by ECTF | P | | Red spot king prawn | uncertain | Р | Minimal interaction with juveniles | A | Suite of measures appropriate for this species | A | No unwanted catch | A | ~100% | Р | | Blue legged king
prawn | uncertain | Р | Minimal interaction with juveniles | A | Suite of measures appropriate for this species | А | No unwanted catch | A | ~98% | P | | White banana
prawn | Sustainably fished -
Biomass was generally
found to be 50-70% of virgin
biomass. Biomass levels
fell below 40% virgin in the
late 1990s around
Townsville and Moreton. | A | Begins to experience fishing mortality at >=20 mm CL | A | Suite of measures appropriate for this coastal species | A | No unwanted catch | A | ~80 of total in
GBR, 60% of this
is otter trawl | Р | | | Species level data Don't separate and report on separately but fishers easily identify different species. | A or P | Marketability Can sell them all, but lowest value product among principal | A or P | Refuge
availability
33 | A or P | Variance | Comments | Risk
prone
score | Fishery
Impact
Profile level
2009 | RISK
LOW | |---------------------------|--|--------|--|--------|---|--------|---|---|------------------------|--|-------------| | | Some DEEDI Long Term
Monitoring Program
monitoring at species level to
2009 in some areas. No
marketing reason to separate | | prawn species. | | | | | | | | | | Eastern king
prawn | While this species is very similar in appearance to other prawn species, its distribution is such that it can be readily identified from other species. Reported on at species level | А | Marketability is very high. It is a principal target species and the most commercially valuable fished species in QLD. | Р | 46 (from Pitcher
et al. 2007) | | There is one stock of this species on the east coast of Australia. The complementary ecological risk assessment project is considering the full stock, for which the fishery impact profile may vary. | It is likely to occur
in locations
where it cannot
be trawled. | 2 | L | LOW | | Red spot king
prawn | Easily identified by fishers but fishery data not generally reported at species level. | Р | High | Р | 62 | A | | | 5 | I-L | LOW | | Blue legged king
prawn | Easily identified by fishers but fishery data not generally reported at species level. | Р | High | Р | 41 | A | | | 5 | I-L | LOW | | White banana
prawn | Readily identifiable. Reported commercial landings are unlikely to be confused with other prawn species. | А | Second lowest value -
endeavours are lower | А | It is likely to occur
in locations where
it cannot be
trawled. | A | | | 1 | L | LOW | | Common Name | Species Name | Per cent caught (W/O
BRD EFFECT)
n Bay bugs, squid, scal | or PP | | - | Nominal catch rate trends | A or P | Discard rate | A or P | Stock assessment adequacy | A or P | |---|-------------------------|--|-------|----|---|---|--------|--|--------|--|--------| | Moreton Bay
bug (spotted
legs/reef bug) | Thenus
australiensis | 4 | A | 13 | | Reef bugs are a principal species in QLD. In most cases, they are not targeted, but are commercially important by-product. They are targeted in some areas. PMS not triggered | A | Discard rate of sub-legal size classes is likely to vary seasonally and is likely to be high when small recruits enter the fished population. Discard rates used to be high when egg-bearing females were prohibited (< 2009). Now egg-bearing females can be retained and marketed. | A | There has not been a stock assessment undertaken on Moreton Bay bugs in QLD. Per-recruit analyses have been undertaken and used to provide advice on minimum legal size. | P | | Moreton Bay
bug (mud bug) | Thenus
parindicus | 10 | A | 21 | | Mud bugs are a principal species in QLD. They are generally not targeted, but rather are a by-product of trawling for tiger and endeavour prawns. PMS not triggered | | Under size (< 75 mm CW) are discarded, but probably have high post-release survival. The BRDs used by fishers probably have little effect in mud bug catch rates. | A | There has not been a stock assessment undertaken on Moreton Bay bugs in QLD. Per-recruit analyses have been undertaken and used to provide advice on size limits. | Р | | Common Name | Exploitation status | A or P
or PP | Interaction throughout life cycle | A or P | Species specific measures | A or P | BRD effectiveness | | Proportion this
fishery takes of
total catch in
GBRWHA | A or P | |---|---|-----------------|---|--------
---|--------|--|---|---|--------| | Moreton Bay
bug (spotted
legs/reef bug) | Uncertain status. Value per recruit analysis suggests that Thenus australiensis is likely to be growth overfished at a minimum legal size of 75 mm CW. Recruitment overfishing is unlikely if a high proportion of biomass is in area closed to trawling. | Р | Sub-adults first recruit to the fishery at about 40 mm CL. Fished from around 40-85 mm CL (equates to around 60-120 mm CW). | | The main form of direct management is via a minimum legal size of 75 mm CW. Benthic mapping project concluded a high proportion of biomass in areas closed to trawling. | A | 100 mm square mesh codends (i.e. 50 mm x 50 mm) were shown to be highly effective in the scallop fishery at excluding sub-legal reef bugs. If these devices are made mandatory then they will significantly reduce incidental catch rates and mortality. | Р | 100% | P | | Moreton Bay
bug (mud bug) | Uncertain status. Value per recruit analysis suggests that the current minimum legal size of 75 mm CW results in maximising value for this species. Recruitment overfishing is unlikely if a high proportion of biomass is in area closed to trawling. | | Sub-adults first recruit to the fishery at about 35 mm CL. Fished from around 40-70 mm CL (equates to 60-100 mm CW). | | Main management measure is via a minimum legal size of 75 mm CW. Benthic mapping project concluded a significant proportion of biomass in areas closed to trawling. | | Its unlikely that the
BRDs currently used by
trawler operators
significantly lower the
catch rates of sub-legal
mud bugs | Р | 100% | Р | ## Appendix 4. Fishery impact profile of principal species 2009 | | | A or P | Marketability | | Refuge
availability | A or P | Variance | Risk
prone
score | Fishery
Impact
Profile level
2009 | RISK | |------------------------------|--|--------|---|---|------------------------|--------|----------|------------------------|--|------| | Other principal | This species is not directly differentiated by fishers or others from similar species, such as the mud bug, Thenus parindicus. | | Marketability is very
high. High value
species of the QLD
trawl fishery. | P | 54 | A | | 6 | I-L | LOW | | Moreton Bay
bug (mud bug) | This species is not directly differentiated by fishers or others from similar species, such as the reef bug, Thenus australiensis. | | Marketability is very
high. High value
species of the QLD
trawl fishery. | P | 45 | A | | 6 | I-L | LOW | | Common Name | Species Name | | | exposed 2009 | or PP | Nominal catch rate trends | A or P | Discard rate | A or P | Stock assessment adequacy | A or P | |---|---|---------------|---|---------------|-------|--|--------|--|--------|---|--------| | Squid spp
(Pencil, Tiger &
Arrow) | Uroteuthis
(Photololigo)
spp &
Sepiotheuthis
lessoniana | Extremely low | A | Less than 10% | | Not generally targeted (demersal during day, pelagic at night). PMS uncertain because of highly variable catch rates not providing a consistent trend. | A | Low: no intentional discard
or required discard such as
for a minimum legal size | A | Moderate: biological information adequacy | P | | Tropical saucer
scallop | Amusium
japonicum
balloti | 10 | A | 25 | | A. balloti is a principal species of the QLD trawl fishery. There is a specific fishery for it. CPUE is used regularly as an index of abundance. PMS not triggered | A | Relatively high rates of discarding occur. These can be affected by varying minimum legal sizes. Square mesh can be used to significantly reduce discarding, if square meshes of appropriate mesh size are made mandatory. | Р | There have been two quantitative stock assessments undertaken on the QLD scallop fishery over the last 10 years. Currently biological reference points are being derived for the fishery. | A | | Asian moon
(mud) scallop | Anusium
pleuronectes | 15 | A | 20 | | No trigger for this
species rather a
combined scallop
measure which was
not triggered | А | Relatively low discarding of
scallops below marketable
size as valuable product
and no minimum size for
this principal species. | A | There are no known or current stock assessments on this species in this fishery. | Р | | Common Name | Exploitation status | | Interaction throughout life cycle | A or P | Species specific measures | A or P | BRD effectiveness | A or P | Proportion this
fishery takes of
total catch in
GBRWHA | A or P | |---|--|---|--|--------|---|--------|---|--------|--|--------| | Squid spp
(Pencil, Tiger &
Arrow) | Uncertain | Р | Adult and potentially demersal egg capsules although no direct evidence of egg beds and spawning aggregations within the area of the ECTF for pencil squid but there is some evidence of egg beds for Tiger Squid adjacent to the trawl grounds. | | No species specific measures
but none required at this
stage | A | Not applicable as all sizes and species permitted to be retained | A | 99% | P | | scallop | FRDC 99/120 indicated the stock was overfished. Since then, effort has declined. No further assessment of stock status has currently been completed or published | P | Size classes caught in trawl nets in QLD range from about 45 mm SH to 125 mm SH. Use of square mesh codends will significantly lower catches of sub-legal size classes. | P | Large trawl mesh size (>3 inches). Scallop replenishment areas. minimum legal size = 90 mm SH all year round and annual seasonal closure | A | Large (> 3 inch) diamond mesh for use in this fishery reduces by catch of undersized scallop, could be further reduced through the use of SMC BRD's | A | The QLD scallop
trawl fishery
catches almost
100% of QLD
scallops. There
are some catches
off Townsville and
south of the
GBRMP. | P | | Asian moon
(mud) scallop | Uncertain | Р | Small and large scallops are interacted with by trawl gear much the same as with A. Balloti - by being retained in the gear and also be contact without capture. | Р | Limited, this species often taken as by-product in prawn trawl gear. General fishery measures afford appropriate levels of protection to ensure sustainability. | A | Current BRD's not
suitable for the
exclusion of scallops
below marketable size
particularly if taken
using prawn nets. | Р | 100% | Р | | Common Name | Species level data | A or P | Marketability | | Refuge
availability | A or P | Variance | | Risk
prone | Fishery
Impact
Profile level
2009 | RISK | |---|---|--------|--|---|------------------------|--------|--|--|---------------|--|------| | Squid spp
(Pencil, Tiger &
Arrow) | Yes identification issues do exist, but all species have similar life histories | | High | Р | >70% | Α | High seasonally and potentially annually | Potentially spawn near structure (e.g. coral reefs, garden bottom); major commercial species are not typically found in muddy areas where prawn trawling principally occurs. | 4 | L | LOW | | Tropical saucer scallop | This species is similar in appearance to Amusium pleuronectes | | Marketability is very
high. It is a principal
target species and
valuable
fished
species in QLD. | Р | 45 | A | | | 6 | I-L | LOW | | Asian moon
(mud) scallop | This species is similar in appearance to Amusium balloti | P | Marketability is very
high. It is a principal
target species and
valuable fished
species in QLD. | Р | cf 40 | A | | | 7 | I | INT | | Common Name | Species Name | | | Per cent effort exposed 2005 | | Can it be targeted/is it truly incidental catch? | A or
P | Discard rate | A or | Biological
information
adequacy | A or | |------------------------------|---|--|---|---|---|---|-----------|-------------------|------|---|------| | Threadfin bream
(Pinkies) | Family
Nemipteridae | 22-54 % caught (Pitcher et al
2007) | Р | 14-54 % effort exposed
(Pitcher et al 2007) | Р | Incidental | Α | High but variable | Р | Moderate (some info for some species but not all that are caught) Courtney et al permitted spp FRDC | P | | Mantis shrimp | Family Squillidae,
order Stomatopoda | 3-12 % caught (Pitcher et al 2007, 2011 data) Total reported annual landings of mantis shrimps from 2000 to 2005 were 2425, 651, 723, 1369, 1251 and 654 kg, respectively, with the great majority of the catch (i.e., 96%) reported from Moreton Bay (Courtney et al 2007). | | 29-65% effort exposed
(Pitcher et al 2007, 2011
data) | P | No incidental only | A | Probably high | P | Inadequate | P | | Blue swimmer crab | Portunus pelagicus | 8 | А | 40 | Р | Yes they can be targeted
by trawl however in
possession limits restrict
this activity. In the GBR
its truly incidental catch. | Α | ~ 50% | P | High | A | | Threadfin bream | Exploitation status No assessment made | A or P
or PP | _ | Р | Species specific
measures
No but general | A or
P | BRD effectiveness Unlikely to be | A or
P | Proportion this
fishery takes of
total catch in
GBRWHA
Probably close to | Р | Species identification problem Not reported by species, | A or
P | |-------------------|--|-----------------|---|---|--|-----------|----------------------------------|-----------|--|---|---|-----------| | (Pinkies) | | | | | management measures
considered adequate
(BRDs, demersal prawn
trawl nets) | | effective | | 100% | | although can be readily identified (there is some biological data at the species level, but not fishery catch by species) | | | Mantis shrimp | No assessment made | P | Unknown, but likely most life stages interact since eggs are reared in burrows. Interactions with juveniles reported (Courtney et al 2007) | P | None but infrequently captured | P | Unlikely to be effective | Р | 100% | Р | No data recorded at the species level | P | | Blue swimmer crab | Sustainably fished
(BSC FISHERY) | А | Sub adults - adults: anecdotal evidence from fishery independent trawl surveys indicates a prevalence of smaller BSc in northern waters compared with the same information from the southern GBR. | A | Yes, size limits 11.5 cm
CW, catch limits (500 per
7 nights) | Α | Being updated | Р | Low | Α | No | A | Appendix 5. Fishery impact profile for other permitted species 2005 | Common Name | Marketability | A or
P | Refuge availability in
GBRMP | A or
P | Variance | Comments | Risk
prone
score
2005 | Fishery
Impact
Profile level
2005 | RISK
2005 | |---------------------------|--|-----------|---|-----------|---|--|--------------------------------|--|--------------| | Threadfin bream (Pinkies) | Low | A | 36-65 % protected
(Pitcher et al 2007) | A | | | 9 | H-I | INT-
HIGH | | Mantis shrimp | Low. In 2000 the total reported catch of mantis shrimp was three tonnes with an estimated value of A\$9000. | A | 34-52 (Pitcher et al 2007) | | While significant catches of mantis shrimp are caught incidentally throughout the East Coast Trawl Fishery (see Appendices in Courtney et al 2007 listing by catch by sector), their retention and marketing are largely limited to the Moreton Bay fleet, probably for socio-economic reasons. | PMS triggered with harvest being 10% less in 2008 than the lowest annual harvest from 2001 -2006. Because they are incidentally harvested total catch is not indicative of biomass. (DEEDI 2009) | 9 | H-I | INT-
HIGH | | Blue swimmer crab | Relatively low value per kilo for other trawl caught species. General perception is trawl caught BSC is poorer quality than pot caught crab - moderate or low marketability. | | 40 | A | | PMS triggered with harvest being 10% less in 2008 than the lowest annual harvest from 2001 -2006. Because they are incidentally harvested total catch is not indicative of biomass. (DEEDI 2009) | 3 | L | LOW | | Common Name Three-spotted crab (Red-spotted crab) | | Per cent caught 2005
(excluding BRD effect)
7 | A or P
or PP
A | | A or P
or PP
P | • | | Discard rate
High | A or
P | Biological
information
adequacy
High | A or P | |---|--|--|----------------------|--|----------------------|---|---|--|-----------|---|--------| | Red champagne
lobster (Barking
crayfish) | Linuparus trigonus | Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be relatively low. Relatively few boats target the species, and red champagne lobster not in habitats where prawns are found. | A | Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be relatively low. Relatively few boats target the species, and red champagne lobster not in habitats where prawns are found. | A | Linuparus trigonus is a permitted species in the QLD trawl fishery. Legally, it is not permitted to be 'targeted', but before it was declared as a permitted species it was targeted. Since becoming a permitted species, logbook data suggest that it is no longer targeted and the reported catches indicate that the fishery for this species has declined markedly. | | Discarding for this species is likely to be very low, because the smaller size classes are likely to be further offshore, in greater depths than the marketed larger/adults. | A | Poor although some reproductive and life history information is available, however information on growth and mortality rates is limited. No stock assessment has been undertaken for L. trigonus, and it is likely that none will ever be undertaken. | | | Slipper lobsters | Scyllarus
martensii,
Scyllarus demani,
Scyllarides
squammosus,
Scyllarides haanii | 3-5% caught (Pitcher et al 2007) | A | 29-32 % effort
exposed
(Pitcher et al 2007) | Р | Incidental, tends to be reef associated | A | Low | A | Very limited | P | | Common Name Three-spotted crab (Red-spotted crab) | Exploitation status No assessment made | A or P
or PP
P | Interaction throughout
life cycle
Sub adults and adults | A or
P | Species specific measures None - current mean size of captured crabs is below the optimum identified through yield per recruit analysis, although as they are incidentally captured in the trawl fishery it is not thought specific measures are required. | A oi
P | BRD effectiveness Being updated | Р | Proportion this
fishery takes of
total catch in
GBRWHA
High | Р | Species identification problem | A or
P | |---|--|----------------------|--|-----------|---|-----------|--|---|---|---|---|-----------| | Red champagne
lobster (Barking
crayfish) | No assessment made. | P | Size classes caught are from 30-125 mm CL. Females appear to dominate the smaller size classes 30-95 mm CL, while males dominate from 95-125 mm CL. Samples suggest small/younger age classes are in deeper waters, and that they move towards the coast as the grow and mature. | P | Egg bearing females
prohibited. Minimum
legal size of 75mm CL | A | The BRDs used by the fleet probably have no effect on this species and are not effective at excluding animals below the minimum legal size | P | The trawl fishery takes 100% of the catch for this species in the GBRWHA. | P | The taxonomy for this species is clear and straight forward. The likelihood of confusing it with other species is very low. | A | | Slipper lobsters | No assessment made | Р | Unknown | Р | Yes; prohibition on egg
bearing females and in
possession limit of 20 per
7 days fishing | A | Presumed to be not very effective but captured in such low numbers and frequency that testing the BRD effect is extremely difficult. | P | 100% | P | The species can be identified however catch data is reported as a slipper lobster species group. | P | | | Marketability | Р | Refuge availability in
GBRMP | | Variance | | Risk
prone
score
2005 | Fishery
Impact
Profile level
2005 | RISK
2005 | |--|--|---|--|---|----------|---|--------------------------------|--|--------------| | Three-spotted crab (Red-spotted crab) | Low | A | 35 | A | | PMS triggered with harvest being 10% less in 2008 than the lowest annual harvest from 2001 -2006. Because they are incidentally harvested total catch is not indicative of biomass. (DEEDI 2009) | 5 | I-L | LOW | | Red champagne
lobster (Barking
crayfish) | Marketability for this species is very good. Matbe some marketing problems associated with removing its long antennae. | P | Largely outside the depth range studied by the Seabed Biodiversity Project, and per cent protected has not been formally estimated, however it is likely that substantial protected refugia exist. | A | | Logbook reports between 10-100 t annually. Trawled in rel deep water and far from the coast. Declaring as a permitted species, which cannot be targeted, has probably reduced level of trawl fishing effort on populations in QLD. Targeting is illegal, although it is unclear how targeting is defined and legally pursued. This has probably deterred some fishers from trawling for it. Likely to have large and significant untrawled refuge areas | 7 | I | INT | | Slipper lobsters | High | Р | 45-50% protection
(Pitcher et al 2007) | А | | 2009 reported commercial catch of Slipper lobsters in the whole ECTF was 4kg (data quality unknown). It was only recently added to the list in 2009 along with the corresponding amendment to logbook reporting instructions for the reporting of slipper lobster catch. | 8 | ı | INT | | Common Name Deepwater bug (Velvet balmain bug) | Species Name
Ibacus alticrenatus | Per cent caught 2005 (excluding BRD effect) Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be moderately high. Occur on trawl grounds in deeper water within southern GBR. | or PP | | | Can it be targeted/is it truly incidental Incidental | A or P | Discard rate Discard rates of undersize likely > 10% | Р | Biological
information
adequacy
Moderate | A or P | |--|-------------------------------------|--|-------|--|---|--|--------|--|---|---|--------| | Shovel-nosed
lobster (Honey
balmain bug) | Ibacus brucei | Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be moderately high. Occur on trawl grounds in deeper water within southern GBR. | | Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be moderately high. Occur on trawl grounds in deeper water within southern GBR. | Р | Incidental | A | Discard rates of
undersize likely >
10% | Р | Moderate | A | | Smooth bug
(Garlic balmain
bug) | lbacus chacei | Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be moderately high. Occur on trawl grounds in deeper water within southern GBR. | | Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be moderately high. Occur on trawl grounds in deeper water within southern GBR. | P | Incidental | A | Discard rates of
undersize likely >
10% | P | Moderate | A | | Common Name | Exploitation status | | Interaction throughout
life cycle | A or | Species specific measures | A or | BRD effectiveness | | Proportion this
fishery takes of
total catch in
GBRWHA | A oi | Species identification problem | A or | |--|---------------------------------|---|--------------------------------------|------|---|------|-------------------|---|---|------|--|------| | Deepwater bug
(Velvet balmain
bug) | Uncertain: insufficient
data | P | Probably (see Courtney et al 2007) | P | Yes 75mm cw minimum
legal size; prohibition on
egg bearing females;
southern closure may
have some benefit for
egg bearing females | | No information | P | 100% | | Species can be identified,
but data currently
recorded as species
group | P | | Shovel-nosed
lobster (Honey
balmain bug) | Uncertain: insufficient data | P | Probably (see Courtney et al 2007) | P | Yes 75mm cw minimum
legal size; prohibition on
egg bearing females;
southern closure may
have some benefit for
egg bearing females | A | No information | P | 100% | P | Species can be identified,
but data currently
recorded as species
group | P | | Smooth bug
(Garlic balmain
bug) | Uncertain: insufficient
data | P | Probably (see Courtney et al 2007) | P | Yes, 105 mm CW allows
reproduction before
retention; prohibition on
egg bearing
females;
southern closure may
have some benefit for
egg bearing females | A | No information | P | 100% | P | Species can be identified,
but data currently
recorded as species
group | P | | Common Name | Marketability | A or
P | Refuge availability in
GBRMP | A or | Variance | Comments | Risk
prone
score
2005 | | RISK
2005 | |--|---------------|-----------|------------------------------------|------|----------|--|--------------------------------|-----|--------------| | Deepwater bug
(Velvet balmain
bug) | High | | No data
(deepwater but unknown) | P | | 2065 individuals; 118-258m (Courtney etal 2007) | 10 | H-I | INT-
HIGH | | Shovel-nosed
lobster (Honey
balmain bug) | High | P | No data
(deepwater but unknown) | P | | 760 individuals; 117-230m (Courtney etal 2007) | 10 | H-I | INT-
HIGH | | Smooth bug
(Garlic balmain
bug) | High | P | No data
(deepwater but unknown) | Р | | 10,396 individuals; 58-238m (Courtney etal 2007) | 10 | H-I | INT-
HIGH | | Common Name | Species Name | Per cent caught 2005
(excluding BRD effect) | | Per cent effort exposed 2005 | | Can it be targeted/is it truly incidental catch? | A or | Discard rate | A or | Biological
information
adequacy | A o | |----------------------------|----------------------------------|--|---|------------------------------|---|--|------|---|------|---|-----| | Cuttlefish | Sepia spp. | 19-48 % caught | P | 19-48% effort exposed | Р | Incidental | A | Unknown but all
caught die from
impacts of
trawling, most
probably kept for
bait or marketed | | Adequate general
life history
knowledge | A | | Hammer octopus | Octopus australis | low | A | low | A | Incidental | Α | Probably most survive discarding | Α | Limited | Р | | Red-spot night octopus | Callistoctopus
dierythraeus | low | А | low | А | Incidental | А | Probably most survive discarding | Α | Limited | Р | | Scribbled night octopus | Callistoctopus
graptus | low | А | low | A | Incidental | Α | Probably most survive discarding | Α | Limited | Р | | Plain-spot octopus | Amphioctopus
exannulatus | low | А | low | A | Incidental | Α | Probably most survive discarding | Α | Limited | Р | | Veined octopus | Amphioctopus
marginatus | low | A | low | A | Incidental | Α | Probably most
survive
discarding | А | Limited | Р | | Southern star-eyed octopus | Amphioctopus cf
kagoshimensis | low | A | low | A | Incidental | А | Probably most
survive
discarding | А | Limited | Р | | Common Name | Exploitation status | | Interaction throughout
life cycle | A or | Species specific
measures | A or | BRD effectiveness | A oi
P | Proportion this
fishery takes of
total catch in
GBRWHA | A or
P | Species identification problem | A or | |-------------|--|---|--|------|------------------------------|------|----------------------------------|-----------|---|-----------|---|------| | Cuttlefish | underexploited | A | Sub adults to adults | P | None | P | Unknown | P | ~100% | Α | Data generally not
available at species level,
fishers don't differentiate
species and could not be
expected to do so | Р | | | No assessment
made. No evidence
of overfishing | Р | Eggs probably laid among structure not trawled | A | None | A | Easily escapes through meshes | A | Unknown, no other fishery impact | Р | Data in logbooks not to species level | Р | | octopus | No assessment made. No evidence of overfishing | Р | Eggs probably laid among structure not trawled | Α | None | A | Easily escapes through meshes | A | Unknown, no other fishery impact | Р | Data in logbooks not to species level | Р | | octopus | No assessment made. No evidence of overfishing | Р | Eggs probably laid among structure not trawled | Α | None | A | Easily escapes through meshes | А | Unknown, no other fishery impact | Р | Data in logbooks not to species level | Р | | | No assessment
made. No evidence
of overfishing | Р | Broadcast spawner | Α | None | A | Easily escapes through meshes | А | Unknown, no other fishery impact | Р | Data in logbooks not to species level | Р | | | No assessment
made. No evidence
of overfishing | Р | Broadcast spawner | Α | None | А | Easily escapes
through meshes | А | Unknown, no other fishery impact | Р | Data in logbooks not to species level | Р | | | No assessment
made. No evidence
of overfishing | Р | Broadcast spawner | Α | None | A | Easily escapes through meshes | A | Unknown, no other fishery impact | Р | Data in logbooks not to species level | Р | | Common Name | Marketability | A or | Refuge availability in
GBRMP | A or | Variance | Comments | Risk
prone
score
2005 | Fishery
Impact
Profile level
2005 | RISK
2005 | |----------------------------|-------------------------|------|---------------------------------|------|----------|---|--------------------------------|--|--------------| | Cuttlefish | High for larger animals | P | 49-60 (Pitcher et al 2007) | A | | PMS triggered with harvest being 109 less in 2008 than the lowest annual harvest from 2001 -2006. Because the are incidentally harvested total catch is not indicative of biomass. (DEEDI 200 | y | ı | INT | | Hammer octopus | High | P | High | A | | | 5 | I-L | INT-
LOW | | Red-spot night octopus | High | P | High | A | | | 5 | I-L | INT-
LOW | | Scribbled night octopus | High | P | High | A | | | 5 | I-L | LOW | | Plain-spot octopus | High | P | High | A | | | 5 | I-L | LOW | | Veined octopus | High | P | High | A | | | 5 | I-L | LOW | | Southern star-eyed octopus | High | P | High | A | | | 5 | I-L | LOW | | Common Name
Threadfin bream
(Pinkies) | Species Name
Family
Nemipteridae | Per cent caught 2009 | PP
A | Per cent effort exposed 2009
6-20% (data from Pitcher in 2011) | PP | Can it be targeted/ is it | A
or
P
A | Discard rate High but variable | or
P | Biological information adequacy Moderate (some info for some species but not all that are caught) Courtney et al permitted spp FRDC | A
or
P | |---|--|--|---------|---|----|---|-------------------|---------------------------------------|---------|---|--------------| | Mantis shrimp | Family
Squillidae, order
Stomatopoda | Assumed considerably less than 25% caught based on effort trends and available analyses by Pitcher in 2011 | | Uncertain but unlikely to
be above 25% based on
effort trends and
available analyses by
Pitcher in 2011 | Α | No incidental only | Α | Probably high | P | Inadequate | P | | Blue swimmer
crab | Portunus
pelagicus | 4 (data from Pitcher in 2011) | | 21 (data from Pitcher in 2011) | | Yes they can be targeted by trawl however in possession limits restrict this activity. In the GBR its truly incidental catch. | A | ~ 50% | P | High | A | | Common Name
Threadfin bream
(Pinkies) | Exploitation
status
No assessment
made | or PP | Interaction
throughout life
cycle
Most stages
probably | A
or
P | Species specific measures No but general management measures considered adequate (BRDs, demersal prawn trawl nets) | Р | BRD
effectiveness
Unlikely to be
effective | A or P | | or
P | Species identification problem Not reported by species, although can be readily identified (there is some biological data at the species level, but not fishery catch by species) | A
or
P | Marketability
Low | A or P | |---|---|-------|---|--------------|--|---|---|--------|------|---------|--|--------------|--|--------| | Mantis shrimp | No assessment made | | Unknown, but likely most life stages interact since eggs are reared in burrows. Interactions with juveniles reported (Courtney et al 2007) | P | None but
infrequently captured | P | Unlikely to be effective | P | 100% | P | No data recorded
at the species
level | P | Low. In 2000 the total reported catch of mantis shrimp was three tonnes with an estimated value of A\$9000. | A | | Blue swimmer
crab | Sustainably
fished (BSC
FISHERY) | | Sub adults - adults: anecdotal evidence from fishery independent trawl surveys indicates a prevalence of smaller BSc in northern waters compared with the same information from the southern GBR. | A | Yes, size limits
11.5 cm CW, catch
limits (500 per 7
nights) | | Being updated | P | Low | A | No | A | Relatively low value per kilo for other trawl caught species. General perception is trawl caught BSC is poorer quality than pot caught crab - moderate or low marketability. | A | | Common Name | Refuge availability in GBRMP | A
or
P | Variance | Comments | Risk
prone
score
2009 | Fishery
Impact
Profile level
2009 | RISK
2009 | |------------------------------|---|--------------|---|--|--------------------------------|--|--------------| | Threadfin bream
(Pinkies) | 36-65 % protected
(Pitcher et al 2007) | A | | | 7 | | INT | | Mantis shrimp | 34-52 (Pitcher et al
2007) | A | While significant catches of mantis shrimp are caught incidentally throughout the East Coast Trawl Fishery (see Appendices in Courtney et al 2007 listing by catch by sector), their retention and marketing are largely limited to the Moreton Bay fleet, probably for socio-economic reasons. | PMS triggered with harvest being 10% less in 2008 than the lowest annual harvest from 2001 -2006. Because they are incidentally harvested total catch is not indicative of biomass. (DEEDI 2009) | 8 | | INT | | Blue swimmer
crab | 40 | A | | PMS triggered with harvest being 10% less in 2008 than the lowest annual harvest from 2001 -2006. Because they are incidentally harvested total catch is not indicative of biomass. (DEEDI 2009) | 2 | L | LOW | | Common Name Three-spotted crab (Red- spotted crab) | Species Name Portunus sanguinolentus | | PP
A | Per cent effort exposed 2009 21 (data from Pitcher in 2011) | A or
P or
PP | Can it be targeted/ is it | A
or
P
A | Discard rate High | or
P | Biological
information
adequacy
High | A
or
P
A | |--|--------------------------------------|--|---------|--|--------------------|---|-------------------|--|---------|---|-------------------| | Red champagne
lobster (Barking
crayfish) | Linuparus
trigonus | Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be relatively low. Relatively few boats target the species, and red champagne lobster not in habitats where prawns are found. | | Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be relatively low. Relatively few boats target the species, and red champagne lobster not in habitats where prawns are found. | | Linuparus trigonus is a permitted species in the QLD trawl fishery. Legally, it is not permitted to be 'targeted', but before it was declared as a permitted species it was targeted. Since becoming a permitted species, logbook data suggest that it is no longer targeted and the reported catches indicate that the fishery for this species has declined markedly. | P | Discarding for this species is likely to be very low, because the smaller size classes are likely to be further offshore, in greater depths than the marketed larger/adults. | | Poor although some reproductive and life history information is available, however information on growth and mortality rates is limited. No stock assessment has been undertaken for L. trigonus, and it is likely that none will ever be undertaken. | | | Common Name
Three-spotted
crab (Red-
spotted crab) | Exploitation
status
No assessment
made | or PP | Interaction
throughout life
cycle
Sub adults and
adults | A or P | Species specific measures None - current mean size of captured crabs is below the optimum identified through yield per recruit analysis, although as they are incidentally captured in the trawl fishery it is not thought specific measures are required. | P
A | BRD
effectiveness
Being updated | A or P | | or
P | Species
identification
problem
No | A or P | Marketability
Low | A or P | |---|---|-------|--|--------|--|--------|--|--------|---|---------|---|--------|---|--------| | Red champagne
lobster (Barking
crayfish) | No assessment made. | | Size classes caught are from 30-125 mm CL. Females appear to dominate the smaller size classes 30-95 mm CL, while males dominate from 95-125 mm CL. Samples suggest small/younger age classes are in deeper waters, and that they move towards the coast as the grow and mature. | P | Egg bearing
females prohibited.
Minimum legal size
of 75mm CL | | The BRDs used by the fleet probably have no effect on this species and are not effective at excluding animals below the minimum legal size | | The trawl fishery takes 100% of the catch for this species in the GBRWHA. | P | The taxonomy for this species is clear and straight forward. The likelihood of confusing it with other species is very low. | A | Marketability for
this species is very
good. Matbe
some marketing
problems
associated with
removing its long
antennae. | P | Appendix 6. Fishery impact profile for other permitted species 2009 | Common Name Three-spotted crab (Red- spotted crab) | Refuge availability in GBRMP 35 | A
or
P
A | Variance | Comments PMS triggered with harvest being 10% less in 2008 than the lowest annual harvest from 2001 -2006. Because they are incidentally harvested total catch is not indicative of biomass. (DEEDI 2009) | Risk
prone
score
2009 | Fishery
Impact
Profile level
2009 | RISK
2009
LOW | |--|--|-------------------|----------|---|--------------------------------|--|---------------------| | Red champagne
lobster
(Barking
crayfish) | Largely outside the depth range studied by the Seabed Biodiversity Project, and per cent protected has not been formally estimated, however it is likely that substantial protected refugia exist. | Α | | Logbook reports between 10-100 t annually. It is trawled in rel. deep water and far from the coast. Declaring it as a permitted species, which cannot be targeted, has probably reduced the level of trawl fishing effort on populations in QLD. Targeting is illegal although it is unclear how targeting is defined and legally pursued. This has probably deterred some fishers from trawling for it. Likely to have large and significant untrawled refuge areas | 7 | | INT | | Common Name
Slipper lobsters | Species Name Scyllarus martensii, Scyllarus demani, Scyllarides squammosus, Scyllarides haanii | Per cent caught 2009
(excluding BRD effect)
2% caught (Pitcher data
2011) | PP
A | Per cent effort exposed 2009 16% effort exposed (Pitcher data 2011) | A or
P or
PP | Can it be targeted/ is it truly incidental catch? Incidental, tends to be reef associated | A
or
P
A | Discard rate
Low | or
P | Biological
information
adequacy
Very limited | A
or
P | |--|--|--|---------|--|--------------------|---|-------------------|---|---------|---|--------------| | Deepwater bug
(Velvet balmain
bug) | Ibacus
alticrenatus | Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be moderately high. Occur on trawl grounds in deeper water within southern GBR. | | Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be moderately high. Occur on trawl grounds in deeper water within southern GBR. | | Incidental | A | Discard rates of
undersize likely
> 10% | Р | Moderate | A | | Shovel-nosed
lobster (Honey
balmain bug) | Ibacus brucei | Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be moderately high. Occur on trawl grounds in deeper water within southern GBR. | | Largely outside the depth range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be moderately high. Occur on trawl grounds in deeper water within southern GBR. | P | Incidental | A | Discard rates of
undersize likely
> 10% | P | Moderate | A | | Common Name | Exploitation status | | Interaction
throughout life
cycle | A
or
P | Species specific measures | A
or
P | BRD effectiveness | A
or
P | Proportion this
fishery takes of
total catch in
GBRWHA | A
or
P | Species
identification
problem | A
or
P | Marketability | A
or
P | |--|---------------------------------|---|--|--------------|--|--------------|---|--------------|---|--------------|--|--------------|---------------|--------------| | Slipper lobsters | No assessment
made | Р | Unknown | P | Yes; prohibition on
egg bearing
females and in
possession limit of
20 per 7 days
fishing | A | Presumed to be
not very effective
but captured in
such low numbers
and frequency that
testing the BRD
effect is extremely
difficult. | P | 100% | P | The species can
be identified
however catch
data is reported
as a slipper
lobster species
group. | P | High | Р | | Deepwater bug
(Velvet balmain
bug) | Uncertain:
insufficient data | P | Probably (see
Courtney et al
2007) | P | Yes 75mm cw
minimum legal
size; prohibition on
egg bearing
females; southern
closure may have
some benefit for
egg bearing
females | | No information | P | 100% | P | Species can be identified, but data currently recorded as species group | P | High | P | | Shovel-nosed
lobster (Honey
balmain bug) | Uncertain:
insufficient data | | Probably (see
Courtney et al
2007) | P | Yes 75mm cw
minimum legal
size; prohibition on
egg bearing
females; southern
closure may have
some benefit for
egg bearing
females | | No information | Р | 100% | P | Species can be identified, but data currently recorded as species group | P | High | P | | Common Name | Refuge availability in
GBRMP | A
or
P | Variance | Comments | prone | Fishery
Impact
Profile level
2009 | RISK
2009 | |--|---|--------------|----------|--|-------|--|--------------| | Slipper lobsters | 45-50% protection
(Pitcher et al 2007) | A | | 2009 reported commercial catch of Slipper lobsters in the whole ECTF was 4kg (data quality unknown). It was only recently added to the list in 2009 along with the corresponding amendment to logbook reporting instructions for the reporting of slipper lobster catch. | 7 | | INT | | Deepwater bug
(Velvet balmain
bug) | No data
(deepwater but
unknown) | Р | | 2065 individuals; 118-258m (Courtney etal 2007) | 10 | H-I | INT-
HIGH | | Shovel-nosed
lobster (Honey
balmain bug) | No data
(deepwater but
unknown) | P | | 760 individuals; 117-230m (Courtney etal 2007) | 10 | H-I | INT-
HIGH | | Common Name
Smooth bug | Species Name
Ibacus chacei | (excluding BRD effect) Largely outside the depth | A or
P or
PP | Largely outside the | | Can it be targeted/ is it | A
or
P | Discard rate Discard rates of | or
P | Biological
information
adequacy
Moderate | A
or
P | |---------------------------|--------------------------------|--|--------------------|--|---|---------------------------|--------------|--|---------|---|--------------| | (Garlic balmain
bug) | | range studied by the Seabed Biodiversity Project, however the proportion of the population exposed and the proportion caught are expected to be moderately high. Occur on trawl grounds in deeper water within southern GBR. | | depth range studied by
the Seabed Biodiversity
Project, however the
proportion of the
population exposed and
the proportion caught are
expected to be
moderately high. Occur
on trawl grounds in
deeper water within
southern GBR. | | | | undersize likely
> 10% | | | | | Cuttlefish | Sepia spp. | Likely to be less than 25% caught based on effort trends and available analyses by Pitcher in 2011 | Α | Likely to be less than
25% effort exposed
based on effort trends
and available analyses
by Pitcher in 2011 | A | Incidental | A | Unknown but all
caught die from
impacts of
trawling, most
probably kept
for bait or
marketed | Α | Adequate general life history knowledge | A | | Hammer octopus | Octopus
australis | low | Α | low | Α | Incidental | Α | Probably most survive discarding | Α | Limited | Р | | Red-spot night octopus | Callistoctopus
dierythraeus | low | Α | low | А | Incidental | А | Probably most survive discarding | Α | Limited | Р | | Scribbled night octopus | Callistoctopus
graptus | low | A | low | А | Incidental | А | Probably most survive discarding | Α | Limited | Р | | Plain-spot
octopus | Amphioctopus
exannulatus | low | Α | low | А | Incidental | А | Probably most
survive
discarding | Α | Limited | Р | | Common Name | - | | • | A
or
P | Species specific measures | A
or
P | BRD
effectiveness | Α | | A
or
P | Species
identification
problem | A
or
P |
Marketability | A
or
P | |---------------------------------------|--|---|--|--------------|--|--------------|-------------------------------|---|----------------------------------|--------------|--|--------------|----------------------------|--------------| | Smooth bug
(Garlic balmain
bug) | Uncertain:
insufficient data | Р | Probably (see
Courtney et al
2007) | Р | Yes, 105 mm CW
allows
reproduction
before retention;
prohibition on egg
bearing females;
southern closure
may have some
benefit for egg
bearing females | Α | No information | Р | 100% | P | Species can be identified, but data currently recorded as species group | P | High | Р | | Cuttlefish | underexploited | A | Sub adults to adults | Р | None | Р | Unknown | Р | ~100% | A | Data generally
not available at
species level,
fishers don't
differentiate
species and could
not be expected
to do so | P | High for larger
animals | P | | Hammer octopus | No assessment made. No evidence of overfishing | Р | Eggs probably laid among structure not trawled | А | None | Α | Easily escapes through meshes | А | Unknown, no other fishery impact | Р | Data in logbooks
not to species
level | Р | High | Р | | Red-spot night octopus | No assessment made. No evidence of overfishing | Р | Eggs probably laid
among structure not
trawled | A | None | A | Easily escapes through meshes | A | Unknown, no other fishery impact | Р | Data in logbooks
not to species
level | Р | High | Р | | Scribbled night octopus | No assessment made. No evidence of overfishing | Р | Eggs probably laid among structure not trawled | A | None | Α | Easily escapes through meshes | А | Unknown, no other fishery impact | Р | Data in logbooks
not to species
level | Р | High | Р | | Plain-spot
octopus | No assessment made. No evidence of overfishing | Р | Broadcast spawner | A | None | A | Easily escapes through meshes | Α | Unknown, no other fishery impact | Р | Data in logbooks
not to species
level | Р | High | Р | | Common Name | Refuge availability in GBRMP | A
or
P | Variance | Comments | Risk
prone
score
2009 | Fishery
Impact
Profile level
2009 | RISK
2009 | |---------------------------------------|---------------------------------------|--------------|----------|--|--------------------------------|--|--------------| | Smooth bug
(Garlic balmain
bug) | No data
(deepwater but
unknown) | Р | | 10,396 individuals; 58-238m
(Courtney etal 2007) | 10 | H-I | INT-
HIGH | | Cuttlefish | 49-60 (Pitcher et al
2007) | Α | | PMS triggered with harvest being 10% less in 2008 than the lowest annual harvest from 2001 -2006. Because they are incidentally harvested total catch is not indicative of biomass. (DEEDI 2009) | 5 | I-L | LOW | | Hammer octopus | High | Α | | | 5 | I-L | INT-
LOW | | Red-spot night octopus | High | A | | | 5 | I-L | INT-
LOW | | Scribbled night octopus | High | A | | | 5 | I-L | LOW | | Plain-spot
octopus | High | A | | | 5 | I-L | LOW | #### Appendix 6. Fishery impact profile for other permitted species 2009 | Common Name | | Per cent caught 2009 | A or
P or
PP | Per cent effort exposed | | Can it be targeted/ is it | A
or
P | | or | information | A
or
P | |--------------------------------|----------------------------------|----------------------|--------------------|-------------------------|---|---------------------------|--------------|----------------------------------|----|-------------|--------------| | Veined octopus | Amphioctopus
marginatus | low | A | low | A | Incidental | | Probably most survive discarding | A | Limited | Р | | Southern star-
eyed octopus | Amphioctopus cf
kagoshimensis | low | A | low | Α | Incidental | | Probably most survive discarding | A | Limited | Р | Appendix 6. Fishery impact profile for other permitted species 2009 | Common Name | | A or P
or PP | cycle | Р | Species specific measures | BRD
effectiveness | A
or | | A
or
P | problem | | Marketability | A
or
P | |--------------------------------|--|-----------------|-------------------|---|---------------------------|----------------------------------|---------|----------------------------------|--------------|---|---|---------------|--------------| | Veined octopus | No assessment made. No evidence of overfishing | Р | Broadcast spawner | Α | None | Easily escapes
through meshes | | Unknown, no other fishery impact | | Data in logbooks
not to species
level | Р | High | Р | | Southern star-
eyed octopus | No assessment made. No evidence of overfishing | Р | Broadcast spawner | Α | None | Easily escapes through meshes | | Unknown, no other fishery impact | | Data in logbooks
not to species
level | Р | High | Р | Appendix 6. Fishery impact profile for other permitted species 2009 | Common Name | Refuge availability in
GBRMP | A
or
P | Variance | Comments | prone
score | Fishery
Impact
Profile level
2009 | RISK
2009 | |--------------------------------|---------------------------------|--------------|----------|----------|----------------|--|--------------| | Veined octopus | High | A | | | 5 | 1-1 | LOW | | Southern star-
eyed octopus | High | Α | | | 5 | I-L | LOW | | Common Name | Class | Species Name | Life history strategy | A or
P or
PP | Mode of life - pelagic or demersal | A or | Habitat association | A or | |---|----------------|--|---|--------------------|---|------|---|------| | Ray-finned fish Pearly-finned cardinal fish | Actinopterygii | Apogon
poecilopterus | High turnover, minimum population doubling time less than 15 months (Preliminary K or Fecundity.) (Vulnerability data from Fishbase, source Cheung et al 2005) Mouthbrooders (Fishbase Ref. 240). Distinct pairing during courtship and spawning (Fishbase Ref. 205). Main ref Thresher, R.E., 1984 | P | Demersal
Nocturnal species, so more
vulnerable to trawl at night. | P | Inshore, soft bottom. EOL: Occurs inshore over soft bottom (Fishbase Ref. 7300). Lives in holes in the mud during the day. Usually trawled near river mouths (Fishbase Ref. 48635). | A | | Pigmy leatherjacket | Actinopterygii | Brachaluteres
taylori | High turnover, minimum population doubling time less than 15 months (Preliminary K or Fecundity.) (Vulnerability data from Fishbase, source Cheung et al 2005) grows to ~ 5 cm | A | Demersal | Р | Coral reef, inshore, seagrass and algal beds (seabed midshelf gravel areas Cairns to Swains). | A | | Tufted sole | Actinopterygii | Brachirus muelleri
/
Dexillichthys
muelleri | Resilience (Fishbase Ref. 69278) -
High, minimum population doubling
time less than 15 months (Preliminary
K or Fecundity.) | A | Demersal . When this species is present it is vulnerable to fishing pressure. | Р | EOL: Found over sand bottoms. | P | | Longnose stinkfish | Actinopterygii | Calliurichthys
grossi /
Callionymus grossi | Resilience (Fishbase: Ref. 69278) High, minimum population doubling time less than 15 months (Preliminary K or Fecundity.) | A | Demersal | P | Benthic, continental shelf, coral reef, inshore. | P | | Common Name | From Pitcher et | A or
P | Geographic distribution | | Cumulative pressures | A or | Comments | Risk
prone
score | Resilience level | |---|--|-----------|--|---|----------------------|------|----------|------------------------|------------------| | Ray-finned fish Pearly-finned cardinal fish | al. 2007
1.73 | | Widespread http://www.environment.gov.au/biodiversity/abr s/online- resources/fauna/afd/taxa/Apogon_poecilopteru s EOL: Western Pacific: Papua New Guinea, Australia (including Lord Howe Island), and the Marshall Islands. Reported from the Chesterfield Islands (Fishbase Ref. 11897) and New Zealand (Fishbase Ref. 5755). | | None known | A | | 2 | I | | Pigmy leatherjacket | 2.33 (family
level estimate
from Stobutski
et al) | | Widespread (http://www.environment.gov.au/biodiversity/ab rs/online- resources/fauna/afd/taxa/Brachaluteres_taylori) EOL: Western Pacific: Papua New Guinea, Australia
(including Lord Howe Island), and the Marshall Islands. Reported from the Chesterfield Islands (Fishbase Ref. 11897) and New Zealand (Fishbase Ref. 5755). | | None known | A | | 1 | H-I | | Tufted sole | 0.98 | | Widespread, but not common. EOL: Indo-West Pacific: Sri Lanka to Samoa and Tonga, north to the Philippines, south to northern Australia. | А | None known | A | | 3 | I-L | | Longnose stinkfish | 1.11 | | Widespread: Northern half of Australia from
Moreton Bay to Shark Bay | A | None known | A | | 2 | I | | Common Name
Prickly
leatherjacket | Class
Actinopterygii | Species Name
Chaetodermis
penicilligera | Life history strategy Max length: 31.0 cm TL male/unsexed (Fishbase). Medium, minimum population doubling time 1.4 - 4.4 years (Preliminary K or Fecundity.) | PP | | | Habitat association Coastal, inshore, sub littoral, weed beds. | A or
P | |---|--------------------------------|---|---|-----------|--|---|--|-----------| | Spotted-fin tongue-
sole | Actinopterygii | Cynoglossus
maculipinnis | Resilience (Fishbase: Ref. 69278) High, minimum population doubling time less than 15 months (Preliminary K or Fecundity.) | | EOL: demersal; marine;
depth range ? - 132 m
(Fishbase: Ref. 5297) | Р | Benthic, continental shelf, soft bottom. | P | | Naked-headed catfish | Actinopterygii | Euristhmus
nudiceps | Medium, minimum population doubling time 1.4 - 4.4 years (Preliminary K or Fecundity.) . Max length : 33.0 cm TL male/unsexed (Fishbase) | | Demersal; freshwater;
brackish; marine | Р | Benthic, estuarine, inshore, soft bottom. EOL: demersal; freshwater; brackish; marine. Occurs inshore over soft bottoms (Fishbase Ref. 7300). Found along coastlines and in estuaries, including freshwater reaches. | Р | | Rough flutemouth | Actinopterygii | Fistularia petimba | Relatively long-lived species that grows to about 1.8M, and is caught to about 0.5m length. | PP | Occurs near the seabed | A | Coastal, estuarine, inshore, pelagic. EOL: Inhabits coral reefs (Fishbase Ref. 58534). Found in the sub littoral zone (Fishbase Ref. 11230); inhabits coastal areas over soft bottoms, usually at depths greater than 10 m (Fishbase Ref. 30573). Feeds on small fishes and shrimps (Fishbase Ref. 3401). Found in coral reefs swimming over coral, sandy bottoms, or seagrass. When not hunting, can be found floating/resting near the bottom of the reef. | | | Common Name | Natural
mortality
2.53 | | Geographic distribution Widespread | Р | Cumulative pressures None known | A or
P | Comments | Risk
prone
score | Resilience level | |-----------------------------|------------------------------|---|---|---|---------------------------------|-----------|---|------------------------|------------------| | leatherjacket | | | EOL: Indo-West Pacific: Indo-Malayan region to Australia, north to Japan. Only in SGBR in Seabed Biodiversity Project report | | | | | | | | Spotted-fin tongue-
sole | 0.59 | Р | Widespread
EOL; Western Pacific: northern Australia, from
Western Australia to Queensland (Fishbase:
Ref. 5297) and Papua New Guinea (Fishbase:
Ref. 6771). | | None known | A | | 3 | I-L | | Naked-headed catfish | 0.89 | | Widespread EOL; Indo-West Pacific: north-western Australia, the Arafura Sea (Fishbase Ref. 9819) and Papua New Guinea. Known from the freshwater reaches of the Mekong estuary (Fishbase Ref. 12693). | Α | None known | A | | 4 | I-L | | Rough flutemouth | 0.26 | P | Widespread globally EOL: western Atlantic and indo-pacific. | A | None known | A | Habitat association: Juvenile habitat association is to trawled areas, whereas adult habitat association is more reef-associated, the species also has some refuge in deeper areas - overall risk averse. | 3 | I-L | | Common Name | Class | Species Name | Life history strategy | A or
P or
PP | Mode of life - pelagic or
demersal | A or
P | Habitat association | A or
P | |--------------------|----------------|---|---|--------------------|---|-----------|--|-----------| | Orangefin ponyfish | Actinopterygii | Leiognathus
bindus /
Photopectoralis
bindus | Resilience (Fishbase Ref. 69278) High, minimum population doubling time less than 15 months (K=0.88- 2.63; tm=1.2) Mode -dioecism Fertilization -external Reproductive guild –nonguarders - open water/substratum egg scatterers | A | EOL: demersal;
amphidromous (Fishbase
Ref. 51243); brackish;
marine; depth range 10 - 160
m (Fishbase Ref. 47581).
Day - night: prone | P | Found on the continental shelf, soft bottom. (Fishbase Ref. 75154). Feeds mainly on copepods and diatoms (Fishbase Ref. 26908). Found over muddy sand bottoms of coastal inshore waters (Fishbase Ref. 47581). Often enters estuaries (Fishbase Ref. 4833). Forms schools. | A | | Whipfin ponyfish | Actinopterygii | Leiognathus
leuciscus /
Equulites
leuciscus | Resilience (Fishbase Ref. 69278) High, minimum population doubling time less than 15 months (K=0.93- 1.80) Highly productive, broadcast spawners. | A | EOL: demersal; marine;
depth range 10 - 70 m
(Fishbase Ref. 12260) .
Day -night: equal day night
Stobutzki et al | | Found in coastal waters, about 5 to 15 m depth. Stays near the substrate and feeds on small shrimps, other crustaceans, and polychaetes (Fishbase Ref. 5213). | Р | | Splendid ponyfish | Actinopterygii | Leiognathus
splendens
/Eubleekeria
splendens | Resilience (Fishbase: Ref. 69278) High, minimum population doubling time less than 15 months (K=0.33- 1.60; tm=1; tmax=2.3) Mode -dioecism Fertilization -external Reproductive guild –nonguarders - open water/substratum egg scatterers | A | Demersal; amphidromous (Fishbase: Ref. 51243); brackish; marine; depth range 10 - 100 m (Fishbase: Ref. 12260) Day - night: on seabed at night time so prone to capture | | This schooling species inhabits coastal waters and generally lives in turbid waters. It feeds on fish, crustaceans, foraminiferans, and bivalves (Fishbase: Ref. 5213). | P | | Common Name | Natural
mortality | A or
P | Geographic distribution | | | A or
P | Comments | Risk
prone
score | Resilience level | |--------------------|----------------------|-----------|--|---|--|-----------|--|------------------------|------------------| | Orangefin ponyfish | 1.72 | | Widespread EOL:Indo-West Pacific: Port Sudan in the Red Sea and the Persian Gulf to Japan, the Arafura Sea (Fishbase Ref. 9819), and Australia. | | None known, not
taken in other
fisheries, and
assume little or no
water quality issues
as not coastal | | Extremely common in trawl by catch, most common pony fish in by catch. In Seabed Biodiversity Project, trawl effort coefficient was positive but not very large, which suggests the species has some association with trawled areas. | 1 | H-I | | Whipfin ponyfish | 2.41 | | Widespread EOL: Indo-West Pacific: East Africa to northern Australia and New Caledonia. Only in northern GBR in Seabed Biodiversity Project report, north of Whitsundays at least. | А | Not taken in other
fisheries, but
concern about
possible water
quality issues for
the species as
coastal | | In Seabed Biodiversity Project, trawl effort coefficient was highly important in modelling, which suggests the species tends to occur more in trawled areas. | 3 | I-L | | Splendid ponyfish | 2.03 | | Widespread.EOL: Indo-West Pacific: from
India to Papua New Guinea; north to Japan;
south to Australia, | | Not taken in other
fisheries, but
concern about
possible water
quality issues for
the
species as
coastal | Р | | 3 | I-L | | Common Name | Class | Species Name | Life history strategy | A or
P or
PP | Mode of life - pelagic or demersal | A or | Habitat association | A or | |----------------------|----------------|-------------------------------|---|--------------------|---|------|--|------| | Fourlined terapon | Actinopterygii | Pelates
quadrilineatus | Resilience (Fishbase Ref. 69278) Medium, minimum population doubling time 1.4 - 4.4 years (Preliminary K or Fecundity.) Mode -dioecism Fertilization -external, one clear seasonal peak per year Stobutzi et al life history characteristics: risk averse | A | Reef-associated; brackish; marine; depth range 0 - ? M. Occurs relatively high in water column, no difference between day - night | Α | A coastal species often found in brackish waters; common in estuaries. Croaks when taken from the water. Usually forming schools. Present in seagrass beds at all life stages. Juveniles in seagrass beds and in mangrove bays (Fishbase Ref. 48635). Feeds on small fishes and invertebrates. Omnivore (Fishbase Ref. 41878). Occurs in places other than trawl grounds | A | | Longfin silverbiddy | Actinopterygii | Pentaprion
longimanus | Resilience (Fishbase Ref. 69278) High, minimum population doubling time less than 15 months (K=0.70- 1.80) | А | Demersal; brackish; marine;
depth range 15 - 220 m
(Fishbase Ref. 12260) | Р | EOL: Inhabits coastal waters. Forms large schools. Probably feeds on small benthic animals. Continental shelf, schooling, soft bottom. Trawled to depths of 70 m. Mostly caught in daytime trawl or around full moon. | Р | | Australian threadfin | Actinopterygii | Polydactylus
multiradiatus | Resilience (Fishbase: Ref. 69278) High, minimum population doubling time less than 15 months (Preliminary K or Fecundity.) Nonguarders, Open water/substratum egg scatterers, Sex change occurs between 12-14 cm SL (Fishbase: Ref. 45356). | A | Demersal; brackish; marine;
depth range 10 - 56 m (Ref.
45356), usually 10 - 56 m
(Ref. 45356) | Р | Occur in inshore waters of the continental shelf. Fishbase: Inhabits coastal waters over sand or mud bottoms. Feeds on prawns. Often taken in association with Penaeus prawns in the Gulf of Carpentaria. Max length: 21.0 cm FL male/unsexed; (Ref. 1844); 24.5 cm FL (female) Fishbase. | | | Blotched javelin | Actinopterygii | Pomadasys
maculatus | Resilience (Fishbase Ref. 69278) Medium, minimum population doubling time 1.4 - 4.4 years (K=0.16) | P | Reef-associated;
amphidromous (Fishbase
Ref. 51243); brackish;
marine; depth range 20 - 110
m (Fishbase Ref. 12260) | Р | Found in coastal waters over sand near reefs. Feeds on crustaceans and fishes (Fishbase Ref. 5213). | Р | | Common Name
Fourlined terapon | Natural
mortality
1.11 | A | Geographic distribution Widespread Fishbase: Indo-West Pacific: Red Sea and East Africa to southern Japan, New Guinea and Arafura Sea (Fishbase Ref. 9819). Reported from Vanuatu (Fishbase Ref. 13300). Migrated to the Mediterranean from the Red Sea via the Suez Canal (Fishbase Ref. 5385). GBR from Curtis Island to top of GBR | P
A | Cumulative
pressures
Unknown, however
some (limited)
recreational catch
likely | A or
P | Comments | Risk
prone
score | Resilience level
H | |----------------------------------|------------------------------|---|---|--------|---|-----------|----------|------------------------|-----------------------| | Longfin silverbiddy | 1.79 | | Widespread EOL: Indo-West Pacific: western and southern coasts of India and off Sri Lanka to Indonesia, the Philippines and Ryukyu Islands, and south to the northern part of Australia (Fishbase Ref. 3131). | A | Unknown. Not captured in other fisheries and not aquarium trade. | A | | 3 | I-L | | Australian threadfin | Assume high | A | Widespread | A | Unknown, incidental recreational species | A | | 2 | I | | Blotched javelin | 0.34 | Р | Widespread Fishbase: Indo-West Pacific: throughout the Indian Ocean (Fishbase Ref. 11441) and the western Pacific, north to China, south to Australia. | A | None known | A | | 4 | I-L | | Common Name Damselfish sp | Class
Actinopterygii | Species Name Pristotis obtusirostris | Life history strategy attached eggs, parental care? L inf 17 cm, K 0.8 | A or
P or
PP | Mode of life - pelagic or demersal demersal | | Habitat association sand carbonate sediments (not mud) | A oi
P | |--|-------------------------|--|--|--------------------|--|---|---|-----------| | Australian halibut | Actinopterygii | Psettodes erumei | Resilience (Fishbase Ref. 69278) Medium, minimum population doubling time 1.4 - 4.4 years (K=0.26-0.38; tm=3-4; Fec=300,000) Mode -dioecism Fertilization -external Reproductive guild –nonguarders - open water/substratum egg scatterers | P | Demersal; marine; depth
range 1 - 100 m (Fishbase
Ref. 9792), usually 20 - 50 m
(Fishbase Ref. 9792) | | Found on sand and mud bottoms (Fishbase Ref. 9796, 48637). Usually deeply buried in the substrate during the day, but out and hunting at night (Fishbase Ref. 48637). Often swims in an upright position (Fishbase Ref. 9796). Mainly piscivorous (Fishbase Ref. 5986). | P | | Flathead dragonet | Actinopterygii | Repomucenus
belcheri /
Callionymus
belcheri | Resilience (Fishbase: Ref. 69278) High, minimum population doubling time less than 15 months (K=0.41- 0.48; tmax=3) | A | Demersal; marine; depth
range 18 - 36 m (Fishbase:
Ref. 75992) | Р | Benthic, continental shelf, inshore, sand bottom-marine. | P | | Shortfin saury
(Short-finned
lizardfish) | Actinopterygii | Saurida
argentea/tumbil | Resilience (Fishbase Ref. 69278) High, minimum population doubling time less than 15 months (Preliminary K or Fecundity.) | A | Demersal; marine; depth
range 1 - 70 m (Fishbase
Ref. 38189) | Р | Found in coastal waters, on sand and mud bottoms. | P | | Largescale saury
(Brushtooth
lizardfish) | Actinopterygii | Saurida
grandisquamis/
undosquamis | Resilience (Fishbase Ref. 69278) Medium, minimum population doubling time 1.4 - 4.4 years (K=0.3-0.9; tm=1-2; tmax=8) Mode -dioecism Fertilization -external Reproductive guild –nonguarders - open water/substratum egg scatterers | Р | Sandy bottom species. Found in 76% tiger/endeavour prawn fishery by catch, 34% scallop fishery by catch, 19% deepwater eastern king prawn by catch. Average size in deepwater king prawn fishery area 387mm, average size in north QLD 181mm. May move seaward as they grow, based on size distributions in catches. | | Found on the sub littoral zone above 100 m over sand or mud bottoms of coastal waters (Fishbase Ref. 11228, 11230). Feeds on fishes (anchovy and red mullet Mullus surmuletus), crustaceans, and other invertebrates (Fishbase Ref. 5213). Spawns from April to May off Japan | P | | Common Name Damselfish sp | Natural
mortality
0.46 | | Geographic distribution WA (Dampier B. Hutchins checklist of D. Archipelago) and Qld | Р | Cumulative
pressures
None known | A or
P | Comments | Risk
prone
score | Resilience level | |--|--------------------------------|---|--|---|---------------------------------------|-----------|--|------------------------|------------------| | Australian halibut | 0.69 | Р | Widespread Fishbase: tropical, Indo-West Pacific: Red Sea and East Africa to Japan and Australia. | A | None known | A | | 4 |
I-L | | Flathead dragonet | 1.11 | Α | Widespread: Fishbase: Western Central Pacific: northwestern Australia and Papua New Guinea (Fishbase: Ref. 6192). | A | None known | A | | 2 | I | | Shortfin saury
(Short-finned
lizardfish) | 1.1 | A | Widespread Fishbase: Tropical, Western Pacific: widespread from the Gulf of Thailand to north- eastern Australia. | A | None known | A | | 2 | ı | | Largescale saury
(Brushtooth
lizardfish) | 1.1
GENUS LEVEL
ESTIMATE | A | Widespread Fishbase: Subtropical; 45°N - 40°S Distribution - Eastern Indian Ocean, Malay Peninsula, southern Philippines, northern Java, Arafura Sea, Louisiade Archipelago, and northern half and south-western Australia. Distribution needs revision due to questionable (unconfirmed) occurrences as reported by major references (see Inoue & Nakabo 2006, Ref. 57869:385-6). | | None known | A | Biomass is likely to be naturally very high, predator. Some question regarding taxonomy? | 3 | I-L | | Common Name | Class | Species Name | Life history strategy | A or
P or
PP | Mode of life - pelagic or demersal | A or
P | Habitat association | A or
P | |--|----------------|-------------------------------|--|--------------------|--|-----------|---|-----------| | Trumpeter whiting | Actinopterygii | Sillago maculata | Resilience (Fishbase Ref. 69278) High, minimum population doubling time less than 15 months (Preliminary K or Fecundity.) Oviparous (Fishbase Ref. 205). Spawn throughout the year with peaks in DecFeb. (Fishbase Ref. 6390). Mode -dioecism Fertilization -external Reproductive guild –nonguarders - open water/substratum egg scatterers | A | Demersal; non-migratory;
brackish; marine; depth range
0 - 50 m (Fishbase Ref.
6205) | | Occur on silty and muddy substrates in the deeper water of bays, but also frequenting the mouths of rivers, estuaries, and mangrove creeks. Juveniles abound in estuaries and shallow water during summer, moving deeper as they mature. Diet of juveniles consist largely of small crustaceans and that of the adult fish consist mainly of polychaete worms and bivalve molluscs. | | | Spinycheek grunter | Actinopterygii | Terapon puta | High, minimum population doubling time less than 15 months (Preliminary K or Fecundity.) Mode -dioecism Fertilization -external, one clear seasonal peak throughout the year. | А | Benthopelagic;
amphidromous (Fishbase
Ref. 51243); freshwater;
brackish; marine; depth range
? - 30 m (Fishbase Ref.
43448) | | Inhabit coastal waters, entering brackish estuaries (Fishbase Ref. 3132) and mangrove areas (Fishbase Ref. 7300). Also in fresh waters (Fishbase Ref. 30573). Feed on fishes and invertebrates. | A | | Largescale grunter
(Banded grunter) | Actinopterygii | Terapon theraps | Resilience (Fishbase: Ref. 69278) High, minimum population doubling time less than 15 months (K=0.6-0.8) | A | Reef-associated; freshwater; brackish; marine . Often found under floating algae. Omnivorous | A | Inhabits coastal waters (Fishbase: Ref. 5213). Often found in brackish waters (Fishbase: Ref. 4833). Juveniles with floating weeds, often far offshore (Fishbase: Ref. 48635). | P | | Yellowfin tripodfish | Actinopterygii | Tripodichthys
angustifrons | Resilience (Fishbase Ref. 69278) Medium, minimum population doubling time 1.4 - 4.4 years (Preliminary K or Fecundity.) | Р | Demersal; marine; depth
range ? - 15 m (Fishbase
Ref. 9804) | Р | Inhabits sandy and muddy flats in coastal areas. Feeds on benthic invertebrates. | Р | | Common Name | Natural
mortality | A or
P | Geographic distribution | A or
P | Cumulative pressures | A or
P | Comments | Risk
prone
score | Resilience level | |--|----------------------|-----------|--|-----------|--|-----------|---|------------------------|------------------| | Trumpeter whiting | 0.57 | P | Restricted: Fishbase: Western Pacific: endemic to Australia. Records of this species from western Australia or northern Australia refer to Sillago burrus. | Р | Commonly caught by recreational fishers | P | Frequently confused with Sillago burrus which occurs in WA & NT | 5 | L | | Spinycheek grunter | 1.11 | A | Widespread: Fishbase: Tropical, Indo-West Pacific: northern Indian Ocean and the Indo-Australian Archipelago. A lessepsian migrant, now prevalent in the Mediterranean (Fishbase Ref. 43448). Only in NGBR in Seabed Biodiversity Project report | A | Coastal
development, water
quality issues and
bait fishery. | Р | | 2 | ı | | Largescale grunter
(Banded grunter) | 1.11 | A | Widespread: Fishbase; Tropical Indo-West Pacific: East Africa, Madagascar, Seychelles, Red Sea, Arabian Peninsula, Persian Gulf to India and Andaman Islands; and southeast Asia. Reaches south to the Arafura Sea (Fishbase: Ref. 9819) and northern Australia (Fishbase: Ref. 3131). | A | None known | A | | 1 | H-I | | Yellowfin tripodfish | 0.86 | Р | Widespread: Fishbase; Tropical Western Central Pacific: known only from Australia (including northwestern Australia) and Indonesia. | A | None known | A | | 4 | I-L | | | Class
Actinopterygii | Species Name
Trixiphichthys
weberi | Life history strategy Resilience (Fishbase Ref. 69278) Medium, minimum population doubling time 1.4 - 4.4 years (Preliminary K or Fecundity.) | PP | | Р | Habitat association Inhabits sandy and muddy flats of coastal waters. Feeds on benthic invertebrates. | A or
P | |--|--------------------------------|--|---|-----------|--|---|--|-----------| | Sunrise goatfish
(Sulphur goatfish) | Actinopterygii | Upeneus
sulphureus | Resilience (Fishbase Ref. 69278)
High, minimum population doubling
time less than 15 months (K=0.5-1.3) ,
mature at 130 mm, ~4 yrs | | Demersal; oceanodromous
(Fishbase Ref. 51243);
brackish; marine; depth range
10 - 90 m (Fishbase Ref.
12260) | | Found in coastal waters, entering estuaries (Fishbase Ref. 30573). Forms schools (Fishbase Ref. 5213). Has appearance of sillaginids when schooling (Fishbase Ref. 48636). | A | | Ochreband goatfish | Actinopterygii | Upeneus
sundaicus | Resilience (Fishbase Ref. 69278) High, minimum population doubling time less than 15 months (Preliminary K or Fecundity.) | | Demersal; brackish; marine;
depth range 20 - 60 m
(Fishbase Ref. 83903) | | Inhabits coastal waters down to 100 m.
Usually occurs in schools. Feeds on
benthic animals (Fishbase Ref. 2110). | Р | | Hairfin goby | Actinopterygii | Yongeichthys
nebulosus | Guard eggs, good to moderate ability to recover populations | Р | Closely associated with seafloor | | Found over silty (Fishbase Ref. 58652) and muddy bottoms around inner reefs. Common in mangroves and enter estuaries and rivers (Fishbase Ref. 4343). | A | | Common Name Blacktip tripodfish (Long-nosed tripodfish) | Natural
mortality
0.33 | Р | Geographic distribution Widespread: Fishbase; Tropical, Western Pacific: Philippines through Indonesia to northern Australia. Indian Ocean: both sides of Bay of Bengal. | Р | Cumulative
pressures
None known | A or
P | Comments | Risk
prone
score
4 | Resilience level | |---|------------------------------|---|--|---|---------------------------------------|-----------|----------|-----------------------------|------------------| | Sunrise goatfish
(Sulphur goatfish) | 2.23 | | Widespread:
Fishbase; Tropical, Indo-West Pacific: East
Africa to southeast Asia, north to China, south
to northern Australia and Fiji (Fishbase Ref.
12743). | А | None known | A | | 1 | H-I | | Ochreband goatfish | 2.23 | | Widespread: Fishbase; Tropical, Indo-West Pacific: Pakistan, India and Sri Lanka, extending eastward to Indonesia. Recorded from the Gulf (Fishbase Ref. 37588); also from north- western Australia northward to Japan. Only in NGBR in Seabed Biodiversity
Project report | | None known | Α | | 2 | I | | Hairfin goby | 3 or more?
(high) | | Widespread: Fishbase; Tropical, Indo-West Pacific: East Africa through Indonesia to Micronesia, north to China and the Ryukyu Islands (Fishbase Ref. 559), south to northern Australia. Only in northern GBR in Seabed Biodiversity Project report | Α | None known | A | | 2 | I | | Common Name | Class | Species Name | Life history strategy | A or
P or
PP | Mode of life - pelagic or
demersal | A or
P | Habitat association | A or
P | |--------------------|-----------|-----------------------------|--|--------------------|---|-----------|--|-----------| | Seapens
Sea pen | Anthozoa | Sea pen
(Pteroides?) sp1 | Assume good ability to maintain population as likely to be highly fecund. Wikipedia: Sea pens reproduce by coordinating a release of sperm and eggs into the water column; this may occur seasonally or throughout the year. | A | Benthic | P | Benthic | P | | Bivalves | | | | | | | | | | Bivalve sp | Bivalvia | | Assume good ability to maintain population as likely to be highly fecund. | Α | Benthic | Р | Benthic | Р | | Glycymerididae | Bivalvia | | Shallow burrowing infaunal bivalve that inhabits soft substrates, with little information available on biology | A | Benthic | | Most areas of GBR except high current areas, Courtney et al 2007 1% north QLD trawls. In the Dampier area, Melaxinaea vitrea is associated with more inshore silts and muds, and is common in that area (Taylor & Glover 2004) | A | | Bivalve sp | Bivalvia | | Shallow burrowing infaunal bivalve that inhabits soft substrates, with little information available on biology | A | benthic; marine; depth range
10 – 50 m, | Р | Benthic: endofauna (infauna); Soft
Bottom, Seabed mud, caught in
research sled rather than trawl | A | | Crustaceans | | | | | | | | | | Blunt-toothed crab | Crustacea | Charybdis truncata | small abundant portunid crab, short lived (cf <i>P. pelagicus</i>), | A | demersal; marine; depth
range 10 – 100 m | Р | 88% trawl samples north QLD Courtney et al 2007 | Р | | Common Name Seapens | Natural
mortality
From Pitcher et
al. 2007 | A or
P | Geographic distribution | A or
P | Cumulative pressures | A or
P | Comments | Risk
prone
score | Resilience level | |--------------------------------|---|-----------|--|-----------|----------------------|-----------|--|------------------------|------------------| | Sea pen | Unknown | Р | Unknown | Р | None known | A | Wikipedia: Analysis of rachis growth rings indicates sea pens may live for 100 years or more, if the rings are indeed annual in nature | 4 | I-L | | Disabas | From Pitcher et | | | | | | | | | | Bivalves Bivalve sp | al. 2007
Unknown | Р | Widespread Sealife base: Tropical, Indo-West Pacific: from East Africa, to Melanesia; north to Japan and south to South Australia. | A | None known | A | | 3 | I-L | | Glycymerididae | unknown | Р | Widespread
Sealife base: Tropical, Eastern Indian Ocean:
Australia. | А | None known | A | | 2 | I | | Bivalve sp | unknown | Р | Widespread Sealife base: Tropical, Indo-West Pacific: from East Africa, to Melanesia; north to Japan and south to South Australia. | A | None known | A | | 2 | I | | Constant and a second | From Pitcher et | | | | | | | | | | Crustaceans Blunt-toothed crab | al. 2007
high (for P.
sanguinolentus,
0.5-1.0) | | Widespread Sealife base: Tropical, Indo-West Pacific, reaching Japan and Australia. | Α | None known | A | | 2 | I | | Common Name | Class | Species Name | Life history strategy | PP | Mode of life - pelagic or
demersal | | Habitat association | A or | |--------------------------------------|-----------|-----------------------------|---|----|---|---|--|------| | Pilumnidae (Hairy crabs) | Crustacea | Cryptolutea
arafurensis | No information available, but assume moderate ability to maintain population | P | Benthic. Depths to 59 m. | | Benthic, low intertidal, mangrove, soft
bottom, sub tidal. Common on muddy
seabeds, and had the largest predicted
positive trawl effect change (+19%)
(Pitcher et al 2007) | P | | (Hermit crab) | Crustacea | Diogenidae sp356-
1 | No information available, but assume moderate ability to maintain population | Р | Benthic | Р | Unknown | Р | | Leucosiidae (Purse crabs) | Crustacea | Myra tumidospina | No information available, but assume moderate ability to maintain population | Р | Benthic; marine | Р | Unknown | Р | | Portunidae
(Swimming crabs) | Crustacea | Portunus
gracilimanus | Good to moderate ability to maintain population. Small species Carry eggs, which hatch live and become planktonic. | A | demersal; marine | | Mud and sand, negatively correlated with gravel. Occurrence is positively correlated with trawl in Seabed Biodiversity Project. | A | | Portunidae
(Swimming crabs) | Crustacea | Portunus
tuberculosus | No information available, but assume good ability to maintain population as for other species in genus | А | Pelagic; marine; depth range
12 – 52 m | А | ABRS: Benthic, continental shelf, sub
littoral.
Soft substrates, to 140 m depth. | Р | | Hardback shrimp
(Penaeid shrimps) | Crustacea | Trachypenaeus
anchoralis | FAO guide: Maximum body length 10.4 cm(females) and 7 cm(males). Found on bottoms of mud to coral debris, from depths of 12.5 to 60 m. Assumed to have good ability to maintain population. | Α | demersal | P | Inshore muddy sandy areas whole GBR. Occurs at depths from 12.5 to 52 m. | . Р | | Common Name | Natural
mortality | | Geographic distribution | A or
P | · Cumulative
pressures | A or
P | Comments | Risk
prone
score | Resilience level | |--------------------------------------|----------------------|---|---|-----------|--|-----------|--|------------------------|------------------| | Pilumnidae (Hairy crabs) | Unknown | P | Pitcher et al 2007 species distribution map indicates widespread. ABRS: Northern Territory: Gulf of Carpentaria, N coast & Queensland: Gulf of Carpentaria | A | None known | A | | 4 | 土 | | (Hermit crab) | Unknown | Р | Pitcher et al 2007 species distribution map indicates widespread. | Α | None known | A | | 4 | I-L | | Leucosiidae (Purse crabs) | Unknown | Р | Widespread
Sealife base: Tropical, Western Central
Pacific: Indonesia, Philippines, New Caledonia,
Fiji and Vanuatu. | | None known | A | | 4 | I-L | | Portunidae
(Swimming crabs) | 1.73 | A | Widespread Sealife base: Subtropical, Indo-West Pacific: China and Taiwan Widely distributed inner half of GBR shelf. | A | No other fishery pressures likely | A | More catchable in north Qld prawn trawl, also caught in lower quantities in scallop fishery. | 1 | H-I | | Portunidae
(Swimming crabs) | Unknown | Р | Widespread ABRS: Tropical NT and QLD Mostly in northern GBR in Seabed Biodiversity Project report | А | None known | A | | 2 | ı | | Hardback shrimp
(Penaeid shrimps) | 2.35 | Α | Widespread Sealife base: Tropical, Indo-West Pacific: Taiwan and Australia. FAO Guide: Generally believed to be restricted to northern Australia from Shark Bay (western Australia) and Keppel Bay (Queensland), but probably also occurs in southern Taiwan Province of China. | | FAO Guide: Taken mainly by trawls. Caught incidentally in the northern prawn fishery of Australia, but without much economic importance, due to its relatively small size. | A | ? Offshore in trawl catches | 2 | | | Common Name | Class | Species Name | Life history strategy | A or
P or
PP | Mode of life - pelagic or
demersal | A or
P | Habitat association | A or
P | |----------------------|------------|---------------------------|--|--------------------|--|-----------
---|-----------| | Gastropods Sea snail | Gastropoda | Aplysia sp1_QMS | Possibly have demersal eggs, pelagic larvae (A dactylomela), reproduce from 2 moths til about 9 moths, many million eggs | A | benthic | Р | Similar species: A dactylomela: from Wikipedia: commonly found in shallow waters, tide pools and rocky and sandy substrates, during day mostly hide. Usually stay in relatively shallow water, but they have been found as deep as 40m. Often considered reef associated. | A | | Small sea snail | Gastropoda | Lamellaria sp1 | No information available, but assume moderate ability to maintain population | | benthic | Р | Unknown | P | | Sea snail | Gastropoda | Nassarius
cremmatus cf | Mud whelk, pelagic veliger larvae | A | Benthic, very low catchability,
Seabed Biodiversity Project
research sled caught > 20
times trawl gear, likely to go
under trawl net and very
robust shelled animal | A | Shallow muddy areas, widely distributed not only in trawl grounds | A | | Common Name | | A or
P | Geographic distribution | | Cumulative pressures | A or
P | Comments | Risk
prone
score | Resilience level | |-----------------|---|-----------|--|---|----------------------|-----------|---|------------------------|------------------| | Sea snail | Unknown but
probably high,
short lived (< 1
yr), veliger
larvae | | Capricorn Bunker group to Mackay and offshore Cape Bedford, Pitcher et al 2007 | A | None known | A | Genus includes medium sized to extremely large sea slugs, specifically sea hares. Courtney et al 2007: a few caught in scallop fishery by catch Aplysia dactylomela, 2% of samples in scallop fishery. Other species have short life spans (< 1 yr) | 1 | H-I | | Small sea snail | Unknown | | Swains , Pompeys, inshore and offshore. Wide distribution but not very abundant (Pitcher et al 2007) | | None known | А | Probably relative catch rate (to sled) is ~3-4%, as at the order level, Seabed Biodiversity Project showed that trawl typically captures 3.5% relative to research sled. | 4 | I-L | | Sea snail | ? Warm temperate northern hemisphere species have moderate growth and mortality, tropical shorter lived, higher mortality ? cf prawns | A | Widespread
Sealife base: Tropical | A | None known | A | lifespan 3-5 yrs temperate,
Hong Kong sp 1-2 yrs | 0 | Н | | Common Name | Class | Species Name | Life history strategy | A or
P or
PP | | A or
P | Habitat association | A or | |---------------------------|----------------|------------------------------|--|--------------------|------------------------------------|-----------|---|------| | Ray-finned fish Razorfish | Actinopterygii | Aeoliscus
strigatus | Resilience (Ref. 69278) High,
minimum population doubling time less
than 15 months (Preliminary K or
Fecundity.) Schoolers. | | Demersal; depth range 1 - 20 m | Р | Benthic, continental shelf, coral reef, inshore, schooling. EOL: Form schools among the spines of Diadema or staghorn corals, and feed on minute crustaceans in the zooplankton. | A | | Pineapple fish | Actinopterygii | Cleidopus
gloriamaris | Resilience (Ref. 69278) Very Low, minimum population doubling time more than 14 years (Preliminary K or Fecundity.) Reproduction unknown assumed to be non-guarders. | PP | Demersal; depth range 6 -
200 m | P | Benthic, continental shelf, coral reef, inshore, nocturnal, rock reef. EOL: Found in caves and under ledges of rocky, occasionally coral-reef habitats (Ref. 9710). Also in muddy substrates (Ref. 9563). | A | | Personifer
angelfish | Actinopterygii | Chaetodontoplus
meredithi | Resilience (Ref. 69278) Medium, minimum population doubling time 1.4 4.4 years (Preliminary K or Fecundity). Broadcast spawners. Solitary or in pairs. | | Demersal; depth range 10 -
50 m | | Coral reef, inshore, rock reef, silt bottom–marine. Inhabits soft or rubble bottoms and open flat bottom areas with rock, coral, sponge, and sea whip outcrops. Flat bottoms with rocky coral patches in 6 - 45m. Harbours and coastal to inner reefs, usually in sponge areas and often under deep jetties where sponges are prolific on pylons. Small juveniles in rocky ledges with sea urchins. | | | Common Name | Natural
mortality | A or
P | Geographic distribution | Cumulative pressures | A or
P | Comments | Risk
prone
score | Resilience level | |-------------------------|----------------------|-----------|--|--|-----------|---|------------------------|------------------| | Razorfish | Unknown | | Widespread EOL: Indo-West Pacific: Tanzania (Ref. 51015) and Seychelles (Ref. 1623); then from southern Japan to New South Wales, Australia. | Collected for Marine
Aquarium Fish
trade, but
collections localised
and relatively low
fishing effort | | This species identified as interacting with trawl in the ecological risk assessment of Marine Aquarium Fish Fishery | 2 | I | | Pineapple fish | Unknown | | Widespread EOL: Eastern Indian Ocean to Western Pacific: Australia. | Collected for Marine
Aquarium Fish
trade, but
collections localised
and relatively low
fishing effort | | This species identified as interacting with trawl in the ecological risk assessment of Marine Aquarium Fish Fishery | 4 | I-L | | Personifer
angelfish | Unknown | | Widespread EOL: Western Pacific: Queensland, Australia. Reported to range south to New South Wales and Lord Howe Island (Ref. 9710). | Collected for Marine
Aquarium Fish
trade, but
collections localised
and relatively low
fishing effort | | This species identified as interacting with trawl in the ecological risk assessment of Marine Aquarium Fish Fishery | 3 | I-L | | Common Name | Class | Species Name | , | | Per cent
effort
exposed | A or P
or PP | Survival after capture | A or P | Effectiveness of TEDs/BRDs | A or P | |-----------------------------|----------------|--|---|----|--|-----------------|--|--------|---|--------| | Ray-finned fish | | | R 14-58 Table 3-57
Seabed
Biodiversity
excluding BRD
effect | | R 14-58 Table
3-57 Seabed
Biodiversity | | | | | | | Pearly-finned cardinal fish | Actinopterygii | Apogon
poecilopterus | 48 | Р | 51 | PP | Assume 100% mortality based on expert opinion | Р | No effect of BRD
(Courtney et al 2007) | Р | | Pigmy
leatherjacket | Actinopterygii | Brachaluteres
taylori | 9 | A | 72 | PP | Assume high survival based on expert opinion | А | No effect of BRD
(Courtney et al 2007) | Р | | Tufted sole | Actinopterygii | Brachirus muelleri
/
Dexillichthys
muelleri | 119 | PP | 119 | PP | Seem to survive OK -
assume at least moderate
survival | A | Could not analyse for effect of BRD (Courtney et al 2007) | Р | | Longnose stinkfish | Actinopterygii | Calliurichthys
grossi /
Callionymus
grossi | 25 | А | 59 | PP | Unknown | Р | Unknown | Р | | Prickly
leatherjacket | Actinopterygii | Chaetodermis penicilligera | 31 | Р | 31 | PP | Assume similar to pigmy leatherjacket | А | Unlikely to be effective | Р | | Spotted-fin tongue-
sole | Actinopterygii | Cynoglossus
maculipinnis | 7 | A | 52 | PP | Assume similar to turfted sole: at least moderate survival | A | Unknown | Р | | Naked-headed catfish | Actinopterygii | Euristhmus
nudiceps | 51 | PP | 51 | PP | Pretty hardy post-capture,
from FRDC project 96/257 | А | Good reduction in trials
(Courtney et al 2007); but
current BRD's not
particularly effective | Р | | Common Name | Refuge
availability | A or P | Variance | Comments | Risk prone | Fishery
Impact
Profile
level 2005 | RISK 2005 | |-----------------------------|---|--------|---|---|------------|--|-----------| | Ray-finned fish | R 14-58 Table 3-
57 Seabed
Biodiversity | | | | | | | |
Pearly-finned cardinal fish | 50 | | More of a north QLD species, so main interaction will be with trawl sectors operating in north QLD. | Mean size of 4.8mm | 5 | Н | HIGH | | Pigmy
leatherjacket | 29 | A | | | 3 | I | INT | | Tufted sole | 31 | A | | Mean size of 162mm | 5 | Н | HIGH | | Longnose stinkfish | 46 | A | | | 4 | H-I | INT-HIGH | | Prickly
leatherjacket | 41 | A | | | 4 | H-I | HIGH | | Spotted-fin tongue-
sole | 40 | A | | | 3 | I | INT | | Naked-headed catfish | 44 | A | | Very common in tiger prawn trawl by catch | 5 | Н | HIGH | | Common Name | Class | Species Name | Per cent caught
(W/O BRD
EFFECT) | A or P | Per cent
effort
exposed | A or P
or PP | Survival after capture | A or P | Effectiveness of TEDs/BRDs | A or P | |---------------------|----------------|---|--|--------|-------------------------------|-----------------|---|--------|--|--------| | Rough flutemouth | Actinopterygii | Fistularia petimba | 32 | P | 32 | P | Low survival. Elongated fish tend to have poor survival in trawl as even individuals that go through the net may not survive well | Р | In 41% of north QLD samples from Courtney et al 2007; 1% of samples from the scallop fishery. Benefit from large-mesh net; current BRD's probably not having much of an effect, but other models could be effective. | Р | | Orangefin ponyfish | Actinopterygii | Leiognathus
bindus /
Photopectoralis
bindus | 1 | A | 63 | PP | Low survival | Р | Not effective | P | | Whipfin ponyfish | Actinopterygii | Leiognathus
leuciscus /
Equulites
leuciscus | 41 | Р | 95 | PP | Low survival | Р | Not effective | Р | | Splendid ponyfish | Actinopterygii | Leiognathus
splendens
/Eubleekeria
splendens | 4 | A | 54 | PP | moderate - Stobutzki et al
FRDC 1996/257 | Α | not effective | Р | | Fourlined terapon | Actinopterygii | Pelates
quadrilineatus | 15 | A | 103 | PP | Moderate survival -
Stobutzki et al FRDC
1996/257 | A | Quite good swimmers, but lack data on effectiveness of BRDs. Assume about 8%. Expect quite high escapement from trawl gear in general because quite small species. | | | Longfin silverbiddy | Actinopterygii | Pentaprion
longimanus | 13 | A | 117 | PP | Low survival - dead in net | Р | No data: assume ineffective | P | | Common Name | Refuge
availability | A or P | Variance | Comments | Risk prone | Fishery
Impact
Profile
level 2005 | RISK 2005 | |---------------------|------------------------|--------|----------|--|------------|--|-----------| | Rough flutemouth | 56 | A | | Catching small animals (average between 400 and 600mm) in prawn and scallop trawl grounds, but adults gets much bigger at greater than 1.2m. | 4 | H-I | HIGH | | Orangefin ponyfish | 58 | A | | | 4 | H-I | INT-HIGH | | Whipfin ponyfish | 41 | A | | Extremely common in trawl by catch in north Queensland. Seen early evening and probably also in the daytime. Captured at sizes less than maturity | 5 | н | HIGH | | Splendid ponyfish | 46 | A | | Quite common in trawl by catch. | 3 | I | INT | | Fourlined terapon | 31 | A | | Trawl catch average size 102mm, in 14% of catch, Courtney et al 2007. Few caught below 20m depth, more common around 10m. Tend to see at about 100mm in catch. | 3 | I | INT | | Longfin silverbiddy | 38 | A | | More likely to be caught by daytime banana prawn fishery, as this is not a nocturnal species. | 4 | H-I | HIGH | | Common Name | Class | Species Name | Per cent caught
(W/O BRD
EFFECT) | A or P
or PP | Per cent
effort
exposed | A or P
or PP | Survival after capture | A or P | Effectiveness of TEDs/BRDs | A or P | |--|----------------|--|--|-----------------|-------------------------------|-----------------|---|--------|--|--------| | Australian
threadfin | Actinopterygii | Polydactylus
multiradiatus | Assume about 22 (check data) | А | 22 | А | Unknown | Р | Unknown | Р | | Blotched javelin | Actinopterygii | Pomadasys
maculatus | 35 | Р | 35 | Р | Low survival | Р | No data from Courtney et al 2007: assume ineffective | Р | | Damselfish sp | Actinopterygii | Pristotis
obtusirostris | 17 | А | 21 | А | Low survival | Р | Unknown | Р | | Australian halibut | Actinopterygii | Psettodes erumei | 56 | PP | 56 | PP | Assumed to be relatively high survival as appear quite hardy on sorting tray | А | No effect of BRD
(Courtney et al 2007) | Р | | Flathead dragonet | Actinopterygii | Repomucenus
belcheri /
Callionymus
belcheri | 22 | A | 53 | PP | Unknown | Р | No effect of BRD
(Courtney et al 2007) | Р | | Shortfin saury
(Short-finned
lizardfish) | Actinopterygii | Saurida
argentea/tumbil | 63 | PP | 63 | PP | Low survival as soft bodied and usually die quite quickly once captured. Predation also an issue. | Р | No effect of BRD
(Courtney et al 2007) | Р | | Largescale saury
(Brushtooth
lizardfish) | Actinopterygii | Saurida
grandisquamis/
undosquamis | 46 | Р | 46 | P | Low survival as soft bodied and usually die quite quickly once captured. | Р | No effect of BRD currently used in QLD, but significant effect (80%) Square Mesh Codend in scallop fishery (Courtney et al 2007) | Р | | Trumpeter whiting | Actinopterygii | Sillago maculata | 37 | Р | 37 | Р | Moderate survival | Р | Tested radial escape section but not significant for this species. | Р | | Common Name | Refuge
availability | A or P | Variance | Comments | | Fishery
Impact
Profile
level 2005 | RISK 2005 | |--|------------------------|--------|----------|---|---|--|-----------| | Australian
threadfin | 70 | А | | | 2 | I-L | INT-LOW | | Blotched javelin | 35 | A | | Can grow to 600mm and 3.2kgs. Reef associated. Courtney et al report common in by catch, probably catching juveniles. | 4 | H-I | HIGH | | Damselfish sp | 57 | А | | | 2 | I-L | INT-LOW | | Australian halibut | 39 | А | | Range of sizes caught (industry/expert opinion) | 5 | Н | HIGH | | Flathead dragonet | 36 | A | | | 4 | H-I | INT-HIGH | | Shortfin saury
(Short-finned
lizardfish) | 42 | A | | | 6 | Н | HIGH | | Largescale saury
(Brushtooth
lizardfish) | 41 | A | | Catching smallest individuals in shallow sectors, then in scallop mid sized, and in deepwater king getting large ones. Possibly latitudinal variation in growth/size? In by catch from all trawl sectors. | 4 | H-I | HIGH | | Trumpeter whiting | 54 | A | | Was in 27% of samples from nth old tiger/endeavour trawl fishery - Courtney et al 2007. Average size 160mm se 1.48mm trawl by catch. | 4 | H-I | HIGH | | Common Name | Class | Species Name | Per cent caught
(W/O BRD
EFFECT) | A or P | Per cent
effort
exposed | A or P | Survival after capture | A or P | Effectiveness of TEDs/BRDs | A or P | |---|----------------|-------------------------------|--|--------|-------------------------------|--------|--|--------|--|--------| | Spinycheek
grunter | Actinopterygii | Terapon puta | 64 | PP | 78 | PP | Assume good survival as considered very hardy species | А | No data from Courtney et
al 2007; may be good
swimmers and should be
able to escape from
BRD's, but likely to get
meshed; considered to be
more of a daytime fish
than night time | Р | | Largescale grunter
(Banded grunter) | Actinopterygii | Terapon theraps | 6 | A | 62 | PP | Assume at least moderate survival, as high survival (97%) after 30 min trawls in Hill and Wassenberg 1990. | A | No data from Courtney et
al 2007, assume similar to
Spinycheek Grunter (was
assessed as Prone) | Р | | Yellowfin tripodfish | Actinopterygii | Tripodichthys
angustifrons | 50 | P | 50 | Р | Assume good survival as considered very hardy species | А | Rare in samples Courtney et al 2007; unlikely to be excluded by BRD's. | Р | | Blacktip tripodfish
(Long-nosed
tripodfish) | Actinopterygii | Trixiphichthys
weberi | 40 | P | 40 | P | Medium 1/3 to 2/3 survival ilona's report. Mostly daytime species. | A | Bit more common 12%
north QLD; 11% samples
from scallop fishery.
107mm average size
north QLD; 139mm TL
average size scallop
fishery | Р | | Sunrise goatfish
(Sulphur goatfish) | Actinopterygii | Upeneus
sulphureus | 26 | Р | 58 | PP | Fairly soft fleshed and easily injured. Ilona report 1/3 to 2/3 survive. | A | There was a sign effect of BRD's in
Courtney et al 2007. Radial escape section. Could benefit from other BRD's. | Р | | Common Name Spinycheek grunter | Refuge
availability
44 | A or P | Variance Expect greater interaction with banana prawn fishery and other daytime or very early evening trawling activities. Note: catchability may be lower than estimated | Comments | Risk prone | | RISK 2005
HIGH | |---|------------------------------|--------|--|---|------------|-----|-------------------| | Largescale grunter
(Banded grunter) | 37 | A | by research, given more of a daytime species, and this would tend to reduce exposure to trawl. | Occurred in 12.9% of by catch samples in tiger/endeavour prawn trawl fishery (Courtney et al 2007). | 3 | I | INT | | Yellowfin tripodfish | 55 | A | | | 3 | ı | INT | | Blacktip tripodfish
(Long-nosed
tripodfish) | 44 | A | | | 3 | I | INT | | Sunrise goatfish
(Sulphur goatfish) | 30 | A | | | 4 | H-I | INT-HIGH | | Common Name | Class | Species Name | Per cent caught
(W/O BRD
EFFECT) | A or P | Per cent
effort
exposed | A or P
or PP | Survival after capture | A or P | Effectiveness of TEDs/BRDs | A or P | |-------------------------|----------------|------------------------------|---|--------|--|-----------------|---|--------|---|--------| | Ochreband
goatfish | Actinopterygii | Upeneus
sundaicus | 42 | Р | 93 | PP | Fairly soft fleshed and easily injured. Ilona report 1/3 to 2/3 survive. | A | There was a sign effect of BRD's in Courtney et al 2007. Radial escape section. Could benefit from other BRD's. | P | | Hairfin goby | Actinopterygii | Yongeichthys
nebulosus | 51 | PP | 51 | PP | Low survival | Р | Unknown | Р | | Seapens | | | | | | | | | | | | Sea pen | Anthozoa | Sea pen
(Pteroides?) sp1 | 8 | A | 50 | Р | Assume depletion and recovery similar to gorgonian gardens (assessed as habitat element): medium depletion rate and low recovery, giving relatively poor survival | Р | Unlikely to be effective | Р | | Razorfish | Actinopterygii | Aeoliscus
strigatus | Uncertain, but
considered to be
less than 25% | A | Uncertain, but
considered to
be less than
25% | А | Uncertain, but may be low | Р | Unlikely to be effective | Р | | Pineapple fish | Actinopterygii | Cleidopus
gloriamaris | Uncertain, but
considered to be
less than 25% | A | Uncertain, but
considered to
be less than
25% | A | Uncertain, but may be low | P | Unlikely to be effective | P | | Personifer
angelfish | Actinopterygii | Chaetodontoplus
meredithi | Uncertain, but
considered to be
less than 25% | A | Uncertain, but
considered to
be less than
25% | A | Uncertain, but may be low | P | Unlikely to be effective | P | | Common Name | Refuge
availability | A or P | Variance | Comments | Risk prone | level 2005 | RISK 2005 | |-------------------------|---|--------|----------|--|------------|------------|-----------| | Ochreband
goatfish | 37 | A | | | 4 | H-I | INT-HIGH | | Hairfin goby | 58 | A | | | 6 | Н | HIGH | | Seapens | R 14-58 Table 3-
57 Seabed
Biodiversity | | | | | | INT-LOW | | Sea pen | 43 | A | | The exposure of sea pens in the genus Pteroides was 16%, and sea pens appear to have a low catchability (~0.06) with narrow uncertainty (~0.05), so would appear to be at low risk [from discarding] (Pitcher et al 2007), [however some risk from contact without capture]. | 3 | I | INT-LOW | | Razorfish | | A | | | 2 | I-L | INT-LOW | | Pineapple fish | | A | | | 2 | I-L | | | Personifer
angelfish | | A | | Although small juveniles reported to be in crevices and may be inaccessible to trawlers, anecdotal reports of interaction of juveniles with trawlers | 2 | I-L | INT | | Common Name | Class | Species Name | Per cent caught
(W/O BRD
EFFECT) | | Per cent
effort
exposed | A or P
or PP | Survival after capture | A or P | Effectiveness of TEDs/BRDs | A or P | |-----------------------------|-----------|----------------------------|--|---|-------------------------------|-----------------|---|--------|---|--------| | Bivalves | | | | | | | | | | | | Bivalve sp | Bivalvia | Enisiculus
cultellus | 5 | A | 75 | PP | Good survival post-
capture | A | Trawl catchability negligible, so not applicable | A | | Glycymerididae | Bivalvia | Melaxinaea vitrea | 4 | A | 63 | PP | High survival | A | Trawl catchability negligible so not applicable | A | | Bivalve sp | Bivalvia | Placamen tiara | 2 | A | 55 | PP | High survival | A | Trawl catchability negligible so not applicable | A | | Crustaceans | | | | | | | | | | | | Blunt-toothed crab | Crustacea | Charybdis
truncata | 18 | Α | 46 | Р | High survival | Α | no effect | Р | | Pilumnidae (Hairy
crabs) | Crustacea | Cryptolutea
arafurensis | 4 | А | 128 | PP | Good survival post-
capture | A | TEDs/BRDs not effective
for small crabs, even with
best designs tend not to
be excluded. | Р | | (Hermit crab) | Crustacea | Diogenidae sp356-
1 | 3 | A | 36 | P | Likely to have relatively good survival | A | TEDs/BRDs not effective for small crabs, even with best designs tend not to be excluded. | Р | | Common Name | Refuge
availability | A or P | Variance | Comments | Risk prone | Fishery
Impact
Profile
Ievel 2005 | RISK 2005 | |--------------------------|---|--------|----------|---|------------|--|-----------| | Bivalves | R 14-58 Table 3-
57 Seabed
Biodiversity | | | | | | | | Bivalve sp | 39 | A | | This species is associated with Assemblage 12, which had 108% exposure in 2005, and was distributed in patches along the coastal/innershelf from the Whitsundays to Cape Upstart and from Cairns north. | 2 | I-L | INT-LOW | | Glycymerididae | 41 | А | | Mostly research sled captures, 7% trawl catchability in Seabed Biodiversity Project | 2 | I-L | INT-LOW | | Bivalve sp | 45 | A | | This species is associated with Assemblage 12, which had 108% exposure in 2005, and was distributed in patches along the coastal/innershelf from the Whitsundays to Cape Upstart and from Cairns north. | 2 | I-L | INT-LOW | | Crustaceans | R 14-58 Table 3-
57 Seabed
Biodiversity | | | | | | | | Blunt-toothed crab | 52 | А | | | 2 | I-L | INT-LOW | | Pilumnidae (Hairy crabs) | 43 | A | | This species is associated with Assemblage 12, which had 108% exposure in 2005, and was distributed in patches along the coastal/innershelf from the Whitsundays to Cape Upstart and from Cairns north. | 3 | I | INT | | (Hermit crab) | 55 | A | | | 2 | I-L | INT-LOW | | Common Name | Class | Species Name | Per cent caught
(W/O BRD
EFFECT) | | Per cent
effort
exposed | A or P
or PP | Survival after capture | A or P | Effectiveness of TEDs/BRDs | A or P | |--------------------------------------|------------|-----------------------------|--|---|-------------------------------|-----------------|---|--------|--|--------| | Leucosiidae
(Purse crabs) | Crustacea | Myra tumidospina | 8 | A | 60 | PP | Likely to have relatively good survival | A | TEDs/BRDs not effective for small crabs, even with best designs tend not to be excluded. | Р | | Portunidae
(Swimming crabs) | Crustacea | Portunus
gracilimanus | 34 | Р | 86 | PP | Likely to have relatively good survival | A | TEDs/BRDs not effective for small crabs, even with best designs tend not to be excluded. | P | | Portunidae
(Swimming crabs) | Crustacea | Portunus
tuberculosus | 3 | A | 46 | P | Likely to have relatively good survival | A | TEDs/BRDs not effective for small crabs, even with best designs tend not to be excluded. | Р | | Hardback shrimp
(Penaeid shrimps) | Crustacea | Trachypenaeus
anchoralis | 17 | A | 67 | PP | Moderate survival | A | no effect | Р | | Gastropods | | | | | | | | | | | | Sea snail | Gastropoda | Aplysia sp1_QMS | 38 | Р | 38 | Р | Low - moderate survival (poor quality info) | Р | Unknown but probably not effective | P | | Small sea snail | Gastropoda | Lamellaria sp1 | 37 | Р | 37 | Р | Unknown | Р | Unlikely to be effective | Р | | Sea snail | Gastropoda | Nassarius
cremmatus cf | 2 | А | 57 | Р | High survival | A | Ineffective but not applicable | А | | Common Name | Refuge
availability | A or P | Variance Com | | Risk prone | | RISK 2005 | |--------------------------------------|---|--------|--------------
--|------------|-----|-----------| | Leucosiidae
(Purse crabs) | 43 | А | | | 3 | I | INT | | Portunidae
(Swimming crabs) | 41 | A | samp | ght at 36mm in north QLD, in 35% of oles Courtney et al 2007. Sub adult to adult es likely to be caught. | 4 | H-I | INT-HIGH | | Portunidae
(Swimming crabs) | 53 | A | | | 2 | I-L | INT-LOW | | Hardback shrimp
(Penaeid shrimps) | 36 | A | | rled over varying bottom types from mud to debris, depths to 60m. | 3 | I | INT | | Gastropods | R 14-58 Table 3-
57 Seabed
Biodiversity | | | | | | | | Sea snail | 49 | А | Proba | ably capture all life stages once settled. | 4 | H-I | INT-HIGH | | Small sea snail | 54 | Α | | | 4 | H-I | HIGH | | Sea snail | 45 | Α | Only | catch large specimens | 1 | L | LOW | | Common Name | Class | Species Name | Per cent caught
2009 (W/O BRD
EFFECT) | | Per cent effort exposed 2009 | | | A or P | Effectiveness of TEDs/BRDs | A or P | |-----------------------------|----------------|---|---|---|-----------------------------------|---|---|--------|---|--------| | Ray-finned fish | | | | | | | | | | | | Pearly-finned cardinal fish | Actinopterygii | Apogon
poecilopterus | 19 | A | 20 | А | Assume 100% mortality based on expert opinion | Р | No effect of BRD (Courtney et al 2007) | Р | | Pigmy
leatherjacket | Actinopterygii | Brachaluteres
taylori | 6 | A | 50 | Р | Assume high survival based on expert opinion | A | No effect of BRD (Courtney et al 2007) | Р | | Tufted sole | Actinopterygii | Brachirus muelleri /
Dexillichthys
muelleri | 37 | Р | 37 | Р | Seem to survive OK -
assume at least
moderate survival | | Could not analyse for effect of BRD (Courtney et al 2007) | Р | | Longnose stinkfish | Actinopterygii | Calliurichthys
grossi /
Callionymus grossi | 9 | А | 22 | A | Unknown | Р | Unknown | Р | | Prickly
leatherjacket | Actinopterygii | Chaetodermis penicilligera | 18 | А | 18 | А | Assume similar to pigmy leatherjacket | Α | Unlikely to be effective | Р | | Spotted-fin tongue-
sole | Actinopterygii | Cynoglossus
maculipinnis | 3 (data from
Pitcher in 2011) | А | 21 (data from
Pitcher in 2011) | А | Assume similar to turfted sole: at least moderate survival | А | Unknown | Р | | Naked-headed catfish | Actinopterygii | Euristhmus
nudiceps | 19 | А | 19 | А | Pretty hardy post-
capture, from FRDC
project 96/257 | А | Good reduction in trials
(Courtney et al 2007); but
current BRD's not particularly
effective | Р | | Rough flutemouth | Actinopterygii | Fistularia petimba | 13 | A | 13 | А | Low survival. Elongated fish tend to have poor survival in trawl as even individuals that go through the net may not survive well | | In 41% of north QLD samples from Courtney et al 2007; 1% of samples from the scallop fishery. Benefit from largemesh net; current BRD's probably not having much of an effect, but other models could be effective. | Р | | | Refuge availa- | | Variance | Comments | Risk prone | Fishery Impact
Profile level
2009 | RISK 2009 | |-----------------------------|--|---|---|--|------------|---|-----------| | Ray-finned fish | R 14-58 Table
3-57 Seabed
Biodiversity | | | | | | | | Pearly-finned cardinal fish | 50 | A | More of a north QLD species, so main interaction will be with trawl sectors operating in north QLD. | Mean size of 4.8mm | 2 | I-L | INT-LOW | | Pigmy
leatherjacket | 29 | A | | | 2 | I-L | LOW | | Tufted sole | 31 | A | | Mean size of 162mm | 3 | ı | INT | | Longnose stinkfish | 46 | A | | | 2 | I-L | INT-LOW | | Prickly
leatherjacket | 41 | A | | | 1 | L | INT-LOW | | Spotted-fin tongue-
sole | 40 | A | | | 1 | L | INT-LOW | | Naked-headed catfish | 44 | A | | Very common in tiger prawn trawl by catch | 1 | L | INT-LOW | | Rough flutemouth | 56 | А | | Catching small animals (average between 400 and 600mm) in prawn and scallop trawl grounds, but adults gets much bigger at greater than 1.2m. | 2 | I-L | INT-LOW | | Common Name | Class | Species Name | Per cent caught
2009 (W/O BRD
EFFECT) | | Per cent effort exposed 2009 | | Survival after capture | A or P | Effectiveness of TEDs/BRDs | A or P | |-------------------------|----------------|---|---|---|-----------------------------------|---|---|--------|--|--------| | Orangefin ponyfish | Actinopterygii | Leiognathus bindus / Photopectoralis bindus | 0 | А | 23 | A | Low survival | Р | Not effective | Р | | Whipfin ponyfish | Actinopterygii | Leiognathus
leuciscus /
Equulites leuciscus | 14 | А | 32 | Р | Low survival | Р | Not effective | Р | | Splendid ponyfish | Actinopterygii | Leiognathus
splendens
/Eubleekeria
splendens | 2 (data from
Pitcher in 2011) | А | 23 (data from
Pitcher in 2011) | A | moderate - Stobutzki et
al FRDC 1996/257 | А | not effective | Р | | Fourlined terapon | Actinopterygii | Pelates
quadrilineatus | 6 | A | 38 | Р | Moderate survival -
Stobutzki et al FRDC
1996/257 | | Quite good swimmers, but lack data on effectiveness of BRDs. Assume about 8%. Expect quite high escapement from trawl gear in general because quite small species. | Р | | Longfin silverbiddy | Actinopterygii | Pentaprion
longimanus | 5 | A | 44 | Р | Low survival - dead in net | Р | No data: assume ineffective | Р | | Australian
threadfin | Actinopterygii | Polydactylus
multiradiatus | 8 | А | 8 | А | Unknown | Р | Unknown | Р | | Blotched javelin | Actinopterygii | Pomadasys
maculatus | 13 | A | 13 | A | Low survival | Р | No data from Courtney et al 2007: assume ineffective | Р | | Damselfish sp | Actinopterygii | Pristotis
obtusirostris | 10 | А | 12 | A | Low survival | Р | Unknown | Р | | Australian halibut | Actinopterygii | Psettodes erumei | 21 | А | 21 | Α | Assumed to be relatively high survival as appear | | No effect of BRD (Courtney et al 2007) | Р | | Flathead dragonet | Actinopterygii | Repomucenus
belcheri /
Callionymus
belcheri | 10 (data from
Pitcher in 2011) | А | 22 (data from
Pitcher in 2011) | А | Unknown | Р | No effect of BRD (Courtney et al 2007) | Р | | Common Name | Refuge availa-
bility | A or P | Variance | Comments | Risk prone
score 2009 | Fishery Impact
Profile level
2009 | RISK 2009 | |-------------------------|--------------------------|--------|----------|---|--------------------------|---|-----------| | Orangefin ponyfish | | A | | | 2 | I-L | LOW | | Whipfin ponyfish | 41 | A | | Extremely common in trawl by catch in north Queensland. Seen early evening and probably also in the daytime. Captured at sizes less than maturity | 3 | I | INT | | Splendid ponyfish | 46 | A | | Quite common in trawl by catch. | 1 | L | INT-LOW | | Fourlined terapon | 31 | A | | Trawl catch average size 102mm, in 14% of catch, Courtney et al 2007. Few caught below 20m depth, more common around 10m. Tend to see at about 100mm in catch. | 2 | I-L | LOW | | Longfin silverbiddy | 38 | A | | More likely to be caught by daytime banana prawn fishery, as this is not a nocturnal species. | 3 | I | INT | | Australian
threadfin | 70 | А | | | 2 | I-L | INT-LOW | | Blotched javelin | 35 | A | | Can grow to 600mm and 3.2kgs. Reef associated. Courtney et al report common in by catch, probably catching juveniles. | 2 | I-L | INT-LOW | | Damselfish sp | 57 | А | | | 2 | I-L | INT-LOW | | Australian halibut | 39 | А | | Range of sizes caught (industry/expert opinion) | 1 | L | INT-LOW | | Flathead dragonet | 36 | Α | | | 2 | I-L | INT-LOW | | Common Name
Shortfin saury
(Short-finned
lizardfish) | Class
Actinopterygii | Species Name
Saurida
argentea/tumbil | Per cent caught
2009 (W/O BRD
EFFECT)
25 | | Per cent effort
exposed 2009
25 | | Survival after capture Low survival as soft bodied and usually die quite quickly once captured. Predation also an issue. | Р | Effectiveness of TEDs/BRDs
No effect of BRD (Courtney et
al 2007) | A or P | |---|--------------------------------|--|---|---|---------------------------------------|---|--|---|---|--------| | Largescale saury
(Brushtooth
lizardfish) | Actinopterygii | Saurida
grandisquamis/
undosquamis | 23 | A |
23 | A | Low survival as soft bodied and usually die quite quickly once captured. | Р | No effect of BRD currently used in QLD, but significant effect (80%) Square Mesh Codend in scallop fishery (Courtney et al 2007) | P | | Trumpeter whiting | Actinopterygii | Sillago maculata | 16 | A | 16 | А | Moderate survival | Р | Tested radial escape section but not significant for this species. | Р | | Spinycheek
grunter | Actinopterygii | Terapon puta | 20 | A | 25 | A | Assume good survival as considered very hardy species | | No data from Courtney et al
2007; may be good swimmers
and should be able to escape
from BRD's, but likely to get
meshed; considered to be
more of a daytime fish than
night time | Р | | Largescale grunter
(Banded grunter) | Actinopterygii | Terapon theraps | 3 | A | 26 | | Assume at least
moderate survival, as
high survival (97%) after
30 min trawls in Hill and
Wassenberg 1990. | | No data from Courtney et al
2007, assume similar to
Spinycheek Grunter (was
assessed as Prone) | Р | | Yellowfin tripodfish | Actinopterygii | Tripodichthys
angustifrons | 17 | А | 17 | A | Assume good survival as considered very hardy species | А | Rare in samples Courtney et al 2007; unlikely to be excluded by BRD's. | Р | | Common Name | Refuge availa-
bility | A or P | Variance | Comments | Risk prone
score 2009 | Fishery Impact
Profile level
2009 | RISK 2009 | |--|--------------------------|--------|---|---|--------------------------|---|-----------| | Shortfin saury
(Short-finned
lizardfish) | 42 | A | | | 2 | I-L | INT-LOW | | Largescale saury
(Brushtooth
lizardfish) | 41 | A | | Catching smallest individuals in shallow sectors, then in scallop mid sized, and in deepwater king getting large ones. Possibly latitudinal variation in growth/size? In by catch from all trawl sectors. | 2 | I-L | INT-LOW | | Trumpeter whiting | 54 | A | | Was in 27% of samples from nth old tiger/endeavour trawl fishery - Courtney et al 2007. Average size 160mm se 1.48mm trawl by catch. | 2 | I-L | INT-LOW | | Spinycheek
grunter | 44 | А | Expect greater interaction with banana prawn fishery and other daytime or very early evening trawling activities. Note: catchability may be lower than estimated by research, given more of a daytime species, and this would tend to reduce exposure to trawl. | | 1 | L | LOW | | Largescale grunter
(Banded grunter) | 37 | A | | Occurred in 12.9% of by catch samples in tiger/endeavour prawn trawl fishery (Courtney et al 2007). | 2 | I-L | LOW | | Yellowfin tripodfish | 55 | A | | | 1 | L | INT-LOW | | Common Name | Class | Species Name | Per cent caught
2009 (W/O BRD
EFFECT) | or PP | Per cent effort exposed 2009 | or PP | Survival after capture | | Effectiveness of TEDs/BRDs | | |---|----------------|------------------------------|---|-------|--|-------|--|---|--|---| | Blacktip tripodfish
(Long-nosed
tripodfish) | Actinopterygii | Trixiphichthys
weberi | 17 | A | 17 | A | Medium 1/3 to 2/3 survival ilona's report. Mostly daytime species. | | Bit more common 12% north QLD; 11% samples from scallop fishery. 107mm average size north QLD; 139mm TL average size scallop fishery | Р | | Sunrise goatfish
(Sulphur goatfish) | Actinopterygii | Upeneus
sulphureus | 11 (data from
Pitcher in 2011) | A | 24 (data from
Pitcher in 2011) | A | Fairly soft fleshed and easily injured. Ilona report 1/3 to 2/3 survive. | | There was a sign effect of BRD's in Courtney et al 2007. Radial escape section. Could benefit from other BRD's. | Р | | Ochreband
goatfish | Actinopterygii | Upeneus
sundaicus | 14 | A | 32 | Р | Fairly soft fleshed and easily injured. Ilona report 1/3 to 2/3 survive. | A | There was a sign effect of BRD's in Courtney et al 2007. Radial escape section. Could benefit from other BRD's. | Р | | Hairfin goby | Actinopterygii | Yongeichthys
nebulosus | 16 | Α | 16 | А | Low survival | Р | Unknown | Р | | Razorfish | Actinopterygii | Aeoliscus strigatus | Uncertain, but
considered to be
less than 25% | А | Uncertain, but
considered to
be less than
25% | А | Uncertain, but may be low | Р | Unlikely to be effective | Р | | Pineapple fish | Actinopterygii | Cleidopus
gloriamaris | Uncertain, but
considered to be
less than 25% | A | Uncertain, but
considered to
be less than
25% | А | Uncertain, but may be
low | Р | Unlikely to be effective | Р | | Personifer
angelfish | Actinopterygii | Chaetodontoplus
meredithi | Uncertain, but
considered to be
less than 25% | A | Uncertain, but
considered to
be less than
25% | A | Uncertain, but may be low | Р | Unlikely to be effective | Р | | Seapens | | | | | | | | | | | | Common Name | Refuge availa- | A or P | Variance | Comments | Risk prone
score 2009 | Fishery Impact
Profile level
2009 | RISK 2009 | |---|--|--------|----------|--|--------------------------|---|-----------| | Blacktip tripodfish
(Long-nosed
tripodfish) | 44 | A | | | 1 | L | INT-LOW | | Sunrise goatfish
(Sulphur goatfish) | 30 | A | | | 1 | L | LOW | | Ochreband
goatfish | 37 | A | | | 2 | I-L | INT-LOW | | Hairfin goby | 58 | Α | | | 2 | I-L | INT-LOW | | Razorfish | | A | | | 2 | I-L | INT-LOW | | Pineapple fish | | A | | | 2 | I-L | INT-LOW | | Personifer
angelfish | | A | | Although small juveniles reported to be in crevices and may be inaccessible to trawlers, anecdotal reports of interaction of juveniles with trawlers | 2 | I-L | INT-LOW | | Seapens | R 14-58 Table
3-57 Seabed
Biodiversity | | | | | | | | Common Name
Sea pen | Class
Anthozoa | Species Name
Sea pen
(Pteroides?) sp1 | Per cent caught
2009 (W/O BRD
EFFECT) | | Per cent effort
exposed 2009
20 | or PP | Survival after capture Assume depletion and recovery similar to gorgonian gardens (assessed as habitat element): medium depletion rate and low recovery, giving relatively poor survival | Р | Effectiveness of TEDs/BRDs Unlikely to be effective | A or P | |-----------------------------|--------------------------|---|---|---|---------------------------------------|-------|--|---|--|--------| | Bivalves | | | | | | | | | | | | Bivalve sp | Bivalvia | Enisiculus cultellus | 2 | А | 31 | Р | Good survival post-
capture | | Trawl catchability negligible, so not applicable | A | | Glycymerididae | Bivalvia | Melaxinaea vitrea | 2 | A | 25 | A | High survival | A | Trawl catchability negligible so not applicable | А | | Bivalve sp | Bivalvia | Placamen tiara | 1 | A | 22 | A | High survival | A | Trawl catchability negligible so not applicable | A | | Crustaceans | | | | | | | | | | | | | Crustacea | Charybdis truncata | 7 | Α | 17 | Α | High survival | Α | no effect | Р | | Pilumnidae (Hairy
crabs) | Crustacea | Cryptolutea
arafurensis | 1 | А | 42 | Р | Good survival post-
capture | | TEDs/BRDs not effective for small crabs, even with best designs tend not to be excluded. | Р | | Common Name | Refuge availa-
bility | A or P | Variance | Comments | Risk prone
score 2009 | Fishery Impact
Profile level
2009 | RISK 2009 | |-----------------------------|--|--------|----------|--|--------------------------|---|-----------| | Sea pen | The exposure of sea pens in the genus Pteroides was 16%, and sea pens appear to have a low catchability (~0.06) with narrow uncertainty (~0.05), so would appear to be at low risk [from discarding] (Pitcher et al 2007), [however some risk from contact without capture]. | | 2 | I-L | INT-LOW | | | | Divolves | R 14-58 Table
3-57 Seabed | | | | | | | | Bivalves Bivalve sp | Biodiversity
39 | A | | This species is associated with Assemblage 12, which had 108% exposure in 2005, and was distributed in patches along the coastal/inner-shelf from the Whitsundays to Cape Upstart and from Cairns north. | 1 | L | INT-LOW | | Glycymerididae | 41 | А | | Mostly research sled
captures, 7% trawl catchability in Seabed Biodiversity Project | 0 | L | LOW | | Bivalve sp | 45 | A | | This species is associated with Assemblage 12, which had 108% exposure in 2005, and was distributed in patches along the coastal/inner-shelf from the Whitsundays to Cape Upstart and from Cairns north. | 0 | L | LOW | | Crustaceans | R 14-58 Table
3-57 Seabed
Biodiversity | | | | | | | | Blunt-toothed crab | 52 | Α | | | 1 | L | LOW | | Pilumnidae (Hairy
crabs) | 43 | А | | This species is associated with Assemblage 12, which had 108% exposure in 2005, and was distributed in patches along the coastal/inner-shelf from the Whitsundays to Cape Upstart and from Cairns north. | 2 | I-L | INT-LOW | | Common Name | Class | Species Name | Per cent caught
2009 (W/O BRD
EFFECT) | _ | Per cent effort exposed 2009 | - | Survival after capture | A or P | Effectiveness of TEDs/BRDs | A or P | |--------------------------------------|------------|-----------------------------|---|---|------------------------------|---|---|--------|--|--------| | (Hermit crab) | Crustacea | Diogenidae sp356-
1 | 1 | A | 15 | A | Likely to have relatively good survival | А | TEDs/BRDs not effective for small crabs, even with best designs tend not to be excluded. | Р | | Leucosiidae
(Purse crabs) | Crustacea | Myra tumidospina | 3 | A | 23 | A | Likely to have relatively good survival | A | TEDs/BRDs not effective for small crabs, even with best designs tend not to be excluded. | Р | | Portunidae
(Swimming crabs) | Crustacea | Portunus
gracilimanus | 12 | A | 31 | Р | Likely to have relatively good survival | А | TEDs/BRDs not effective for small crabs, even with best designs tend not to be excluded. | Р | | Portunidae
(Swimming crabs) | Crustacea | Portunus
tuberculosus | 1 | A | 19 | A | Likely to have relatively good survival | A | TEDs/BRDs not effective for small crabs, even with best designs tend not to be excluded. | Р | | Hardback shrimp
(Penaeid shrimps) | Crustacea | Trachypenaeus
anchoralis | 7 | A | 26 | Р | Moderate survival | А | no effect | Р | | Gastropods | | | | | | | | | | | | Sea snail | Gastropoda | Aplysia sp1_QMS | 17 | А | 17 | А | Low - moderate survival (poor quality info) | Р | Unknown but probably not effective | Р | | Small sea snail | Gastropoda | Lamellaria sp1 | 15 | А | 15 | Α | Unknown | Р | Unlikely to be effective | Р | | Sea snail | Gastropoda | Nassarius
cremmatus cf | 1 | А | 22 | Α | High survival | А | Ineffective but not applicable | А | | Common Name | Refuge availa-
bility | A or P | Variance | Comments | Risk prone score 2009 | Fishery Impact
Profile level
2009 | RISK 2009 | |--------------------------------------|--|--------|----------|--|-----------------------|---|-----------| | (Hermit crab) | 55 | A | | | 1 | L | INT-LOW | | Leucosiidae
(Purse crabs) | 43 | A | | | 1 | L | INT-LOW | | Portunidae
(Swimming crabs) | 41 | A | | Caught at 36mm in north QLD, in 35% of samples Courtney et al 2007. Sub adult to adult stages likely to be caught. | 2 | I-L | LOW | | Portunidae
(Swimming crabs) | 53 | Α | | | 1 | L | LOW | | Hardback shrimp
(Penaeid shrimps) | 36 | А | | Trawled over varying bottom types from mud to coral debris, depths to 60m. | 2 | I-L | INT-LOW | | Gastropods | R 14-58 Table
3-57 Seabed
Biodiversity | | | | | | | | Sea snail | 49 | A | | Probably capture all life stages once settled. | 2 | I-L | LOW | | Small sea snail | 54 | Α | | | 2 | I-L | INT-LOW | | Sea snail | 45 | Α | | Only catch large specimens | 0 | L | LOW | | Common Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | |------------------|---------------------------|---|-----------------|--|-----------------|--|--------| | Flatback turtle | Natator
depressus | Av 50 to 54 eggs/clutch
depending on year and
location, with 2.8
clutches/season (reviewed in
Limpus 2007). | Р | Remigration interval of 2.2 yr
for females at Peak Is. Nest in
sand on beach, no parental
care. | PP | Endemic to the Australian continental shelf, with nesting restricted to tropical and subtropical Australia (reviewed in Limpus 2007). There is one management unit for Eastern Australia centred around rookeries in on Peak, Wild Duck and Avoid Is.) | A | | Green turtle | Chelonia mydas | Av 115 eggs/clutch x 5 clutches/season for Heron Is. (reviewed in Limpus 2008). | P | Remigration interval of 5.8 yr for females at Heron Is. Nest in sand on beach, no parental care. | PP | Worldwide tropical and subtropical distribution (Hirth 1997) with 7 identified genetic stocks for Australia, including southern GBR and northern GBR (Bowen et al 1992 and others, reviewed in Limpus 2008). Major rookery for southern Great Barrier Reef on Capricorn Bunker Group, and for northern Great Barrier Reef on Raine Is. | A | | Hawksbill turtle | Eretmochelys
imbricata | Av 121 to 142 eggs/clutch depending on year and location, with 3 clutches/season (reviewed in Limpus 2009). | Р | Remigration interval of 5 yr for
females at Milman Is. Nest in
sand on beach, no parental
care. | PP | Worldwide circumtropical and subtropical distribution (Witzell 1983) with discrete genetic stocks globally. One Australian stock in northern GBR/Torres Strait/Arnhem Land, and another in north-western shelf of Western Australia (Broderick et al 1994, reviewed in Limpus 2009). 72 rookeries identified within northeastern QLD. | A | | Common Name | Habitat specificity or ecological niche | A or P | Population size or trend | A or P
or PP | Growth rate /
Age at maturity | A or P | |------------------|--|--------|--|-----------------|---|--------| | Flatback turtle | Post hatchlings feed on macro zooplankton over the continental shelf inside the GBR lagoon. Juveniles and adults inhabit subtidal soft bottomed habitats inshore of the outer GBR. Generalist carnivore, feeding on soft-bodied invertebrates (soft corals, sea pens, holothurians, and jellyfish). | А | Unknown population size, nesting data indicates population stable on East Coast, no previous exploitation | Р | Age at maturity about 20 years. Turtles returned to Mon Repos at 21 years for first breeding (reviewed in Limpus 2007). Turtles are slow growing and take decades to grow from hatchlings to breeding adults. | Р | | Green turtle | Post-hatchlings rare in GBR, follows an oceanic surface-water dwelling planktonic life, feeding on macro zooplankton. Recruits to a benthic foraging phase and is a generalist herbivore. Juvenile and adults feed in tidal and sub tidal habitats including coral and rocky reefs, seagrass meadows and algal turns on sand and mud flats. In coastal waters feeds primarily on seagrass, a wide range of algae and mangrove fruits. Occasionally feeds on jellyfish, bluebottles, dead fish and small crustaceans. | A | Large population, but trends stock dependent. southern Great Barrier Reef is increasing at 3.8%/yr and is probably A; data on northern Great Barrier Reef stock not as good and there are several indications that this stock is under pressures. northern Great Barrier Reef stock is probably prone. southern Great Barrier Reef stock stable with a total nesting population of 8,000 females in an average breeding season. southern Great Barrier Reef stock (and to a lesser degree the northern Great Barrier Reef stock) commercially harvested in the early to mid 1900's. Commercial harvesting ended 1954. northern Great Barrier Reef stock considered declining. >75,000 females at
Raine Is. in 1999/2000 season, but significant decline in proportion of females successfully laying eggs over last 3 decades. | P | 30-40 years age to maturity (reviewed in Limpus 2008). Turtles are slow growing and take decades to grow from hatchlings to breeding adults. | P | | Hawksbill turtle | Narrow habitat requirements. Post-hatchling rarely encountered within GBR waters. Follow an oceanic, surface-water dwelling planktonic life, feeding on macro zooplankton. Foraging juvenile and adults encountered in tidal and sub-tidal coral and rocky reef habitats. Omnivorous, feeding on sponges, algae and seagrass. | А | Total nesting population for QLD is expected to be about 4,000 females annually. Population declining 3% pa primarily from pressures outside Australian waters. At this rate, Torres Strait-northern Great Barrier Reef stock can be expected to decline by >90% by 2020. Harvest of larger individuals for "tortoise shell". | Р | Probably more than 30 years when commence breeding (reviewed in Limpus 2009). Turtles are slow growing and take decades to grow from hatchlings to breeding adults. | Р | | Common Name | Longevity /
Natural mortality | A or P | Cumulative pressures | A or P | Variance | Risk prone score | Resilience
level | |------------------|---|--------|---|--------|---|------------------|---------------------| | Flatback turtle | 30-50+ years. 1:1000 reaches maturity. Most mortality in hatching and juvenile stage. | Р | Egg depredation by feral pigs (minimal on east coast) and Indigenous communities. Captured in ghost nets (minimal on east coast). Ingestion of marine debris. Climate change affecting incubation (temp) and can lead to feminisation of the hatchlings. | Р | Nesting on 3 main sites on
the East Coast but minor
rookeries at many island
and mainland sites. | 7 | L | | Green turtle | 30-50+ years. 1:1000 reaches maturity. Most mortality in hatching and juvenile stage. | P | Egg depredation by feral pigs (minimal on east coast) and Indigenous communities. Captured in ghost nets (minimal on east coast). Ingestion of marine debris. Climate change affecting incubation (temp) and can lead to feminisation of the hatchlings. Boat strike. GTFP disease. Coastal habitat loss and declines in WQ affecting seagrass meadows. Indigenous harvest is contributing stress. Beam Trawl impacts within estuaries unsure but likely. | P | Yes more Indigenous pressure in the north and more cumulative anthropogenic pressures in the south. | 7 | L | | Hawksbill turtle | 30-50+ years.
1:1000 reaches
maturity. Most mortality
in hatching and juvenile
stage. | Р | Egg depredation by feral pigs (minimal on East Coast) and Indigenous communities. Captured in ghost nets (minimal on East Coast). Ingestion of marine debris. Climate change affecting incubation (temp) and could lead to feminisation of hatchlings. Harvest of adults for "tortoise shell" occurring outside Australian waters and targeting larger size classes. | Р | ? Most pressures from outside GBR. | 7 | L | | Common Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | |---------------------|--------------------------|--|-----------------|---|-----------------|---|--------| | Leatherback turtle | Dermochelys
coriacea | Av 86 eggs/clutch for QLD, with up to 4 clutches/season (reviewed in Limpus 2009). | Р | Remigration interval unknown for the Australian population | | Worldwide distribution in tropical and temperate oceans (Behler et al 1996) with discrete genetic stocks globally (Dutton et al 1999). Regionally isolated eastern Australian and northwest Arnhem Land nesting populations are managed as separate small breeding stocks. In eastern Australia nesting did occur around Wreck Rock beaches and Rules Beach in southern Queensland (reviewed in Limpus 2009). There has been no recorded nesting by leatherbacks in Queensland since 1996 and data of capture of adults on drum-lines from the QSCP indicate that the population that migrates along the East Coast has declined significantly over the last three decades (Hamann et al.). | A | | Loggerhead turtle | Caretta caretta | Av 127 eggs/clutch x 3.4 clutches/season for Mon Repos (reviewed in Limpus 2008). | Р | Remigration interval of 3.8 yr
for females at Mon Repos
Nest in sand on beach, no
parental care. | PP | Worldwide circumtropical and subtropical distribution (Dodd 1988; Bolten and Witherington 2003) with 5 identified genetic stocks globally, including and Eastern Australian stock (Bowen et al 1993, reviewed in Limpus 2008). Major rookeries around Mon Repos and islands of the Capricorn-Bunker Group in the southern GBR. | A | | Olive ridley turtle | Lepidochelys
olivacea | Av 109 eggs/clutch x 2 clutches/season for Crab Is. QLD (reviewed in Limpus 2008). | Р | Breeding cycles have not been described from the Australian nesting population. For overseas populations, remigration interval is given as 1-3 years. | | Worldwide circumtropical distribution (Marquez 1990) with discrete genetic stocks globally, including a stock in northern Australia (reviewed in Limpus 2008). No nesting on east coast, but limited data indicate some forage in GBR. | A | | Common Name | Habitat specificity or ecological niche | A or P | Population size or trend | A or P
or PP | Growth rate /
Age at maturity | A or P | |---------------------|--|--------|---|-----------------|---|--------| | Leatherback turtle | Totally pelagic life history, and carnivorous. Post-hatchling diet is unknown. Juvenile and adults are specialists, feeding on jellyfish (Catostylus spp.) and salps (barrelshaped, free-floating tunicate of the family Salpidae) and colonial tunicates such as <i>Pyrosoma</i> that live usually in the upper layers of the open ocean in warm seas. Will feed at all levels of the water column from benthos to surface (Limpus 1984, reviewed in Limpus 2009) | A | Severely depleted and internationally declining. No recorded nesting on the East Coast since 1996. | PP | Possibly reach maturity at about 13-14 years (Zug and Parham 1996). Turtles are slow growing and take decades to grow from hatchlings to breeding adults. | Р | | Loggerhead turtle | Post-hatchling follow an oceanic planktonic life in surface waters. Juvenile and adults feed in tidal and sub tidal habitats including coral and rocky reefs, seagrass meadows soft bottomed sand and mud flats. Generalist carnivore which feeds principally on gastropod and bivalve molluscs, portunid crabs and hermit crabs and other invertebrates (jellyfish, anemones, holothurians, sea urchins) and fish. | A | Management intervention has resulted in recovery of population. East Coast nesting population severely declined by 86% between mid- 1970s and 1999. East Coast nesting population estimated at less than 500 females in 1999-2000 (Limpus and Limpus 2003, reviewed in Limpus 2008). Still concerns for impacts on life history stages in pelagic Postphase outside GBR. | P | Age at maturity about 30 years. Turtles returned to Mon Repos at 30 years for first breeding (reviewed in Limpus 2008). Turtles are slow growing and take decades to grow from hatchlings to breeding adults. | Р | | Olive ridley turtle | Generalist carnivore. Usually a pelagic foraging species, but substantial part of Australian population forages over shallow benthic habitats and
remain within continental shelf waters. Species was most frequently captured at 6-35 m depth within the QLD East Coast TF. Data from NT indicates animals feeding at depth (<50m). Carnivorous, feeding on gastropod molluscs and small crabs. | A | Australian population appears to be an isolated moderately sized population when compared with the global populations. Nesting density in the NT has not be quantified, but is expected to be in the order of a few thousand females annually. No census has been made of the nesting population in QLD. Low density nesting occurs along the NW coast of Cape York Peninsula. No recorded nesting on East Coast. | A | Age at maturity probably between 20-50 years. Turtles are slow growing and take decades to grow from hatchlings to breeding adults. | Р | | Common Name | Longevity /
Natural mortality | A or P | Cumulative pressures | A or P | Variance | Risk prone score | Resilience
level | |---------------------|---|--------|---|--------|---|------------------|---------------------| | Leatherback turtle | 30-50+ years. 1:1000 reaches maturity. Most mortality in hatching and juvenile stage. | | Ingestion of marine debris. Capture on QLD Shark Control program drum lines. Long-line fleets outside the GBRMP. Boat strike. Entanglement in crab pot lines. | Р | Some pressures on East
Coast such as boat strike in
summer during migration
and capture on drum lines. | 8 | L | | Loggerhead turtle | | Р | Egg depredation by foxes (impact minimised since 1990's). Ingestion of marine debris. Climate change affecting incubation (temp). Boat strike. Entanglement in crab pots. Beam Trawl? Coastal development and lighting impacts on mainland rookeries. Impacts of pelagic post-hatchlings outside Australian waters (Pacific long-line and purse seine fisheries) and artisanal fisheries of western coast of South and Central America. | Р | More pressures around areas of high human habitation. Pressures on mainland nesting beaches vs. islands. | 7 | L | | Olive ridley turtle | 30-50+ years.
1:1000 reaches
maturity. Most mortality
in hatching and juvenile
stage. | | Egg depredation by feral pigs and Indigenous communities. Captured in ghost nets in Gulf of Carpentaria. Ingestion of marine debris. Climate change affecting incubation (temp) and could lead to feminisation of hatchlings. Scarce within GBRMP. | Р | | 6 | L | #### Appendix 11. Fishery impact profile of marine turtles | Common
Name | Species Name | Level of interaction | A or
P or
PP | Survival after interaction | A or
P or
PP | Interaction
throughout
life cycle | A or
P | TED/BRD gear used
effectively
minimises catch
rates | A or
P | Risk
prone
score
2009 | Fishery
Impact
Profile
Ievel 2009 | RISK
2009 | |------------------------|--------------------------|---|--------------------|---|--------------------|--|-----------|--|-----------|--------------------------------|--|--------------| | Flatback
turtle | | Interaction with trawl gear in the east coast trawl fleet likely to be high but consequences of the interaction low. Number of animals actually landed on deck very low. | | Flatback turtles have better breath-hold ability than other species of cheloniid turtles. Better able to withstand capture in trawl. Likely to pass through ted largely unharmed. | A | Juveniles and adult stage | Р | Y | A | 2 | I-L | INT-
LOW | | Green turtle | Chelonia
mydas | Interaction with trawl gear in the east coast trawl fleet likely to be high but consequences of the interaction low. Number of animals actually landed on deck very low. | | Likely to pass through ted largely unharmed. | A | Juveniles, sub
adult and
adult stage | Р | Y | A | 2 | I-L | INT-
LOW | | Hawksbill
turtle | | Interaction with trawl gear in the east coast trawl fleet likely to be lower than for other marine turtle species because of association with reefal habitats. consequences of the interaction low. Number of animals actually landed on deck very low. | | Likely to pass through ted largely unharmed. | A | Juveniles, sub
adult and
adult stage | Р | Y | A | 2 | I-L | INT-
LOW | | Leatherback
turtle | Dermochelys
coriacea | Extremely rare. Numbers of animals along the East Coast of Queensland very low, hence probably of interacting with the fishery very low. | | Likely to pass through ted largely unharmed unless very large. | A | Sub adult and adult stage | Р | Y but maybe not so
effective for adults (if
too big to fit through
the TED) | Р | 2 | I-L | INT-
LOW | | Loggerhead
turtle | | Interaction with trawl gear in the east coast trawl fleet likely to be high but consequences of the interaction low. Number of animals actually landed on deck very low. | | Likely to pass through ted largely unharmed. | A | Juveniles, sub
adult and
adult stage | Р | Y | A | 2 | I-L | INT-
LOW | | Olive ridley
turtle | Lepidochelys
olivacea | Relatively infrequent | | Probably better than greens and loggerheads. | A | Sub adult and adult stage | Р | Y | A | 1 | L | INT-
LOW | | Common
Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | |---------------------------|-------------------------------|---|-----------------|--|-----------------|---|--------| | Horned sea
snake | Acalyptophis
peronii | Ovoviviparous - < 10 live young.
Clutch sizes determined for sea
snakes in Northern Prawn Fishery
(Stobutski et al. 2000). | PP | Live bearing, breed
annually, with moderate
ability to maintain or rebuild
population | Р | Widespread in northern Australia (SRRAT Database). Caught throughout GBR (Courtney et al. 2010). Modelled distribution (App. 5, T1) in GBR is 88,824 ha (Pitcher et al. 2007, Courtney et al. 2010) | A | | Dubois' sea
snake | Aipysurus
duboisii | Ovoviviparous - < 10 live young.
Clutch sizes determined for sea
snakes in Northern Prawn Fishery
(Stobutski et al. 2000). | PP | Live bearing, breed
annually, with moderate
ability to maintain or rebuild
population | Р | Widespread in northern Australia (SRRAT Database). Caught throughout GBR (Courtney et al. 2010). Modelled distribution (App. 5, T1) in GBR is 0 ha (Pitcher et al. 2007, Courtney et al. 2010). Modelled distribution data appears to be inconsistent with observed data. | A | | Spine-tailed
sea snake | Aipysurus
eydouxii | Ovoviviparous - < 10 live young.
Clutch sizes determined for sea
snakes in Northern Prawn Fishery
(Stobutski et al. 2000). | PP | Live bearing, breed
annually, with moderate
ability to maintain or rebuild
population | Р | Widespread in northern Australia (SRRAT Database). Caught throughout GBR (Courtney et al. 2010). Modelled distribution (App. 5, T1) in GBR is 1,757 ha (Pitcher et al. 2007, Courtney et al. 2010) | A | | Olive sea
snake | Aipysurus
laevis | Ovoviviparous - < 10 live young.
Clutch sizes determined for sea
snakes in Northern Prawn Fishery
(Stobutski et al. 2000). | PP | Reproduce every 2-3 years | PP | Widespread in northern Australia (SRRAT Database). Caught throughout GBR (Courtney et al. 2010). Modelled distribution (App. 5, T1) in GBR is 166,693 ha (Pitcher et al. 2007, Courtney et al. 2010) | A | | Stokes' sea
snake | Astrotia
stokesii | Ovoviviparous - < 10 live young. Clutch sizes determined for sea snakes in Northern Prawn Fishery (Stobutski et al. 2000). | PP | Live bearing, breed
annually, with moderate
ability to maintain or rebuild
population | P | Widespread in northern Australia (SRRAT Database). Caught throughout GBR (Courtney et al. 2010). Modelled distribution (App. 5, T1) in GBR is 1,368 ha (Pitcher et al. 2007, Courtney et al. 2010) | P | | Spectacled sea snake | Hydrophis/
Disteira kingii | Ovoviviparous - < 10 live young.
Clutch sizes determined for sea
snakes in Northern Prawn Fishery
(Stobutski et al. 2000). | PP | Live bearing, breed
annually, with moderate
ability to maintain or rebuild
population | Р | Widespread in northern Australia (SRRAT Database). Caught throughout GBR (Courtney et al. 2010). Modelled distribution (App. 5, T1) in GBR is 863 ha (Pitcher et al. 2007,
Courtney et al. 2010) | Р | | Common
Name | Habitat specificity or ecological niche | | Population size or trend | or PP | Growth rate /
Age at maturity | | | A or P | Cumulative pressures | A or P | Risk
prone
score | Resilience
level | |---------------------------|---|---|----------------------------------|-------|---|---|---------------------|--------|--------------------------------|--------|------------------------|---------------------| | Horned sea
snake | Often seen on the surface of reefs at medium depths. Feeds on eels and gobies and possibly other fish (Heatwole 1999). | | Unknown,
probably large | | By 12 months
most species of
sea snakes are
close to adult
size. | | K=0.421,
M=0.356 | P | No known
concerns in
GBR | A | 4 | I-L | | Dubois' sea
snake | Specialised diet (Stobutzki et al. 2000). | Р | Unknown,
probably large | | Assume similar
to A. laevis | A | K=0.47,
M=.393 | Р | No known
concerns in
GBR | A | 5 | I-L | | Spine-tailed
sea snake | Specialised - feeds almost exclusively on fish eggs (Heatwole 1999). Does not inhabit clear reef waters (Rasmussen). Turbid waters 30 - 50m | Р | Unknown,
probably large | A | Assume similar
to A. Laevis | A | K=0.631,
M=0.517 | P | No known
concerns in
GBR | A | 5 | I-L | | Olive sea
snake | Found in shallow water and in deep water. One of the most common sea snakes on coral reefs throughout its range. An opportunistic, generally benthic feeding carnivore. | А | Unknown,
probably large | | Reproductive 4-5 years for females and 3 years for males (Burns and Heatwole 2000). | А | K=0.178,
M=0.193 | P | No known
concerns in
GBR | A | 5 | I-L | | Stokes' sea
snake | A benthic-feeding piscivore, mostly feeds on Batrachoididae (toadfishes). Species is relatively reef associated | Р | Unknown, but relatively uncommon | | By 12 months
most species of
sea snakes are
close to adult
size. | А | K=0.294,
M=0.28 | Р | No known
concerns in
GBR | A | 7 | L | | Spectacled
sea snake | Most species caught in trawls between depths of 30 and 40m. Feeds on eel like fishes. | Р | Unknown, but relatively uncommon | | By 12 months
most species of
sea snakes are
close to adult
size. | A | K=0.446,
M=0.373 | Р | No known
concerns in
GBR | A | 7 | L | | Common
Name
Olive-headed
sea snake | Species Name Hydrophis/ Disteira major | Fecundity Ovoviviparous - < 10 live young. Clutch sizes determined for sea | A or P
or PP | Life history strategy Live bearing, breed annually, with moderate | | Geographic distribution Widespread in northern Australia (SRRAT Database). Caught throughout GBR (Courtney et al. 2010). | A or P | |---|--|---|-----------------|--|----|---|--------| | | , | snakes in Northern Prawn Fishery
(Stobutski et al. 2000). | | ability to maintain or rebuild population | | Modelled distribution (App. 5, T1) in GBR is 7,345 ha (Pitcher et al. 2007, Courtney et al. 2010) | | | Beaked sea
snake | Enhydrina
schistosa | Numerous smaller young (p. 12
Courtney et al. 2010) | Р | Live bearing, breed
annually, with moderate
ability to maintain or rebuild
population | Р | Widespread in northern Australia (SRRAT Database). Modelled distribution (App. 5, T1) in GBR is 140,741 ha (Pitcher et al. 2007, Courtney et al. 2010) Note: consider modelled distribution of this species appears inconsistent with observed data. This is a small, inshore and estuarine species; extremely limited captures in the GBR. | | | Elegant sea
snake | Hydrophis
elegans | 13 young per clutch but a lower reproductive frequency (Fry 2001, Ward 2001). | Р | Reproduce every 2-3 years | PP | Widespread in northern Australia (SRRAT Database). Modelled distribution (App. 5, T1) in GBR is 131 ha (Pitcher et al. 2007, Courtney et al. 2010). Note: consider modelled distribution of this species appears inconsistent with observed data. | A | | Small-
headed sea
snake | Hydrophis
macdowelli | Ovoviviparous - < 10 live young.
Clutch sizes determined for sea
snakes in Northern Prawn Fishery
(Stobutski et al. 2000). | PP | Live bearing, breed
annually, with moderate
ability to maintain or rebuild
population | Р | Widespread in northern Australia (SRRAT Database). Caught throughout GBR (Courtney et al. 2010). Modelled distribution (App. 5, T1) in GBR is 189 ha (Pitcher et al. 2007, Courtney et al. 2010). Modelled distribution seems low versus observed distribution. | A | | Ornate reef
sea snake | Hydrophis
ornatus | Ovoviviparous - < 10 live young | PP | Live bearing, breed
annually, with moderate
ability to maintain or rebuild
population | Р | Widespread in northern Australia (SRRAT Database). Caught throughout GBR (Courtney et al. 2010). Modelled distribution (App. 5, T1) in GBR is 51,960 ha (Pitcher et al. 2007, Courtney et al. 2010) | А | | Large-
headed sea
snake | Hydrophis
pacificus | Ovoviviparous - < 10 live young | PP | Live bearing, breed
annually, with moderate
ability to maintain or rebuild
population | Р | Widespread in northern Australia but only in northern GBR (SRRAT Database) Distribution in GBR not modelled. Not captured in trawl by catch study (Courtney et al. 2010) | A | | | Habitat specificity or ecological niche Feeds on fish. | A or P | Unknown, but | or PP | Growth rate / Age at maturity By 12 months | A or P | K=0.537, | | Cumulative
pressures
No known | A or P | Risk
prone
score | Resilience
level | |-------------------------------|---|--------|----------------------------|-------|--|--------|---------------------|---|---|--------|------------------------|---------------------| | sea snake | Found in deeper more turbid waters. | | relatively
uncommon | | most species of sea snakes are close to adult size. | | M=0.434 | | concerns in
GBR | | | | | Beaked sea
snake | Very abundant on mud flats along
coastal areas and in river mouths.
Feeds mostly on catfish, other fish
and prawns (Heatwole, 1999) | A | Unknown,
probably large | A | 18 months (Voris
and Jayne 1979) | | NO K;
M=0.434 | Р | Cumulative
inshore
pressures;
capture in crab-
pots | Р | 4 | I-L | | Elegant sea
snake | Most specimens trawled in depths more than 30m. Specialised diet (Stobutzki et al. 2000). Feeds on eels, and inhabits turbid deepwater areas between reefs (Heatwole 1999) | Р | Unknown,
probably large | А | Females mature
at approx 24
months (Ward
2001). | | K=0.25,
M=0.219 | | Cumulative inshore pressures; capture in crab-pots | Р | 6 | L | | Small-
headed sea
snake | Specialised diet (Stobutzki et al. 2000). Turbid estuaries and inshore waters (Heatwole 1999) | Р | Unknown,
probably large | А | By 12 months
most species of
sea snakes are
close to adult
size. | | K=0.5,
M=0.37 | | No known
concerns in
GBR | A | 5 | I-L | | Ornate reef
sea snake | One of few generalist feeders - diet includes squid, crustaceans and fish (Stobutzki et al. 2000, reviewed in Courtney et al. 2010). Coral reefs to turbid inshore waters and estuaries (Heatwole 1999) | A | Unknown,
probably large | A | By 12 months
most species of
sea snakes are
close to adult
size. | | K=0.578,
M=0.445 | Р | No known
concerns in
GBR | A | 4 | I-L | | Large-
headed sea
snake | Unknown | Р | Unknown,
probably large | А | By 12 months
most species of
sea snakes are
close to adult
size. | | K=0.383,
M=0.299 | Р | No known
concerns in
GBR | A | 5 | I-L | | Common
Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | |---------------------------------|--|---------------------------------|-----------------|--|-----------------|---|--------| | Spine-bellied
sea snake | Lapemis
curtus
(Lapemis
hardwickii) | Ovoviviparous - < 10 live young | | Live bearing, breed
annually, with moderate
ability to maintain or rebuild
population | | Widespread in northern Australia (SRRAT Database). Caught throughout GBR (Courtney et al. 2010). Modelled distribution (App. 5, T1) in GBR is 161,846ha (Pitcher et al. 2007, Courtney et al. 2010) | A | | Turtle-
headed sea
snake | Emydocephalu
s annulatus | Ovoviviparous - < 10 live young | | Live bearing, breed
annually, with
moderate
ability to maintain or rebuild
population | Р | Widespread | A | | Yellow-
bellied sea
snake | Pelamis
platura | Ovoviviparous - < 10 live young | PP | Live bearing, breed
annually, with moderate
ability to maintain or rebuild
population | | Not captured in trawl by catch study in the Great Barrier Reef (Courtney et al. 2010). Widespread, pelagic, oceanic. | А | | Common
Name | Habitat specificity or ecological niche | A or P | Population size or trend | _ | Growth rate /
Age at maturity | | Longevity /
Natural
mortality | A or P | Cumulative pressures | | Risk
prone
score | Resilience
level | |---------------------------------|--|--------|---------------------------------------|---|--|---|-------------------------------------|--------|---|---|------------------------|---------------------| | Spine-bellied
sea snake | One of few generalist feeders - diet includes squid, crustaceans and fish (Stobutzki et al. 2000, reviewed in Courtney et al. 2010). Coral reefs to turbid estuaries (Heatwole 1999) | A | Unknown,
probably large.
Common | | Females mature
at 23 months
and males at 20
months (Ward
2001). | | K=0.423,
M=0.374 | Р | Cumulative
inshore
pressures;
capture in crab-
pots | Р | 5 | I-L | | Turtle-
headed sea
snake | Strong reef association (V
Luchosheck). Extremely low risk
from trawling. Feeds on fish eggs,
and inhabits shallow water on coral
reefs (Heatwole 1999) | A | Unknown,
probably large | | By 12 months
most species of
sea snakes are
close to adult
size. | A | M=0.434 | Р | No known
concerns in
GBR | A | 4 | I-L | | Yellow-
bellied sea
snake | Feeds on pelagic fish associated with flotsam and jetsam along convergence lines. Broad range of fish species identified from diet. Pg 194 The Biology of Sea Snakes. | A | Unknown,
probably large | | By 12 months
most species of
sea snakes are
close to adult
size. | A | | Р | No known
concerns in
GBR | A | 4 | I-L | | Horned sea | Acalyptophis | Level of interaction Proportion of the population caught estimated to be 23% (excluding BRD | or PP
A | Survival after interaction QLD has 10.6% adjusted within-trawl mortality (Table 6.4.9 in Courtney et al. | or PP | Interaction
throughout life cycle
It is rare to see
juveniles of any sea
snake species in the
trawl fishery by catch, | Α | TED/BRD effectiveness Current styles of BRDs being used by fishermen in the trawl fishery are highly variable for excluding sea snakes. Research has shown that when | A or
P | Risk
prone
score | Fishery
Impact
Profile level | RISK
INT-
LOW | |---------------------------|---------------------|--|------------|--|-------|---|---|--|-------------------------|------------------------|------------------------------------|---------------------| | | | effect) (Courtney et al. 2010). | | 2010). | | and research projects
have also seen few
juveniles. | | effective BRDs are used and installed in appropriate distances from the drawstring they are highly effective at excluding sea snakes. | | | | | | Dubois' sea
snake | duboisii | Proportion of the population caught estimated to be 0% (excluding BRD effect) (Courtney et al. 2010). | | QLD has 3.0%
adjusted within-trawl
mortality (Table 6.4.9
in Courtney et al.
2010) | А | It is rare to see juveniles of any sea snake species in the trawl fishery by catch, and research projects have also seen few juveniles. | | Current styles of BRDs being used by fishermen in the trawl fishery are highly variable for excluding sea snakes. Research has shown that when effective BRDs are used and installed in appropriate distances from the drawstring they are highly effective at excluding sea snakes. | P | 1 | L | INT-
LOW | | Spine-tailed
sea snake | eydouxii | Proportion of the population caught estimated to be 18% (excluding BRD effect) (Courtney et al. 2010). | | QLD has 4.7%
adjusted within-trawl
mortality (Table 6.4.9
in Courtney et al.
2010) | A | It is rare to see juveniles of any sea snake species in the trawl fishery by catch, and research projects have also seen few juveniles. | | Current styles of BRDs being used by fishermen in the trawl fishery are highly variable for excluding sea snakes. Research has shown that when effective BRDs are used and installed in appropriate distances from the drawstring they are highly effective at excluding sea snakes. | Р | 1 | L | INT-
LOW | | Olive sea
snake | Aipysurus
laevis | Proportion of the population caught estimated to be 20% (excluding BRD effect) (Courtney et al. 2010). | | QLD has 5.9%
adjusted within-trawl
mortality (Table 6.4.9
in Courtney et al.
2010) | A | It is rare to see
juveniles of any sea
snake species in the
trawl fishery by catch,
and research projects
have also seen few
juveniles. | | Current styles of BRDs being used by fishermen in the trawl fishery are highly variable for excluding sea snakes. Research has shown that when effective BRDs are used and installed in appropriate distances from the drawstring they are highly effective at excluding sea snakes. | Р | 1 | L | INT-
LOW | | Common
Name
Stokes' sea
snake | Astrotia
stokesii | Level of interaction Proportion of the population caught estimated to be 12% (excluding BRD effect) (Courtney et al. 2010). | or PP
A | Survival after interaction QLD has 10.5% adjusted within-trawl mortality (Table 6.4.9 in Courtney et al. 2010). | or PP | Interaction throughout life cycle It is rare to see juveniles of any sea snake species in the trawl fishery by catch, and research projects have also seen few juveniles. | A | TED/BRD effectiveness Current styles of BRDs being used by fishermen in the trawl fishery are highly variable for excluding sea snakes. Research has shown that when effective BRDs are used and installed in appropriate distances from the drawstring they are highly effective at excluding sea snakes. | P | Risk
prone
score | Fishery
Impact
Profile level | RISK
INT-
LOW | |--|----------------------|---|------------|---|-------|---|---|--|----------|------------------------|------------------------------------|---------------------| | Spectacled sea snake | Disteira kingii | Proportion of the population caught estimated to be 26% (excluding BRD effect) (Courtney et al. 2010). | Р | QLD has 17.5% adjusted within-trawl mortality (Table 6.4.9 in Courtney et al. 2010) Northern Prawn Fishery, has lower intrawl survival rate than most other species (50% even with best practice BRDs (Brewer et al. 2009). | | It is rare to see juveniles of any sea snake species in the trawl fishery by catch, and research projects have also seen few juveniles. | | Current styles of BRDs being used by fishermen in the trawl fishery are highly variable for excluding sea snakes. Research has shown that when effective BRDs are used and installed in appropriate distances from the drawstring they are highly effective at excluding sea snakes. | P | 3 | | INT | | Olive-
headed sea
snake | Disteira major | Proportion of the population caught estimated to be 7% (excluding BRD effect) (Courtney et al. 2010). | | QLD has 14.9% within-
trawl mortality (Table
6.4.9 in Courtney et al.
2010) | | It is rare to see juveniles of any sea snake species in the trawl fishery by catch, and research projects have also seen few juveniles. | | Current styles of BRDs being used by fishermen in the trawl fishery are highly variable for excluding sea snakes. Research has shown that when effective BRDs are used and installed in appropriate distances from the drawstring they are highly effective at excluding sea snakes. | P | 2 | I-L | INT-
LOW | | Common
Name
Beaked sea
snake | Enhydrina
schistosa | Level of interaction Proportion of the population caught estimated to be 17% (excluding BRD effect) (Courtney et al. 2010). | or PP | Survival after interaction In QLD has 1.2% within-trawl mortality (p. 28 in Courtney et al. 2010). All 80 individuals survived capture in the shallow
water beam trawl and black tiger prawn broodstock collection fisheries, where trawl durations are typically very short, whereas an individual caught in the red spot king prawn sector died. (Courtney et al 20010, p46) | or PP
A | Interaction throughout life cycle It is rare to see juveniles of any sea snake species in the trawl fishery by catch, and research projects have also seen few juveniles. | Α | | A or | Risk
prone
score | Fishery
Impact
Profile level | RISK
INT-
LOW | |---------------------------------------|------------------------|---|-------|--|------------|---|---|--|------|------------------------|------------------------------------|---------------------| | Elegant sea
snake | | Proportion of the population caught estimated to be 35% (excluding BRD effect) (Courtney et al. 2010). | | QLD has 11.4% adjusted within-trawl mortality (Table 6.4.9 in Courtney et al. 2010). Larger ones low survival, hence double prone. | | It is rare to see juveniles of any sea snake species in the trawl fishery by catch, and research projects have also seen few juveniles. | | Current styles of BRDs being used by fishermen in the trawl fishery are highly variable for excluding sea snakes. Research has shown that when effective BRDs are used and installed in appropriate distances from the drawstring they are highly effective at excluding sea snakes. | P | 4 | H-I | HIGH | | Common
Name | Species Name | Level of interaction | _ | Survival after interaction | Interaction
throughout life cycle | A or
P | | A or
P | Risk
prone
score | Fishery
Impact
Profile level | RISK | |-------------------------------|------------------------|---|---|--|---|-----------|--|-----------|------------------------|------------------------------------|-------------| | | | Proportion of the population caught estimated to be 0% (excluding BRD effect) (Courtney et al. 2010). | A | QLD has 22.2% adjusted within-trawl mortality (Table 6.4.9 in Courtney et al. 2010). Had highest within-trawl mortality rate (unadjusted) of 33.3%, and mainly caught in red-spot king prawn fishery (Courtney et al. 2010, p28, p45) | It is rare to see juveniles of any sea snake species in the trawl fishery by catch, and research projects have also seen few juveniles. | | Current styles of BRDs being used by fishermen in the trawl fishery are highly variable for excluding sea snakes. Research has shown that when effective BRDs are used and installed in appropriate distances from the drawstring they are highly effective at excluding sea snakes. | P | 3 | | INT | | Ornate reef
sea snake | | Proportion of the population caught estimated to be 38% (excluding BRD effect) (Courtney et al. 2010). | | QLD has 19.1% adjusted within-trawl mortality (Table 6.4.9 in Courtney et al. 2010) Northern Prawn Fishery, has low intrawl survival rate (79% even with best practice BRDs (Brewer et al. 2009). Had second highest within-trawl mortality rate (unadjusted) of 27.2% (Courtney et al. 2010, p28) | It is rare to see juveniles of any sea snake species in the trawl fishery by catch, and research projects have also seen few juveniles. | | Current styles of BRDs being used by fishermen in the trawl fishery are highly variable for excluding sea snakes. Research has shown that when effective BRDs are used and installed in appropriate distances from the drawstring they are highly effective at excluding sea snakes. | P | 4 | H-I | HIGH | | Large-
headed sea
snake | Hydrophis
pacificus | Proportion of the population caught unknown. Not captured in trawl by catch study, so assume relatively low interaction rate. | | Northern Prawn
Fishery, has lower in-
trawl survival rate than
most other species
(66% even with best
practice BRDs (Milton
et al. 2009). | It is rare to see
juveniles of any sea
snake species in the
trawl fishery by catch,
and research projects
have also seen few
juveniles. | | Current styles of BRDs being used by fishermen in the trawl fishery are highly variable for excluding sea snakes. Research has shown that when effective BRDs are used and installed in appropriate distances from the drawstring they are highly effective at excluding sea snakes. | P | 2 | I-L | INT-
LOW | | Common
Name | Species Name | Level of interaction | - | Survival after interaction | - | Interaction
throughout life cycle | A or
P | TED/BRD effectiveness | A or | Risk
prone
score | Fishery
Impact
Profile level | RISK | |---------------------------------|-------------------------|---|---|---|---|---|-----------|--|------|------------------------|------------------------------------|-------------| | Spine-
bellied sea
snake | (Lapemis
hardwickii) | Proportion of the population caught estimated to be 20% (excluding BRD effect) (Courtney et al. 2010). | А | QLD has 7.5%
adjusted within-trawl
mortality (Table 6.4.9
in Courtney et al.
2010). | | It is rare to see juveniles of any sea snake species in the trawl fishery by catch, and research projects have also seen few juveniles. | | Current styles of BRDs being used by fishermen in the trawl fishery are highly variable for excluding sea snakes. Research has shown that when effective BRDs are used and installed in appropriate distances from the drawstring they are highly effective at excluding sea snakes. | P | 1 | L | INT-
LOW | | Turtle-
headed sea
snake | | Not caught in research trawl work done by Courtney et al. 2010. Species is strongly reef associated, so not surprising it is not sampled. | A | N/A | A | Limited or none | A | Not applicable as interaction rate negligible | A | 0 | L | INT-
LOW | | Yellow-
bellied sea
snake | platura | Proportion of the population caught unknown. Not captured in trawl by catch study, so assume relatively low interaction rate. | А | N/A | А | Limited or none | A | Not applicable as interaction rate negligible | А | 0 | L | INT-
LOW | #### Appendix 14. Resilience of seahorses and pipefish | Common
Name
Seahorses
Queensland | Hippocampus | Seahorses of the size of <i>H</i> . | Р | Seahorse males brood | A or P
or PP | Geographic distribution Certainty in distribution is | Habitat specificity or ecological niche Patchy distribution within range. | A or P | |---|--------------------------------|--|---|---|-----------------|---
---|--------| | seahorse | queenslandicus | queenslandicus (height to 13 cm) have broods that are normally in the range of 100-300 young. Males of all seahorses studied go through more than one pregnancy in a breeding season. | | young in pouches on the underside of their tail. Young are born live after a gestation of 20-28 days (for similar species). Pair bonding may not apply to all syngnathid species. Faithful pair bonding means that breeding of widowed individual may be disrupted. | | between Southport, Qld to
Papua New Guinea. | Syngnathids are strictly benthic animals. Found mostly within 3 dimensional sessile benthic biota. Seahorses also require holdfasts in their habitats and prefer areas with currents. Known from trawls near reefs to 63 m but rarely seen in waters less than 20 m depth. This species is also found in estuaries (P. Groves pers. Obs) | | | Highcrown
seahorse | Hippocampus
proceros | Based on <i>H. queenslandicus</i> | Р | Based on <i>H.</i>
queenslandicus | | Coastal Queensland -
Moreton bay to the Gulf
(Kuiter, 2009) | Occurs on mixed algae reef to depths of about 20m (Kuiter 2001) | А | | Pipefish | | | | | | | | | | Bentstick
pipefish | | Very little is known of the biology of pipefish. Biological consideration can be given on membership to the Syngnathids family. Using sea dragons as an example, these larger pipefish produce approx 100 - 200 young that hatch from the eggs over a week or so (to aid with dispersal), and have 2-4 clutches per year (P. Groves, pers. comm.). | | Pipefish males carry their young on brood patches (or sometimes brood pouches) on the underside of their tail. Young are unlikely to have a planktonic phase and will remain near the benthos. | | Possibly widespread Indo-
West Pacific distribution.
Taxonomic uncertainty - all
populations need further
investigation. 3 specimens
recorded during DPI survey
work in the QECTF scallop
sector (Dunning et al. 2001) | Deep water species mainly known from deep trawls over muddy substrates. | Р | | Straightstick
pipefish | Trachyrhamphus
Iongirostris | Very little is known of the biology of pipefish. Biological consideration can be given on membership to the Syngnathids family. | Р | As above | | Reported from thought the tropical Indo-West Pacific but various populations may represent additional species. | Inshore species. Often in shallow depths along the edges of seagrass beds to at least 30 m depth. May have relatively high habitat specificity | Р | #### Appendix 14. Resilience of seahorses and pipefish | Common
Name
Seahorses | Population size or trend | _ | Growth rate /
Age at maturity | | Longevity /
Natural mortality | A
or
P | | A
or
P | Comments | Risk
prone
score | Resilience
level | |-----------------------------------|---|---|--|---|--|--------------|---|--------------|----------|------------------------|---------------------| | Queensland
seahorse | Studies indicate that population densities of Syngnathids are commonly low, though knowledge gap exists (Connolly et al. 2001, Lourie et al. 2004). Low adult mobility and small home ranges in many species may restrict the decolonisation of depleted areas. Juveniles may be the primary dispersers though are susceptible to predation. As the young are well developed, dispersal is generally limited to a small area. | Р | Medium-sized seahorses, for which data is available, show these species maturing during the first reproductive season after birth, thus at age 6 to 12 months. | Α | Medium sized seahorses live for around 4 -5 years. Lourie et. al. 2004 state that natural mortality of adult Hippocampus appears to be low (minimal predation on adults, neonates most vulnerable), highlighting that unnatural forms of mortality presents real pressure. | | May exist. Syngnathids thought to be affected by flood/storm events. Poor swimming ability means they often wash onto beaches after storms. Connolly et al. 2001 cites a pers. comm. of reports of greater numbers of pipehorses being caught following storms or unusual tidal patterns as a result of pipehorses being forced off reefs and onto adjacent sand areas. | P | | 5 | I-L | | Highcrown
seahorse | Unknown. Syngnathids are generally sparsely distributed and not highly abundant. | Р | As above.
Height to more
than 110mm. | Α | As above | Р | As above | Р | | 5 | I-L | | Pipefish
Bentstick
pipefish | Unknown. Syngnathids are generally sparsely distributed and not highly abundant. | P | Growth rate likely
to be similar to
other Syngnathids
of similar size. | A | Similar to other Syngnathids. May be similar to seahorses, where there is thought to be low adult mortality. (refer <i>H. queenslandicus</i> above) | Р | Unknown | A | | 5 | I-L | | Straightstick
pipefish | Unknown. Syngnathids are generally sparsely distributed and not highly abundant. Thought to be less common than <i>T. bicoarctatus</i> . | Р | Growth rate likely
to be similar to
other Syngnathids
of similar size. | Α | Similar to other Syngnathids. May be similar to seahorses, where there is thought to be low adult mortality. (refer <i>H. queenslandicus</i> above) | Р | Likely to be prone to threats from coastal zone process and increased human population and development which increased with climate change pressures. | P | | 6 | L | #### Appendix 14. Resilience of seahorses and pipefish | Common
Name
Tiger pipefish | Species Name
Filicampus tigris | Fecundity Very little is known of the biology of pipefish. Biological consideration can be given on membership to the Syngnathids family. | | Life history strategy As above | Р | Geographic distribution Sub-tropical waters on the east and west coast of Australia. Population once in existence in Spencer Gulf, SA now thought to be extirpated. Three specimens recorded in tiger/endeavour prawn sector in Dunning et al. 2003. 1 specimen recorded in the scallop sector in DPI survey work (Dunning et al. 2001) | A | Habitat specificity or ecological niche Inshore species. Often in shallow depths along the edges of seagrass beds to at least 30 m depth. | | |---|-----------------------------------|---|---|---|---|---|---|---|---| | Pipehorse Pallid/Hardwi ck(e)'s pipehorse | Solegnathus cf.
hardwickii | Brood sizes comparatively smaller than those for seahorses and pipefish. Peak breeding season July to September and lowest in June. 20-40% males have egg scars throughout remainder of year. Brood size 19-207 (mean 117). Year round breeding increases fecundity of this species | P | Young born live at about 34 mm length. Male bares young - removal during pregnancy reduces recruitment. Faithful pair bonding and sparse distribution which may mean consequent reduced production from widowed individual. | | Form of same species distributed through China Sea to southern Japan. By catch records indicate the east Australian coast distribution to extend between Innisfail, Qld and Mooloolaba, Qld. | A | Syngnathids are strictly benthic animals. Shows preference for deeper water beyond 25 m. Lack of caudal fin indicates high site fidelity and small home range. Preference for structured habitat in high current regimes. | P | #### Appendix 14. Resilience of seahorses and pipefish | Common
Name
Tiger pipefish | Population size or trend Unknown. Syngnathids are
generally sparsely distributed and not highly abundant. | or PP | Growth rate / Age at maturity Growth rate likely to be similar to other Syngnathids of similar size. | Р
А | Longevity / Natural mortality Similar to other Syngnathids. May be similar to seahorses, where there is thought to be low adult mortality. (refer H. queenslandicus above) | A
or
P | Cumulative pressures Spencer Gulf, SA, population thought to be extirpated as a result of heavy industry pollution and loss of habitat. Likely to be prone to threats from coastal zone process and increased human population and development which increased with climate change pressures. | A
or
P | | | Resilience
level
L | |---|---|-------|--|---------------|--|--------------|--|--------------|---|---|--------------------------| | Pipehorse Pallid/Hardwi ck(e)'s pipehorse | Studies indicate that population densities of Syngnathids are commonly low, though knowledge gap exists (Connolly et al. 2001; Lourie et al. 2004). Low adult mobility and small home ranges in many species may restrict the recolonisation of depleted areas. Juveniles may be the primary dispersers though are susceptible to predation. Most common pipehorse in trawl catch. | | 1.2mm.d-1 hatchlings to juvenile. 0.3 mm.d- 1 juv. to adult. In Connolly et al. 2001, it was stated that many pipehorses had most likely reproduced many times prior to capture. | | Solegnathus cf. hardwickii lives for 3 - 5 years. M may be similar to seahorses, where there is thought to be low adult mortality. (refer H. queenslandicus above) | P | May exist. Syngnathids thought to be affected by flood/storm events. Connolly et al. 2001 cites a pers. comm. of reports of greater numbers of pipehorses being caught following storms or unusual tidal patterns as a result of pipehorses being forced off reefs and onto adjacent sand areas. Dried specimens are highly sought after in the traditional Chinese medicine trade. | | Found in communities in 30 to 40m depth in the scallop fishery and outside the GBRMP (?) they occur in depths to 80m in east coast king prawn fishery | 5 | I-L | | Common
Name
Seahorses | Species Name | Level of interaction | A or P
or PP | Survival after interaction | A or P | |-----------------------------|--------------------------------|--|-----------------|---|--------| | Queensland
seahorse | Hippocampus
queenslandicus | Known to interact with the northern tiger/endeavour and eastern king prawn sectors. No reports of interactions with Syngnathids in banana prawn sector (Stobutzki et al. 2000), and no mention of Syngnathids in other QECTF reports on by catch (Jones & Derbyshire 1998, Watson et al. 1990, Poiner et al. 1998). 17% effort exposed (Pitcher et al. 2007). Less than 1% of the biomass are captured; very low catchability and distributed outside the GBRMP (Pitcher et al 2007) | A | Studies of Syngnathids by catch shows that survival following interaction with trawl gear is almost nil (Dunning et al. 2001; Dunning et al. 2003; Connolly et al. 2001). | PP | | Highcrown seahorse | Hippocampus proceros | Occurs on mixed algae reef to depths of about 20m (Kuiter 2001) | А | As above | PP | | Pipefish | | | | | | | Bentstick
pipefish | Trachyrhamphus
bicoarctatus | Habitat known to somewhat overlap with scallop sector. May interact with red spot and other shallow water tropical to sub-tropical sectors to 25 m. 3 specimens trawled in the scallop sector in by catch survey work. Commercial log book data does not describe to species level. Courtney did 368 trawls in by-catch study in the scallop sector and caught none, 204 trawls in the shallow water king prawn fishery and none caught, 418 trawls in the north QLD tiger/endeavour and none caught. 2007 FRDC report 2000/170. | | Studies of Syngnathids by catch shows that survival following interaction with trawl gear is almost nil (Dunning et al. 2001; Dunning et al. 2003; Connolly et al. 2001). | PP | | Straightstick
pipefish | Trachyrhamphus
Iongirostris | Habitat overlaps most QECTF sectors. Limited record in by catch studies. May indicate species' rarity or patchy distribution, or lack of species-specific information from logbooks. 1 specimen trawled in the scallop sector in by catch survey work. Commercial log book data does not describe to species level. | A | Studies of Syngnathids by catch shows that survival following interaction with trawl gear is almost nil (Dunning et al. 2001; Dunning et al. 2003; Connolly et al. 2001). | PP | | Tiger pipefish | Filicampus tigris | Habitat known to somewhat overlap with tiger/endeavour prawn and scallop sectors. May also interact with red spot and other shallow water tropical to sub-tropical sectors to 30 m. 3 adult specimens trawled in the tiger/endeavour prawn sector and 1 specimen in the scallop sector in by catch survey work. Commercial log book data does not describe to species level. | A | Studies of Syngnathids by catch shows that survival following interaction with trawl gear is almost nil (Dunning et al. 2001; Dunning et al. 2003; Connolly et al. 2001). | PP | | Common
Name | Interaction throughout life cycle | A or
P | TED/BRD effectiveness | A or
P | Variance | Comments | Risk
prone
score | Fishery
Impact
Profile level | RISK | |-------------------------------------|---|-----------|---|-----------|--|--|------------------------|------------------------------------|------| | Seahorses
Queensland
seahorse | Studies of some seahorses (and Syngnathids) show high site-fidelity and small home ranges (likely due to small caudal fin) and dispersal may only occur passively in juvenile stage. <i>H. queenslandicus</i> prone due to its preferred habitat overlapping with trawl grounds. Usually trawled in depths over 20m and as deep as 63m (Kuiter 2001). | A | By catch studies of BRD and TEDS indicate their ineffectiveness in reducing the accidental capture of Syngnathids (Dunning et al. 2001; Dunning et al. 2003; Connolly et al. 2001). | P | Syngnathids
by catch rates
greater in the
EKP sector. | | 3 | I | INT | | Highcrown
seahorse | Probably minimal due to habitat niche and level of interaction. | А | As above | Р | | | 3 | I | INT | | Pipefish | | | | | | | | | | | Bentstick
pipefish | Studies of Syngnathids show high site-fidelity and small home ranges (likely due to small caudal fin) and dispersal may only occur passively in juvenile stage. <i>T. bicoarctatus</i> may not be overly exposed to QECTF as thought to be mostly an inshore species. | | By catch studies of BRD and TEDS indicate their ineffectiveness in reducing the accidental capture of Syngnathids (Dunning et al. 2001; Dunning et al. 2003; Connolly et al. 2001). | P | | Recorded
during DPI
surveys during
October 1999
and 2000.
Dunning et al.
2001. | 3 | I | INT | | Straightstick
pipefish | Studies of Syngnathids show high site-fidelity and small home ranges (likely due to small caudal fin) and dispersal may only occur passively in juvenile stage. <i>T. longirostris</i> may have a greater capacity for accidental capture due to its high habitat specificity overlapping with sectors of QECTF. | A | By catch studies of BRD and TEDS indicate their ineffectiveness in reducing the accidental capture of Syngnathids (Dunning et al. 2001; Dunning et al. 2003; Connolly et
al. 2001). | Р | | | 3 | I | INT | | Tiger pipefish | Studies of Syngnathids show high site-fidelity and small home ranges (likely due to small caudal fin) and dispersal may only occur passively in juvenile stage. <i>F. tigris</i> may not be overly exposed to QECTF as thought to be mostly an inshore species. | Α | By catch studies of BRD and TEDS indicate their ineffectiveness in reducing the accidental capture of Syngnathids (Dunning et al. 2001; Dunning et al. 2003; Connolly et al. 2001). | Р | | | 3 | I | INT | | Pipehorse | Species Name | | A or P
or PP | Survival after interaction | A or P
or PP | |-----------|--------------|--|-----------------|---|-----------------| | | | Permitted species in fishery with trip limit of 50 individual pipefish in total. Pipefish are reported as number of individuals retained, and in 2009 5640 were reported in ECOTF catches for the East Coast (DEEDI 2010). Highest frequency of accidental capture of S. cf. hardwickii in the Eastern King Prawn sectors, mostly in the deepwater sector. Log book records of interaction from between Innisfail and Mooloolaba. No reports of interactions with Syngnathids in banana prawn sector (Stobutzki et al. 2000), and no mention of Syngnathids in other QECTF reports on by catch (Jones & Derbyshire 1998; Watson et al. 1990; Poiner et al. 1998); anecdotal information (from industry) suggests not captured north of Cairns. | | Studies of Syngnathids by catch shows that survival following interaction with trawl gear is almost nil (Dunning et al. 2001; Dunning et al. 2003; Connolly et al. 2001). | PP | | Common
Name
Pipehorse | Interaction throughout life cycle | A or
P | | A or
P | | | prone | Fishery
Impact
Profile level | RISK | |---------------------------------------|--|-----------|---|-----------|--|-------------------|-------|------------------------------------|------| | Pallid/Hardwic
k(e)'s
pipehorse | Studies of Syngnathids show high site-fidelity and small home ranges (likely due to small caudal fin) and dispersal may only occur passively in juvenile stage. S. cf. hardwickii prone due to its preferred habitat overlapping with trawl grounds. | | By catch studies of BRD and TEDS indicate their ineffectiveness in reducing the incidental capture of Syngnathids (Dunning et al. 2001; Dunning et al. 2003; Connolly et al. 2001). | | and East coast
king prawn
fishery. | that switching to | 3 | I | INT | | Common
Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or P | |-------------------------------------|--|--|-----------------|---|-----------------|--|--------|--|--------| | Blind sharks Blue-grey carpet shark | (Family Brachael
Brachaelurus
colcloughi | uridae) Viviparous. Litter size range 6-7 pups (Kyne et al. in press). | PP | Live bearing, low fecundity. | PP | IUCN - Vulnerable. Endemic to
eastern Australia. Distributed
between Hardline Reefs
(20degS) and Julian Rocks
NSW (Kyne et al. in press) | P | Moderate habitat specificity (and limited distribution). Mainly inshore in less than 4 m depth but one only below 100m (specimen from 217 m), NSW trawl 11 records 54-71 m, Courtney et al. down to ~90m (all but 1 specimen south of GBR) (total specs 48) uses cover (rocky reef, etc to rest in the day, moves over sand etc at night | | | Wobbegongs | (Family Orectolo | bidae) | | | | | | | | | Tasselled
wobbegong | Eucrossorhinus
dasypogon | Viviparous. Litter size low. Considered to have similar biology to Orectolobus maculatus with litter size of 21 (up to 37) pups. | | Live bearing, low fecundity. Considered to have similar biology to <i>O. maculatus</i> with a 10 - 11 month gestation period, breeding periodicity every 2-3 years. | PP | Distributed through New
Guinea and northern Australia
from Ningaloo Reef, WA to
Bundaberg, QLD. | Α | Moderate habitat specificity and large area of available habitat within its distribution range. Inhabits shallow areas of the continental shelf and offshore reefs, to about 50 m depth. Coral reef specialist. (Last &Stevens 2009) | A | | Spotted
wobbegong | Orectolobus
maculatus | Viviparous. Litter size of 21 (up to 37) pups. | Р | Live bearing, low fecundity. 10 - 11 month gestation period, breeding periodicity less than annually. | PP | Distributed from north of the
Swain Reefs, QLD south
around to Fremantle, WA and
possibly further north to North
West Cape, WA. | A | Moderate habitat specificity and large area of available habitat within its distribution range. Most common inshore but has been trawled to 218 m. (Last &Stevens 2009) | | | Common
Name | Population size or trend | | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level | |-------------------------------------|---|---|---|--------|---|--------|---|-------|------------------| | Blind sharks Blue-grey carpet shark | Unknown. | P | Total length sizes: Size at birth 170-180 mm Size at maturity (females) 650 mm Maximum size 750 mm | P | Unknown - but comparing with other like sharks <20 y/o, and natural mortality <1. 'A' is a fairly reasonable estimate for this species. | | NSW trawl, QLD inshore net. Habitat loss & alteration cause for concern (particularly in the southeast Moreton Bay). Climate change vulnerability is low (Chin et al. 2010) | 8 | L | | Wobbegongs | 3 | | | | | | | | | | Tasselled
wobbegong | Relatively common | А | Total length sizes: Size at birth 200 mm Size at maturity (both sexes) unknown Maximum size 1250 mm | Р | Indicator species <i>O.</i> hlorie reaches sexual maturity at 16 yrs, suggests longevity of this species is > 20 (I. Jacobsen) | Р | Low in climate change vulnerability assessment (Chin et al. 2010). Reef associated so no inshore net. Potentially marine aquarium collection - will be low numbers. | 5 | I-L | | Spotted
wobbegong | Relatively common in the south. No information for the GBR. | A | Total length sizes: Size at birth 200 - 250 mm Size at maturity (both sexes) ~ 1150-1200 mm Maximum size 1700 - 3200 mm | P | Indicator species <i>O. hlorie</i> reaches sexual maturity at 16 yrs, suggests longevity of this species is > 20 (I. Jacobsen) | | Low in climate change vulnerability assessment (Chin et al. 2010). Caught in multi species fisheries - NSW line and trap, Vic and WA. No information about connectivity between different regions. Aware of fishing pressures - but not thought to be very significant within GBR area. | 5 | I-L | | Common
Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or P | |-------------------------------|--|--|-----------------|---|-----------------
---|--------|---|--------| | Longtailed ca | arpetshark (Family | Hemiscylliidae) | | | | | | | | | Grey
carpetshark | Chiloscyllium
punctatum | Oviparous. In captivity in QLD, 2 females laid 115 eggs each over 2 seasons of which about 40 were viable. Eggs hatched in 153 days. | | Egg laying. Moderate fecundity. Breeds once annually. | P | Wide Indo-West Pacific distribution from India to Japan and south to Australia where it occurs in tropical waters from Shark Bay, WA to Sandon River, NSW. | А | Low habitat specificity and large
area of available habitat within its
distribution range. Inshore shelf to
at least 85m deep. (Last and
Stevens 2009) | A | | Catsharks (F | amily Scyliorhinid | aeae) | | | | | | | | | Eastern
banded
catshark | Atelomycterus
marnkalha
(previously sp.A /
grouped with
fasciatus) | Presumably'
oviparous. Further
reference Jacobsen
& Bennett 2007 | | Egg-laying. Periodicity greater than annually. | P | Distributed through the northern and north eastern coast of Australia and across to New Guinea. Locally, between the Coburg Peninsula, NT and Gladstone, Qld. Associated with rubbly bottoms. | | Moderate habitat specificity and large area of available habitat within its distribution range. Mainly inhabits inshore habitats between depths of 10 to 75 m. | А | | Weasel shark | (Family Hemigali | dae) | | | | | | | | | Australian
weasel shark | Hemigaleus
australiensis | Viviparous. Litter size range 1-19 pups. Birthing mainly in February and September after a gestation of about 6 months. | | Live bearing, low fecundity.
Breeds bi-annually. | PP | Endemic to northern Australia from Geraldton, WA to Brunswick Heads, NSW | A | Low habitat specificity and large
area of available habitat within its
distribution range. On or near
bottom on continental and insular
shelves to depths of 170m. (Last
and Stevens 2009) | A | | Common
Name
Longtailed ca | Population size or trend | | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level | |---------------------------------|---|---|---|--------|---|--------|---|-------|------------------| | Grey
carpetshark | Relatively common. Comprised 1.46% of chondrichthyan by catch in QECTF scallop sector and 37.5% / 15.79% in the tiger/endeavour sector sampling in Kyne 2008, Tables 3.10 and 3.12 / 3.14 respectively. | А | Total length sizes: Size at birth 130-180 mm Size at maturity (both sexes) ~ 700-870mm Maximum size 1180-1320mm. * L & S, 2009 - reaches sexual maturity in captivity at around 1 yr. | А | Unknown - but comparing with other like sharks <20 y/o, and natural mortality <1. 'A' is a fairly reasonable estimate for this species. | | Other pressures that have little impact on the species. Still a common species. | 2 | H-I | | Catsharks (Fa | | | | | | | | | | | Eastern
banded
catshark | Not a common species. | Р | Total length sizes: Size at birth unknown Size at maturity (both sexes) ~350 mm Maximum size 484 mm | Р | Unknown. | Р | Limited cumulative pressures. | 5 | I-L | | Weasel shark | | | | | | | | | | | Australian
weasel shark | Relatively commonly
found. Comprised
11.84% of
chondrichthyan by catch
in QECTF
tiger/endeavour sector
sampling in Kyne 2008,
Table 3.14. | A | Total length sizes: Size at birth 300mm Size at maturity (both sexes) ~ 600-700mm Max size 1100 mm Don't reach adulthood within 2 years? | Р | Unknown. | | Taken in low numbers in gill net and line fishing in GBR. Significant number taken in fish trawls in WA. Likely catch in GOC fisheries. However readily abundant still. | 5 | <u>+</u> - | | Common
Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or P | |----------------|--------------------------|--|-----------------|--|-----------------|--|--------|--|--------| | Whaler shark | (Family Carcharl | ninidae) | | | | | | | | | Sliteye shark | Loxodon
macrorhinus | Viviparous. Litter sizes average 1-2 | PP | Live bearing, low fecundity.
Breeds annually from about
2 - 3 years. | PP | Wide Indo-West Pacific
distribution from east Africa to
Japan and south to Australia
where it occurs in waters from
Geraldton WA to Moreton Bay
QLD | А | Low habitat specificity and large area of available habitat within its distribution range. Found in continental and insular shelves, near shore to at least 75 m depth. Last &Stevens 2009. | | | Milk shark | Rhizoprionodon
acutus | Little published data
in Australia. In
northern Australia,
mean little size was
3, with a range of 1-
6 (Stevens and
McLoughlin 1991). | | Live bearing, with small litters and sexual maturity (2-3 years) suggests low or moderate ability to maintain populations. Little information on periodicity of the reproductive cycle in Australia. R. acutus in southwestern Indian ocean and eastern Atlantic has a | | Tropical east Atlantic and Indo-
West Pacific. Throughout
northern Australia from the
Brisbane area to the North
West shelf of Western
Australia (Stevens and
McGloughlin 1991). | A | One of the most common sharks caught by trawl in the GOC in Stevens and McCloughlin's study (1991). Common in Cleveland Bay, Hervey Bay and Moreton Bay. Probably no quantifiable data on habitat specificity. | A | | | | | | seasonal reproductive cycle, mating occurs in summer with parturition occurring 12 months later (Stevens and McLoughlin 1991). | | | | | | | Common
Name
Whaler shark | Population size or trend | | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level | |--------------------------------|---|---|--|--------|---|--------|--|-------|------------------| | | Unknown for GBR but
relatively common in
Hervey Bay (A.
Gutteridge pers. com). | A | Age at maturity unknown but provisionally estimated to be between 2 and 3 years. Size at birth 400 -450 mm. Size at maturity ~600 mm, Max size 880 -990 mm Based on criteria assessed as P | | Unknown but preliminary estimate is that it is less than 10 yrs (A. Gutteridge). | | None known but may be impacted on by water quality. Off northwestern Australia taken by trawl. | 5 | I-L | | Milk shark | Abundant inshore species | A | Completes much of its growth in first year (Harry et al 2010) therefore risk averse. *Age at when 50% of females and males were mature reported at 1.8 and 1.1 years respectively indicating maturity likely to be reached at between 1 and 3 years of age (Last & Stevens, 2009; Harry et al., 2010; IUCN red list assessment, Simpfendorfer); *Born at 22 - 26 cm and attains 67 cm. Males mature at around 40 cm and females around 45cm. Although regional differences in maturation does exist in this species (Last & Stevens, 2009). | A | Age and growth estimates
indicates this species grows to at least 8 years. No indication it lives in excess of 20 years (Harry et al., 2010). | | Taken as by-product in the ECIFF and comprise about 8% by number of all sharks caught in the fishery, but only about 1% by weight of total shark harvest in ECIFF. Harry et al 2011 reported that by virtue of their small size relative to the net mesh size, milk sharks are almost exclusively susceptible to capture as adults in the ECIFF. | 5 | I-L | | Common
Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or P | |---------------------|----------------------------|--|-----------------|--|-----------------|--|--------|---|--------| | Spinner shark | Carcharhinus
brevipinna | Viviparous. Litter sizes average 9 (range 3 to 15) pups. | Р | Live bearing, low fecundity. 10 - 12 month gestation period, with a 2 year breeding periodicity. | PP | Distributed widely in warm temperate and tropical waters of Indo-West Pacific and Atlantic Ocean. Tropical throughout northern Australia and migrating south to Walpole, WA and Jervis Bay, NSW. | A | Low habitat specificity and large area of available habitat within its distribution range. Found in continental and insular shelves, near shore to at least 75 m depth. Last & Stevens 2009. | | | Whitecheek
shark | Carcharhinus
coatesi | Viviparous. Usual
litter size 2 (range 1
- 4). | PP | Live bearing, low fecundity.
Breeds annually without
determinable seasonality. | PP | Widely distributed through the Indo-West Pacific from the Persian Gulf to Japan and south to Australia where it occurs in tropical waters from Dirk Hartog Island, WA to Fraser Island, QLD. | A | Low habitat specificity and large area of available habitat within its distribution range. Inhabits inshore areas of continental and insular shelves down to about 170 m depth, usually near the bottom. Last & Stevens 2009. | A | | Sawfish (Fam | ıl
nily Pristidae) | | | | | | | | | | Narrow
sawfish | Anoxypristis
cuspidata | Litter size up to 15
pups (Last &
Stevens, 2009) | Р | Viviparous - born live; no
parental care; K-selected life
traits - poor ability to rebuild
population | PP | Indo-Pacific from the Red Sea
to Australia. Most common in
the GOC but found from Broad
Sound (QLD) to Pilbara coast
(WA). | A | Found in inshore area to 40m; juveniles tend to occur in inshore depths of less than 10 m. | Р | | Green
sawfish | Pristis zijsron | litter size - 12. (Last
& Stevens 2009) | P | Viviparous - born live; no
parental care; K-selected life
traits - poor ability to rebuild
population | PP | Contraction of Australian range
by 30% from previously known.
(Stevens et.al. 2005) | | Specialist. Current extent of knowledge suggests it exists in northern part of its former range. (Peverell et.al. 2004; Stevens et.al. 2005; Last 7 Stevens 2009) | Р | | Common
Name | Population size or trend | | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level | |---------------------|---|---|--|--------|--|--------|--|-------|------------------| | Spinner shark | Relatively common. | А | Age at maturity 8 - 10 years
Total length sizes:
Size at birth 600 - 800 mm
Size at maturity (both sexes)
varies
geographically 1500 - 2100 mm
Maximum size 2780 - 3000 mm | | Unknown. | Р | Other fishing pressures within and beyond QLD and GBR, incl. rec catch. QSCP catch - QLD and NSW. Could be retained by illegal fishers in the GOC. | 6 | L | | Whitecheek
shark | Considered to be common in northern Australia but population size / trend unknown. | Р | Total length sizes: Size at birth 350 - 400 mm Size at maturity (both sexes) ~ 700 mm Maximum size 900 mm | Р | Unknown. | Р | Other fishing pressures within and beyond QLD and GBR, incl. rec catch. Could be retained by illegal fishers in GOC. | 8 | L | | Sawfish (Fam | | | | | | | | | | | Narrow
sawfish | Unknown, but more
common than other
sawfish species in the
GBRMP | Р | Age at maturity is 4 yrs for
males and 5 years for females
(in Last & Stevens, 2009.
Peverell 2005, 2008 places
Age at maturity at ~3 yrs. Must
be a P based on criteria | Р | Unknown. | Р | Coastal development/habitat loss,
ECIFF, climate change, catchment
runoff. Peverell 2005; Stevens
et.al. 2005; Chin et al. 2008. High
cumulative risk from northern
Australian fisheries (Salini et al
2007) | 8 | L | | Green
sawfish | Unknown, though various data suggest EC population is small and in decline. Qld shark control program data; (Thornburn et.al 2003; Peverell et.al. 2004; Last & Stevens; Stevens et.al. 2005; Peverell 2005; IUCN Red List) | | Age at maturity ~ 9 years.
Last and Stevens. | Р | Unknown. One example of maximum length reached at approximately 24 years. Stevens et.al. 2005. | | Coastal development/habitat loss,
East Coast Inshore Finfish Fishery,
climate change, catchment runoff.
Peverell 2005; Stevens et.al. 2005;
Chin and Kyne 2008 | 10 | L | | Common
Name | Cuasias Nama | Facunditu | A or P | Life history strategy | A or P | Geographic distribution | A or P | Habitat specificity or ecological | A or P | |------------------------------|--|--|--------|--|--------|---|--------|--|--------| | | Species Name
(Family Rhynchol | Fecundity | or PP | Life history strategy | or PP | Geographic distribution | A or P | niche | A OF P | | | Rhynchobatus australiae / Rhynchobatus palpebratus Species not separated in Kyne 2008. | Viviparous. Litter size low (15 laevis). | P | Live bearing, low fecundity.
Thought to breed once
annually. | PP | IUCN - Vulnerable. Patchy
distribution in the Indo-West
Pacific including northern
Australia from the Gulf of
Carpentaria to NSW. | A | Moderate habitat specificity but large area of available habitat within its distribution range. Mainly an inshore species probably to depth of 60 m or more. (Last & Stevens 2009) | A | | Shovelnose r | ays (Family Rhind | batidae) | | | | | | | | | Eastern
shovelnose
ray | Aptychotrema
rostrata | Viviparous. Litter size range 9-20 pups, gestation 3-5 months giving birth mainly November - December. (Kyne 2008, p. 151) | P | K-selected life traits. Viviparous. Moderate ability to maintain / rebuild population. Breeds once annually. | P | Endemic to EC Australia between Halifax Bay to Merimbula, NSW. More abundant southern GBR and south (bulk south of 24° S in Courtney et al 2007) | A | Moderate habitat specificity but large area of available habitat within its distribution range. | A | | • • | amily Hypnidae) | | | | | | | | | | Coffin ray | Hypnos
monopterygius | Viviparous. Litter sizes 4 - 8. | PP | Live bearing, low fecundity. | PP | Endemic to Australia's west
and west south coast between
Broome, WA and St. Vincents
Gulf, SA, and the east coast
from Heron Island, Qld to
Eden, NSW. | A | Moderate habitat specificity and large area of available habitat within its distribution range. Mainly inhabits inshore habitats to a depth of about 80 m, but has been collected to 220 m. | A | | Common
Name | Population size or trend | | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level | |----------------|---|---|---
--------|----------------------------------|--------|--|-------|------------------| | Wedgefishes | | | | | | | | | | | guitarfish | Probably relatively common as a species group; (+JCU sampling) | A | Total length sizes: Size at birth 460-500 mm Size at maturity (females) 1550 mm Maximum size 2820 mm | Р | Unknown. | | Net fishery pressure, illegal fin
market, low climate change
vulnerability in Chin & Kyne 2008 | 6 | L | | Shovelnose ra | | | | | | | | | | | ray | Unknown. Comprised 52.20% (107 animals) of chondrichthyan by catch in QECTF scallop sector sampling in Kyne 2008, Table 3.10. Kyne 2008 brings into question abundance of the species in the northern part of its range. p. 287. Ninety-one percent of samples caught in southern extremity of the GBRMP between 24° 06' and 24° 55' S for similar effort and depths as for the other 9% caught north of that region. | | Total length sizes: Size at birth ~ 170mm Size at maturity (female) 640mm Maximum size 1200mm | P | Unknown. | | East Coast Inshore Finfish Fishery: net fishery, tunnel nets, recreational fishing. Retained in trawl fishery in NSW; and water quality issues | 5 | I-L | | Coffin rays (F | | | | | | | | | | | Coffin ray | Unknown | Р | Total length sizes: Size at birth 80 - 110 mm Size at maturity (both sexes) 395 - 480mm Maximum size 625 - 630 mm | Р | Unknown. | P | Taken as by catch species in NSW trawl fisheries. | 7 | L | | Common
Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or P | |-------------------------|-----------------------|--|-----------------|---|-----------------|--|--------|--|--------| | Stingrays (Fa | mily Dasyatidae) | | | | | | | | | | Estuary
stingray | Dasyatis
fluviorum | Viviparous. Litter size unknown but estimated to be less than <5 (lan Jacobsen pers. comm. 2010). | | Live bearing, low fecundity, reproductive cycle probably annual. | PP | Geographical range extends along the eastern coast of Australia | A | Prefers estuarine and inshore coastal environments particularly over mangrove-fringed sand / mud intertidal depths down to ~35 m depth | Р | | Blackspotted
whipray | Himantura astra | Viviparous. Litter size range 1-3 pups. | PP | Live bearing, low fecundity, annual. | PP | Endemic to southern West
Papua and northern Australia
from Shark Bay, WA to
Moreton Bay, Qld | A | Moderate habitat specificity but large area of available habitat within its distribution range. Mainly inshore, but also in depths to 140m. (Last & Stevens 2009) | A | | Pink whipray | Himantura fai | Viviparous. Litter size unknown. Biological characteristics likely to be within the same vicinity as H. astra. | PP | Live bearing, with low fecundity. Reproductive cycle remains unknown. | PP | Has a wide, but poorly defined distribution that extends throughout northern Australia and the Indo-Pacific. | A | Found over soft substrates on the inner continental shelf, from the intertidal to at least 200 m depth (Manjaji et al., 2004; IUCN red list assessment). | | | Common
Name | Population size or trend | _ | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level | |--------------------------------------|---|---|--|--------|---|--------|---|-------|------------------| | Stingrays (Fa
Estuary
stingray | Pierce and Bennett (2010) indicate D. fluviorum life history traits place it at high to very high risk of population decline. Anecdotal evidence also suggest population has retracted over time. | P | Size: males to at least 651 mm disc width, females 762 mm disc width. Age at maturity reported at 13.4 yrs for females and 7.0 years for males. Reaches sexual maturity at 630 mm disc width (females) and 412 mm disc width (males) (Pierce and Bennett, 2010) | P | Pierce and Bennett
(2010) record maximum
age estimates of 21 years
for females and 16 years
for males | | Habitat reduction through urban development, by catch may not be as prominent (commercial trawl and recreation) (Kyne et al. 2003, IUCN assessment). More than likely effected more in the beam trawl sector. | 9 | L | | Blackspotted
whipray | Unknown. Comprised 12.50% / 26.32% of chondrichthyan by catch in QECTF tiger/endeavour sector sampling in Kyne 2008, Tables 3.12 / 3.14. Not small pop or declining | A | *Males to at least 660 mm and females 770 mm (max disc width likely to be <1m) *Size at birth 170 - 190 mm *Age at 50% sexual maturity: 7.32 (males and 8.67 (females) (Jacobsen & Bennett, 2011). | Р | Females grow to at least
29 years of age and
males at least 18 years of
age (Jacobsen &
Bennett, 2011). | | Net fisheries as well as other prawn trawl fisheries (previously misidentified as <i>H. toshi</i> which has now been confirmed as H. sp A). Not regularly taken for commercial sale though. | 6 | L | | Pink whipray | Population trends
unknown but considered
to be common but not
abundant | A | Disc Width (Max) - to at least 184 cm. Estimated size at birth - 30 - 55 cm Size at maturity - males 108 - 115 cm. (White et al. 2006; Manjaji 2004) No age and growth data available. | P | Unknown | | Caught as by catch in ancillary prawn trawl fisheries including the Northern Prawn Fishery in the Gulf of Carpentaria (Stobutzki et al., 2002; Zouh & Griffiths, 2008) | 6 | L | | Common
Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or P | |------------------------------------|-----------------------|---|-----------------|---|-----------------|---|--------|---|--------| | Reticulate
whipray | Himantura
uarnak | Viviparous. Litter
size ~4 (Last &
Stevens, 2009). | PP | Live bearing, with low fecundity. Reproductive cycle remains unknown. | PP | Widespread in Indo-West Pacific region including entire GBR and northern Australia (White et al., 2006). | Α | Demersal on soft substrates, commonly in intertidal regions, but also to depths of at least 50 m (White et al., 2006). | A | | Bleeker's
variegated
whipray | Himantura
undulata | Viviparous. Litter size unknown. Likely to be similar to <i>H. uarnak</i> . | PP | Live bearing, with low fecundity. Reproductive cycle remains unknown. | PP | Eastern Indian and western Pacific Oceans: widespread from India to southern Japan and south to northern Australia (White et al. 2006). Two reports of H. undulata inhabiting waters of the GBR still to be verified (Ian Jacobsen, pers. comm.). | А | Demersal on soft substrates (White et al., 2006). | A | | Leopard
whipray | Himantura
leoparda | Unknown. Expert opinion suggests biological data can be based on species with similar life history traits (congeners). Oviparous, small litter size. (Kyne 2008, p. 256,257). | PP | Live bearing, low fecundity. Of all species assessed by Kyne 2008, <i>H. leoparda</i> is ranked 2nd lowest in its ability to recovery from interaction with the QECTF (although ranked low in its susceptibility to the fishery). | PP | Widely distributed through the Indo-West Pacific including Australia where it occurs from Ningaloo Reef to about Yeppoon, Qld.(only 2 records south of Cape York) Kyne 2008 study first to extend distribution down the east coast of Qld. | A | Moderate habitat specificity and large area of available habitat within its distribution range. Found on the inner continental shelf to about 70 m depth. (Last & Stevens 2009) | A | | Common
Name | Population size or trend | | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level |
------------------------------------|--|---|---|--------|----------------------------------|--------|--|-------|------------------| | Reticulate
whipray | IUCN red list (Manjaji & White, 2004) indicates broader population trends for the species is decreasing. This however does not necessarily represent the situation in Australia. | | Disc Width (Max) - to at least 160 cm. Estimated size at birth - 21-28 cm Size at maturity - males 82 - 84 cm. No age and growth data available. (Last & Stevcns, 2009) | Р | Unknown | | Caught as by catch in ancillary prawn trawl fisheries including the Northern Prawn Fishery in the Gulf of Carpentaria (Stobutzki et al., 2002; Zouh & Griffiths, 2008) | 6 | L | | Bleeker's
variegated
whipray | IUCN red list (Manjaji & White, 2004) indicates broader population trends for the species is decreasing; principally relates to Indonesia. | A | Disc Width (Max) - to at least 140 cm. Estimated size at birth ~ 20 cm (White et al., 2006). Size at maturity - males ~85 - 90 cm. No age and growth data available. (Last & Stevcns, 2009) | Р | Unknown | | Caught as by catch in ancillary prawn trawl fisheries including the Northern Prawn Fishery in the Gulf of Carpentaria (Stobutzki et al., 2002; Zouh & Griffiths, 2008) | 6 | L | | Leopard
whipray | Unknown. Caught 1 in QECTF by catch samples. Population likely to be small. | P | Disc width sizes: Size at birth 200 mm Size at maturity (female) 890 mm Maximum size 1400 mm | P | Unknown. | | Probably caught where <i>H. astra</i> is caught, but in low numbers. Moderate climate change assessment ranking (Chin & Kyne 2008). Net fishery | 7 | L | | Common
Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or P | |---------------------|--|--|-----------------|--|-----------------|---|--------|--|--------| | Brown
whipray | Himantura toshi
(=sp A of Last &
Stevens 1994,
Stobutzki et al
1999) | Viviparous. Litter size <=3 (Jacobsen, pers. comm. 2010) | | Live bearing, low fecundity. Of all species assessed by Kyne 2008, <i>H. toshi</i> ranked 3rd lowest in its ability to recover from interaction with the QECTF (ranked moderately in its susceptibility to the fishery). | PP | Endemic to northern Australia from Darwin, NT to the Clarence River, NSW. Possibly extends to north western coast, WA. | A | Last & Stevens (2009) indicates species is common near the coast over muddy bottoms and on mangrove flats. Preference is for shallow, inshore environments but has a large area of available habitat within its distribution range. In Kyne 2008, deepest collection was 41 m but likely to extend further. Recorded by Courtney et al. 2007 in the scallop fishery by catch (Yeppoon - Hervey Bay). | A | | Mangrove
whipray | Himantura
granulata | Viviparous. Litter size unknown. Likely to be similar to <i>H.uarnak</i> . | PP | Live bearing, with low fecundity. Reproductive cycle remains unknown. | PP | Western Central Pacific:
throughout Indonesia (except
southern Sumatra), Malaysia
(Borneo and Sabah), Papua
New Guinea, Vanikoro,
Pohnpei, Melanesia, and the
Philippines. The range also
extends through some Pacific
Islands, including Guam and
Fiji and alon | А | Demersal in shallow waters, including mangroves and estuaries | Р | | Common
Name | Population size or trend | _ | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level | |---------------------|---|---|---|--------|--|--------|---|-------|------------------| | Brown
whipray | Unknown. Not rare but not as abundant as <i>H. astra</i> , common in Moreton Bay shallows | A | *To at least 74 cm disc width. Expected to have similar growth rates to H. astra. Size at birth 200 mm . Size at maturity (female) 660 mm and greater >2yrs | P | Unknown, but <i>H. astra</i> appears to be a reasonable indicator species. | | Net fisheries as well as other prawn trawl fisheries. Possible water quality impacts, moderate climate change assessment ranking (Chin & Kyne 2008) | 6 | | | Mangrove
whipray | Unknown | Р | Disc Width (Max) - to at least 141 cm. | Р | Unknown | | None known but may be impacted on by urban development and water quality issues | 8 | L | | Common
Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or P | |------------------------|-----------------------|---|-----------------|--|-----------------|---|--------|--|--------| | Bluespotted
maskray | Neotrygon kuhlii | Viviparous. Litter size range 1-3 pups, birthing Feb/March after 4-6 month gestation. | PP | Live bearing, low fecundity. Breeds once annually. | PP | Considered to be common and widely distributed across Indian and Western Pacific Oceans, including Melanesia and Micronesia. In Aust. from Shark Bay, WA to Port Stephens, NSW | | Broad shelf intereefal (lagoonal) distribution in GBR to depths of 90m. Last and Stevens 2009. | A | | Speckled
maskray | Neotrygon picta | Viviparous. Litter size range 1-3 pups. | PP | Live bearing, low fecundity.
Breeds once annually. | PP | Endemic to north-eastern Australia (possibly including southern New Guinea) from the Wessel Islands, NT, to Hervey Bay, Qld but patchy distribution | | large area of available habitat within its distribution range. Shallow to inshore waters in depths > 5m to 100m. Last and Stevens 2009. | A | | Cowtail
Stingray | Pastinachus
astrus | Viviparous. Litter size 2. | PP | Live bearing, low fecundity. Kyne 2008 ranked <i>P. astrus</i> 5th lowest in ability to recover from interaction with the QECTF. | | Wide Indo-West Pacific
distribution from southern
Africa east to China and
Micronesia, and south to
Australia where it occurs in
tropical waters from Shark Bay,
WA to Clarence River, NSW. | | Moderate habitat specificity but large area of available habitat within its distribution range. Inhabits inshore continental shelf habitats to 60 m depth. | А | | Common
Name | Population size or trend | | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level | |------------------------|--|---|--|--------|--|--------|---|-------|------------------| | Bluespotted
maskray | Unknown. But considered to be relatively common with no indication population trends in decline. Comprised 12.50% / 6.58% of chondrichthyan by catch in QECTF
tiger/endeavour sector and 23.41% in the scallop sector sampling in Kyne 2008, Tables 3.12 / 3.14 and 3.10 respectively. | | Disc width sizes: Size at birth 120-170mm Size at maturity (female) ~ 249mm-300mm 5-7 yrs Maximum size 400-470mm | Р | Reaches at least 15 years of age, other Neotrygon species attain 18 years. Species may very well reach 20 years but has yet to be shown. No indications of natural mortality | | ? Aquarium collection, net fishery, some in other northern Australian trawl fisheries (not as abundant in catches as GBR), low climate change vulnerability | 5 | I-L | | Speckled
maskray | Relatively common
Comprised 12.50% /
6.58% of chondrichthyan
by catch in QECTF
tiger/endeavour sector
and 15.61% in the scallop
sector sampling in Kyne
2008, Tables 3.12 / 3.14
and 3.10 respectively. | A | Disc width sizes: Size at birth 100mm Size at maturity (females and males) 160-190mm (2)-3 yrs Maximum size 280-322mm males 11 yrs, fem. 15yrs | Р | Disc width sizes: Size at birth 100mm Size at maturity (females and males) 160-190mm (2)-3 yrs Maximum size 280- 322mm males 11 yrs, fem. 18yrs | | ? Aquarium collection, net fishery, some in other northern Australian trawl fisheries, low climate change vulnerability | 5 | I-L | | Cowtail
Stingray | Unknown but species generally considered to be moderately prominent. | A | Disc width sizes: Size at birth 180 mm, Size at maturity (female) unknown maximum size 1800 mm. Age at maturity unknown. | Р | Unknown. | | Not expected to be significant.
Likely to be affected by water
quality issues, may interact with
inshore / shallow water net
fisheries. | 6 | L | | Common
Name | Species Name | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or P | |------------------------|----------------------------|---|-----------------|--|-----------------|--|--------|--|--------| | Stingarees | (Urolophidae | | | | | | | | | | Common
stingaree | Trygonoptera testacea | Viviparous. Likely to be similar to the Western Australian species <i>T. personata</i> and <i>T mucosa</i> (White et al., 2002) which averaged <3 pups. | | Live bearing, low fecundity, reproductive cycle probably annual. | PP | Temperate eastern Australia
from Caloundra (Qld) to Cape
Howe (NSW) | A | Habitat specify considered to be reasonably low (I. Jacobsen). Inhabits estuaries and shallow coastal waters to 60 m depth. Recorded by Courtney et al. (2007) in the shallow water (<91 m) EKP fishery by catch (Mooloolaba to Southport) & deepwater (>91 m) EKP fishery by catch (Noosa to Jumpinpin) | A | | Patchwork
stingaree | Urolophus
flavomosaicus | Viviparous. Fecundity levels unknown but expected to be less than 10 (I. Jacobsen). | | Viviparous species with low fecundity. Reproductive cycle likely to be at most annual. | PP | On the east coast from Caloundra to Townsville and from Abrolhos Islands to Cape Leveque in WA. Based on known geographical distribution and criteria, requires a conservative estimate. | | Found in waters of depths between 60 - 320 m. Habitat specificity considered to be comparatively low (I. Jacobsen). | A | | Common
Name | Population size or trend | _ | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level | |------------------------|--------------------------|---|---|--------|---|--------|----------------------|-------|------------------| | Stingarees (U | | | | | | | | | | | Common stingaree | Unknown | P | SIZE: Attains at least 52 cm and possibly up to 61 cm. Males mature at about 35 cm and females at 40cm. Born at 12cm(Last & Stevens, 2009). *Age and growth analysis has not been undertaken for this species. Growth rates for other Urolophid species tends to be low. Ages at maturity for west Australian Urolophidae 2 - 3 yrs (White et al. 2002. Considered to be a reasonable estimate. | P | Unknown, but best available data indicates Urolophidae species can grow to 17 and 18 years respectively (White et al, 2001, 2002). | A | None known | 6 | L | | Patchwork
stingaree | Unknown | P | *Reaches at least 59 cm with smallest mature male reported at 38cm. Unknown size of birth. *Age and growth analysis has not been undertaken for this species. Growth rates for other Urolophid species tends to be low. Ages at maturity for west Australian Urolophidae 2 - 3 yrs (White et al. 2002. Considered to be a reasonable estimate. | | Unknown, but best
available data indicates
Urolophidae species can
grow to 17 and 18 years
respectively (White et al,
2001, 2002). | A | None known | 6 | L | | Common
Name | <u> </u> | Fecundity | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or P | |---|------------------------|--|-----------------|---|-----------------|---|--------|---|--------| | Skates (Rajid
Pale tropical
skate | Dipturus apricus | Unknown. Expert opinion suggests biological data can be based on species with similar life history traits (congeners). Oviparous. Kyne 2008, p. 256,257. | P | Unknown. Expert opinion suggests biological data can be based on species with similar life history traits. Oviparous, k-selected life traits, moderate ability to maintain population | | Occurs in Swains, Saumarez
Plateau and to the north.
Possible endemic. | A | Upper slope, with moderate area of available habitat. | A | | Argus skate | Dipturus
polyommata | Fecundity higher than <i>D. endeavouri</i> | | Moderate ability to maintain population, reproduce annually | P | Endemic to the East Coast of
Australia between Cairns and
Byron Bay (although northern
range extension needs to be
established). May have refugia
from the EC trawl fishery in
continental slope habitat.
Known from depths of 153 -
500 m. | A | Moderate habitat specificity but large area of available habitat within its distribution range. Outer continental shelf and shelf slope between 140-310 metres. | A | | Common
Name
Skates (Rajid | Population size or trend | | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level | |---------------------------------|---|---|--|--------|--|--------|----------------------|-------|------------------| | Pale tropical
skate | Unknown | P | Reaches about 80cm. Probably reaches adult size in a few years. Age at maturity unknown but indicator species suggest skates reach sexual maturity >2 year with some species living in excess of 20 years. 'P' a reasonable estimate i.e. MacFarlane and King (2006) Raja spp. | P | Unknown. MacFarlane
and King (2006)
demonstrated some Raja
spp. Can live to 25 yrs. | | None known | 5 | I-L | | Argus skate | Unknown. Comprised 35.38% (23 animals) of chondrichthyan by catch in QECTF eastern king prawn deepwater sampling in Kyne 2008, Table 3.6. | Р | Total length sizes: Size at birth 110mm Size at maturity (female) 321mm Age at maturity unknown but indicator species suggest skates reach sexual maturity >2 year with some species living in excess of 20 years. 'P' a reasonable estimate i.e. MacFarlane and King (2006) Raja spp. | Р | Unknown. MacFarlane
and King (2006)
demonstrated some Raja
spp. Can live to 25 yrs. | | None
known | 5 | I-L | | Common
Name | Species Name | | A or P
or PP | Life history strategy | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or P | |-----------------------------|------------------------|---|-----------------|---|-----------------|--|--------|---|--------| | Endeavour
skate | Dipturus
endeavouri | Oviparous. Kyne
2008b, 2 eggs
found in females in
winter samples | | Size at birth, 100-110mm,
maturity 321 mm females, 2
egg cases, feed on
crustaceans and teleosts | P | Endemic to the east coast of Australia south of ~ 25degS to about Newcastle, NSW. May have refugia from the EC trawl fishery in continental slope habitat. Known from depths of 153 - 500 m. | А | Moderate habitat specificity but large area of available habitat within its distribution range. Outer continental shelf and shelf slope. | A | | Butterfly ray | s (Family Gynmur | idae) | | | | | | | | | Australian
butterfly ray | Gymnura
australis | Viviparous. Litter
size range 1-6
pups. (Typically 3 -4
pups) | | Live bearing, low fecundity. Breeds once annually. | PP | Endemic to southern New
Guinea and northern Australia
from Shark Bay, WA to Broken
Bay, NSW. | A | Moderate habitat specificity but large area of available habitat within its distribution range. Mainly inshore, but known in depths to 250m. Last and Stevens 2009. Sampled 9 to 54m Courtney et al 2007. | A | | Common
Name | Population size or trend | | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level | |-----------------------------|--|---|---|--------|---|--------|---|-------|------------------| | Endeavour
skate | Unknown. Comprised 35.38% (23 animals) of chondrichthyan by catch in QECTF eastern king prawn deepwater sampling in Kyne 2008, Table 3.6.(incorrectly assigned to <i>D. polyommata</i>) | P | Total length sizes: Size at birth 110mm Size at maturity (female) 321mm Maximum size 360-380mm Males mature between 240 - 315 mm TL. Age at maturity unknown but indicator species suggest skates reach sexual maturity >2 year with some species living in excess of 20 years. 'P' a reasonable estimate i.e. MacFarlane and King (2006) Raja spp. | P | Unknown. MacFarlane and King (2006) demonstrated some Raja spp. Can live to 25 yrs. | | None known | 5 | I-L | | Butterfly ray | s | | | | | | | | | | Australian
butterfly ray | Unknown. Comprised 13.16% of chondrichthyan by catch in QECTF tiger/endeavour sector sampling in Kyne 2008, Table 3.14. Range used to extend to Sydney, may have contracted historically in NSW. | А | Disc width sizes: Size at birth 220-250mm Size at maturity (both sexes) ~ 450mm Maximum size 940mm | P | Unknown. | | Net fishery; Northern Prawn Fishery
fisheries. Moderate climate change
vulnerability (Chin & Kyne 2008) | 6 | L | | Common
Name | Species Name | Fecundity | A or P
or PP | | A or P
or PP | Geographic distribution | A or P | Habitat specificity or ecological niche | A or P | |---------------------|-------------------|---|-----------------|------------------------------|-----------------|--|--------|--|--------| | Eagle rays (Fa | amily Myliobatida | e) | | | | | | | | | Banded eagle
ray | nichofii | Viviparous. Litter size range 1-4 pups. | PP | Live bearing, low fecundity. | PP | Widely distributed though listed
by IUCN as vulnerable. An Indo-
West Pacific distribution from
India east to Japan and south
to Australia in tropical waters
between the Bonaparte
archipelago, WA to Harvey
Bay, Qld. | | Narrow habitat requirements but large area of available habitat within its distribution range. In Australia, demersal on the tropical continental shelf to depths of at least 115 m. (Last & Stevens 2009) | A | | Common
Name
Eagle rays (Fa | Population size or trend | _ | Growth rate /
Age at maturity | A or P | Longevity /
Natural mortality | A or P | Cumulative pressures | Score | Resilience level | |----------------------------------|--|---|---|--------|----------------------------------|--------|--|-------|------------------| | ray | Unknown population size, but relatively rare species in Australian waters. | | Disc width sizes: Size at birth 170 mm Size at maturity (female) ~ 390 mm Maximum size 640 - 720 mm | Р | Unknown. | | Moderate climate change vulnerability (Chin & Kyne 2008). Fishing pressure has reduced populations in SE Asia. Some nontrawl fishing impacts on species, but relatively low catchability in other gears too. | 7 | L | ## Appendix 17. Fishery impact profile of sharks and rays | Common Name | Species Name | Level of interaction | A or P
or PP | Survival after interaction | A or P | |---------------------------|--|--|-----------------|---|--------| | Blue-grey carpet
shark | mily Brachaelurida
Brachaelurus
colcloughi | In Kyne 2008, 6 specimens caught in the eastern King Prawn (shallow and deepwater) sectors. | P | Kyne 2008 used information inferred from similar species to determine the post-capture mortality rank in order to calculate the susceptibility rank for <i>H. colcloughi</i> . Not thought to be prone to high mortality risk from trawl interaction. Considered a hardy species. | A | | Wobbegongs (Fa |
amily Orectolobida | ne) | | | | | Tasselled
wobbegong | Eucrossorhinus
dasypogon | In Kyne 2008, 1 specimen caught in the northern tiger/endeavour sector. | А | 0% of individuals recorded as dead on deck in Kyne 2008 Table 8.2 p. 246. No post-mortality data available. Not thought to be prone to high mortality risk from trawl interaction. | А | | Spotted
wobbegong | Orectolobus
maculatus | In Kyne 2008, 4 specimens caught in the King Prawn (shallow water) sector south of GBR. | A | 0% of individuals recorded as dead on deck in Kyne 2008 Table 8.2 p. 246. No post-mortality data available. Not thought to be prone to high mortality risk from trawl interaction. | A | | Longtailed carpe | etshark (Family He | miscylliidae) | | | | | Grey
carpetshark | Chiloscyllium
punctatum | Comprised 1.46% of chondrichthyan by catch in QECTF scallop sector and 37.5% / 15.79% in the tiger/endeavour sector sampling in Kyne 2008, Tables 3.10 and 3.12 / 3.14 respectively. | A | 0% of individuals recorded as dead on deck in Kyne 2008 Table 8.2 p. 246. No post-mortality data available. | A | # Appendix 17. Fishery impact profile of sharks and rays | Common Name | Interaction throughout life cycle | A or
P | TED/BRD effectiveness | A or
P | Risk
prone
score | Fishery
Impact Profile
level | RISK | |---------------------------|---|-----------|---|-----------|------------------------|------------------------------------|------| | Blind sharks (Far | | P | No circuitionat differences in probability of conture between different | P | 3
| , | INT | | Blue-grey carpet
shark | Most life stages found to interact with the fishery. Kyne 2008 sampled juveniles through to mature females and juvenile males in the EKP (shallow and deepwater) sectors. | P | No significant differences in probability of capture between different gear types, though lowest probability was found with a radial escape section BRD with TED fitted. Juveniles get through easily, maybe some benefit for larger animals, but some do still get caught. | | 3 | | IIVI | | Wobbegongs (Fa | 1 | | | | | | | | Tasselled
wobbegong | Unsure.
In Kyne 2008 1 specimen captured. 1
immature male. | Р | For sharks in tiger/endeavour prawn sector, no sig. diff. of capture existed between codend types. Lowest probability of capture was for a codend fitted with a fisheye BRD. Juveniles get through easily, maybe some benefit for larger animals, but some do still get caught. | Р | 2 | I-L | HIGH | | Spotted
wobbegong | Most life stages likely to interact with the fishery In Kyne 2008 4 specimens captured in EKP (shallow water) sector south of the GBR. 1 mature female and 3 young juveniles (male and female). | P | No significant differences in probability of capture between different gear types, though lowest probability was found with a radial escape section BRD with TED fitted. | P | 2 | I-L | HIGH | | Longtailed carpe | t | | | | | | | | Grey
carpetshark | All life stages found to interact with the fishery. Kyne 2008 sampled young juv. through to mature males and females. | Р | The sea snake study (Kyne 2008 thesis) found that for elasmobranchs combined, nets fitted with a fisheye BRD showed a statistically significant difference of capture (lower) than nets fitted with a standard codend only. | Р | 2 | I-L | HIGH | # Appendix 17. Fishery impact profile of sharks and rays | Common Name | Species Name | Level of interaction | A or P
or PP | Survival after interaction | A or P | |-------------------------|--|--|-----------------|--|--------| | Catsharks (Famil | y Scyliorhinidaeae |) | | | | | Eastern banded catshark | Atelomycterus
marnkalha
(previously sp.A /
grouped with
fasciatus) | In Kyne 2008, 3 specimens caught in the scallop sector. In Kyne 2008, susceptibility ranking of 2.73 - high. 2nd highest ranking for chondrichthyans in Kyne 2008. Low, infrequent. | A | Catsharks on deck mortality - moderately robust. Kyne 2008 | Р | | Weasel shark (Fa | mily Hemigalidae) | | | | | | Australian weasel shark | Hemigaleus
australiensis | Comprised 11.84% of chondrichthyan by catch in QECTF tiger/endeavour sector sampling in Kyne 2008, Table 3.14. Juveniles likely to be retained in cod end (plus some adults up to 90cm). Some may still escape through fish eye. Probably strong swimmers. | А | 50% of individuals recorded as dead on deck in Kyne 2008 Table 8.2 p. 246. No post-mortality data available. | P | | Whaler shark (Fa | mily Carcharhinida | ae) | | | | | Sliteye shark | Loxodon
macrorhinus | In Kyne 2008, 1 specimen caught in the scallop sector and had a susceptibility rating of medium to high. Interactions expected to be low. | A | Individual caught by Kyne (2008) was dead, but probably not indicative - 'P' would be appropriately conservative | Р | | Milk shark | Rhizoprionodon
acutus | Interaction with the ECTF likely to be relatively low but common. Expected to be one of the more common whaler species to be caught with respect to elasmobranch by catch. | A | Kyne (2008) reported 3 specimens, all of which were returned alive. Survival rates for this species with respect to trawl fisheries is expected to be moderate to good. | A | | Spinner shark | Carcharhinus
brevipinna | In Kyne 2008, 1 specimen caught in the northern tiger/endeavour sector. In Kyne 2008, susceptibility ranking of 1.45 - low. Fast swimming, rarely caught - can escape through TEDs. | Α | 0% of individuals recorded as dead on deck in Kyne 2008 Table 8.2 p. 246. No post-mortality data available. Not thought to be prone to high mortality risk from trawl interaction. | A | | Common Name | Interaction throughout life cycle | A or
P | TED/BRD effectiveness | A or
P | Risk
prone
score | Fishery
Impact Profile
level | RISK | |---|--|-----------|---|-----------|------------------------|------------------------------------|------| | Catsharks (Family
Eastern banded
catshark | Some life stages found to interact with the fishery. With limited data (n=3), 1 mature female and 2 immature males were recorded in the scallop sector in Kyne 2008. | Р | For sharks in the scallop sector there was significant statistical difference of capture between codends fitted with TED/BRD combinations and every other codend configuration without a TED. Also a sig. difference between TED only and BRD only. Therefore showed good TED/BRD effectiveness | P | 3 | | INT | | Weasel shark (Fa | | | | | | | | | Australian weasel
shark | All life stages interact with the fishery. Kyne 2008 sampled individuals neonatal through to adults. | Р | Nets fitted with a fisheye BRD showed a statistically significant difference of capture than nets fitted with a standard codend only. | Р | 3 | I | INT | | Whaler shark (Fa | 1 | | | | | | | | Sliteye shark | Limited data but expect juveniles and adults would have possible interactions (A. Gutteridge pers comm). | Р | For sharks in the scallop sector there was significant statistical difference of capture between codends fitted with TED/BRD combinations and every other codend configuration without a TED. Also a sig. difference between TED only and BRD only. Therefore showed good TED/BRD effectiveness | A | 2 | I-L | HIGH | | Milk shark | Interactions likely to occur with juveniles and adults. | Р | TED/BRD's not considered to be overtly effective for this species. | Р | 2 | I-L | HIGH | | Spinner shark | Limited given its size - smaller sizes may interact more frequently. In Kyne 2008, 1 specimen captured. 1 immature male. | A | For sharks in tiger/endeavour prawn sector, no sig. diff. of capture existed between codend types. Lowest probability of capture was for a codend fitted with a fisheye BRD. | A | 0 | L | HIGH | | Common Name | Species Name | Level of interaction | A or P | Survival after interaction | A or P | |--|--|---|--------|---|--------| | Whitecheek shark | Carcharhinus
coatesi | In Kyne 2008, 2 specimens caught in the northern tiger/endeavour sector. Regularly observed interacting with deepwater EKP sector. | A | 0% of individuals recorded as dead on deck in Kyne 2008 Table 8.2 p. 246. No post-mortality data available. Not thought to be prone to high mortality risk from trawl interaction. | A | | Sawfish (Family F | Pristidae) | | | | | | Narrow sawfish | Anoxypristis
cuspidata | Some interactions with ECTF reported via SOCI and FOP data. Most common sawfish encountered in offshore fisheries in Qld. | P | Placed as a P. NB: Likely to be relatively poor as this species is not considered to be very robust to fishing interactions. SOCI data for 2008 and 2009 indicated that 37% of narrow sawfish reported in SOCI logbooks were injured but survival could be reasonable if handled to sawfish guidelines. | Р | | Green sawfish | Pristis zijsron | Mostly an estuarine and near shore species, so interactions may occur with banana and tiger/endeavour fishery sectors. Kyne et.al. 2007; Stobuzki et.al. 2001 | P | Survival likely to be reasonable if handled to sawfish guidelines. | A | | Wedgefishes (Fai | mily Rhynchobatid | lae) | | | | | Whitespotted
guitarfish
(Eyebrow
wedgefish) | Rhynchobatus
australiae /
Rhynchobatus
palpebratus
Species not
separated in Kyne
2008. | In Kyne 2008, 12 specimens caught in the scallop sector and 6 in the northern tiger/endeavour sector. | P | 100% alive on deck, Kyne 2008 Table 8.2 p. 246. | A | | Common Name | Interaction throughout life cycle | A or
P | TED/BRD effectiveness | A or
P | Risk
prone
score | Fishery
Impact Profile
level | RISK | |--|--
-----------|--|-----------|------------------------|------------------------------------|------| | Whitecheek shark | Unsure. In Kyne 2008 2 specimens captured. 1 immature female and 1 mature male. Scoring based on smaller size of species. | Р | For sharks in tiger/endeavour prawn sector, no sig. diff. of capture existed between codend types. Lowest probability of capture was for a codend fitted with a fisheye BRD. Scoring based on smaller size of species. | Р | 2 | I-L | HIGH | | Sawfish (Family F | | | | | | | | | Narrow sawfish | Adults likely to be caught. Not sure of level of interaction with juveniles and immature. | Α | BRD's are known to be ineffective for species such as sawfish | Р | 3 | I | INT | | Green sawfish | Studies show that sawfish generally inhabit shallow and estuarine waters as juveniles (3-5 years) then migrate between these waters and deeper waters as adults. Thornborn et.al. 2003; Stevens et.al. 2005 | P | BRD's are known to be ineffective for species such as sawfish. TED not problem, but net causes entanglement. | Р | 3 | I | INT | | Wedgefishes (Fai | 1 | | | | | | | | Whitespotted
guitarfish
(Eyebrow
wedgefish) | Most life stages found to interact with the fishery. In Kyne 2008, 18 Rhynchobatus spp. captured. All males immature. Females not assessed but possibly immature and mature. Max size varies by species and so will benefits of TEDs. Robust animal which most likely is excluded at most sizes by TEDs. | Р | Robust animal which most likely is excluded at most sizes by TEDs. | Α | 2 | I-L | HIGH | | Common Name | Species Name | Level of interaction | A or P | Survival after interaction | A or P | |---------------------------|--------------------------|--|--------|--|--------| | Shovelnose rays | (Family Rhinobati | idae) | | | | | Eastern
shovelnose ray | Aptychotrema
rostrata | Comprised 52.20% of chondrichthyan by catch in QECTF scallop sector sampling in Kyne 2008, Table 3.10; most abundant in SW EKP. | PP | 26.2% of individuals recorded as dead on deck in Kyne 2008 Table 8.2 p. 246. No post-mortality data available. | Р | | Coffin rays (Fami | lv Hypnidae) | | | | | | Coffin ray | Hypnos
monopterygius | In Kyne 2008, 21 specimens caught in the eastern king prawn (shallow and deep) sectors. This represented 3.08% of chondrichthyan by catch in the EKP (deepwater) sector. In Kyne 2008, susceptibility ranking of 2.73 - high. | P | 50% of individuals (n = 21) recorded as dead on deck in Kyne 2008 Table 8.2 p. 246. No post-mortality data available; although other information indicates survival rates are reasonable (pers com. Ann-Marie Frost). 'P' reasonable estimate given available information. | P | | Stingrays (Family | Dasyatidae) | | | | | | Estuary stingray | Dasyatis
fluviorum | Interactions within the GBR most likely to occur in shallow inshore environments. Interactions would be higher outside the GBR i.e. in RIBTF. | А | Survival appears fairly good from FOP data which indicates that all are released alive. | A | | Blackspotted
whipray | Himantura astra | Comprised 12.50% and 26.32% of chondrichthyan by catch in QECTF tiger/endeavour sector sampling charters (by catch and sea snake) in Kyne 2008, Table 3.12 / 3.14. | Р | *13.0% of individuals recorded as dead on deck in Kyne 2008 (research trawls) Table 8.2 p. 246. *No post-mortality data available. *Mortality rates in NPF = 53% (Stobutzki et al. 2002) | Р | | Pink whipray | Himantura fai | Interaction with the fishery likely to be low with capture rates even lower given this species maximum disc width. | А | Unknown but expected to be reasonably good considering the estimated size of birth is reasonably large (lan Jacobsen, pers. Comm) | A | | Common Name | Interaction throughout life cycle | A or
P | TED/BRD effectiveness | A or
P | Risk
prone
score | Fishery
Impact Profile
level | RISK | |---------------------------|--|-----------|--|-----------|------------------------|------------------------------------|------| | Eastern
shovelnose ray | All sizes interact with the fishery. Kyne 2008 sampled neonatal through to adults. | P | For this species, nets fitted with a TED showed a statistically significant difference of capture than nets fitted with a BRD codend only. There was no significant difference of capture between BRD codend types when a TED was fitted. Good TED effectiveness for this species (demonstrated in the scallop sector). | A | 4 | H-I | HIGH | | Coffin rays (Fami | | | | | | | | | Coffin ray | Most life stages found to interact with the fishery. 21 specimens recorded in the eastern king prawn sectors (shallow and deepwater) outside the GBR. Records of immature and mature males and females in Kyne 2008. | P | No significant differences in probability of capture between different gear types for batoids in the EKP sectors, though lowest probability was found with a radial escape section BRD with TED fitted in the shallow water section. In addition this ray is slow moving and has a soft body which means TEDs are likely to be fairly ineffective on this species. | P | 4 | H-I | HIGH | | Stingrays (Family | / | | | | | | | | Estuary stingray | While this species is likely to be caught infrequently within the ECTF, it has the potential to interact with the fishery at all stages of its life history. | Р | Some of the larger rays will get out via BRD. But overall TED/BRD effectiveness is considered to be less than that observed in other species. | Р | 2 | I-L | HIGH | | Blackspotted
whipray | Most life stages found to interact with the fishery. Kyne 2008 sampled immature and mature males and females. | Р | Northern Prawn Fishery and ECOTF TEDs positive effect for larger rays; fisheyes have potential to reduce retention of small rays | Р | 4 | H-I | HIGH | | Pink whipray | The introduction of TEDs has dramatically reduce the likelihood of large <i>H. fai</i> being caught. As such, interactions with this species is more than likely to be with smaller, immature specimens. | A | Given the size of this species, the use of TEDs are likely to be fairly effective. | A | 0 | L | HIGH | | Common Name | Species Name | Level of interaction | A or P
or PP | Survival after interaction | A or P | |------------------------------------|--|--|-----------------|---|--------| | Reticulate
whipray | Himantura uarnak | Interaction with the fishery likely to be low with capture rates even lower given this species maximum disc width. | A | Unknown but expected to be reasonably good considering the estimated size of birth is reasonably large (lan Jacobsen, pers. Comm) | A | | Bleeker's
variegated
whipray | Himantura
undulata | Interaction with the fishery likely to be low with capture rates even lower given this species maximum disc width. | A | Unknown but expected to be reasonably good considering the estimated size of birth is reasonably large (lan Jacobsen, pers. Comm) | A | | Leopard whipray | Himantura
leoparda | In Kyne 2008, 1 specimen caught in the scallop sector outside GBR. Two records near Yeppoon In Kyne 2008, susceptibility ranking of 1.55 - low | A | 0% of individuals recorded as dead on deck in Kyne 2008 Table 8.2 p. 246. No post-mortality data available. Limited data (n=1) more robust than <i>H. toshi</i> and <i>H. astra</i> | A | | Brown whipray | Himantura toshi
(=sp A of Last &
Stevens 1994,
Stobutzki et al
1999) | *Interactions with this species likely to be low and below that of <i>H. astra</i> . Last & Stevens (2009) indicates this species has been reported infrequently in the southern reaches of its range which has been supported by projects originating out of UQ (I. Jacobsen). *In Kyne 2008, 3 specimens caught in the Hervey Bay sector outside GBR, 1 in scallop, and 2 in northern tiger/endeavour prawn sectors. *In Kyne 2008, susceptibility ranking of 1.82 - medium. | A | Unknown but likely to be similar to <i>H. astra</i> . (Stobuzki et al 2002 indicated) | P | | Mangrove
whipray |
Himantura
granulata | Interactions with the fishery expected to be limited. Likely encounters with juveniles, with mature animals captured less frequently. | A | Unknown | А | | Common Name | Interaction throughout life cycle | A or
P | TED/BRD effectiveness | A or
P | Risk
prone
score | Fishery
Impact Profile
level | RISK | |------------------------------------|---|-----------|--|-----------|------------------------|------------------------------------|------| | Reticulate
whipray | The introduction of TEDs has dramatically reduce the likelihood of large <i>H. uarnak</i> being caught. As such, interactions with this species is more than likely to be with smaller, immature specimens. | А | Given the size of this species, the use of TEDs are likely to be fairly effective. | A | 0 | L | HIGH | | Bleeker's
variegated
whipray | Unknown, but expected to be similar to <i>H.</i> uarnak if found in QLD waters. | A | Given the size of this species, the use of TEDs are likely to be fairly effective. | A | 0 | L | HIGH | | Leopard whipray | Unsure. In Kyne 2008, 1 specimen captured. 1 mature male. | A | No significant statistical differences of capture between codend types for batoids in the scallop sector. However, lowest probability of capture was for a codend with TED and BRD fitted. | P | 1 | L | HIGH | | Brown whipray | Most life stages found to interact with the fishery. In Kyne 2008, 6 specimens captured. 1 mature female and 5 immature juvenile and adult male and female specimens. | P | Northern Prawn Fishery and ECOTF TEDs positive effect for larger rays; fisheyes have potential to reduce retention of small rays | P | 3 | I | INT | | Mangrove
whipray | Information from <i>H. uarnak</i> indicates that the likelihood of large animals being caught has been dramatically reduced with the introduction of TEDs. | A | Reasonable success for larger (sub-adult & adult) specimens | A | 0 | L | HIGH | | Common Name | Species Name | Level of interaction | A or P
or PP | Survival after interaction | A or P | |------------------------|----------------------------|---|-----------------|--|--------| | Bluespotted
maskray | Neotrygon kuhlii | Comprised 12.50% / 6.58% of hondrichthyan by catch in QECTF tiger/endeavour sector and 23.41% in the scallop sector sampling in Kyne 2008, Tables 3.12 / 3.14 and 3.10 respectively. | Р | *73.5% of individuals recorded as dead on deck in Kyne 2008 Table 8.2 p. 246. *Stobutski et al 2002 indicates that mortality rates of <i>N. picta</i> were 59% (proxy) *No post-mortality data available. | PP | | Speckled
maskray | Neotrygon picta | Comprised 12.50% / 6.58% of chondrichthyan by catch in QECTF tiger/endeavour sector and 15.61% in the scallop sector sampling in Kyne 2008, Tables 3.12 / 3.14 and 3.10 respectively. | Р | 57.6% of individuals recorded as dead on deck in Kyne 2008 Table 8.2 p. 246. No post-mortality data available.*Stobutski et al 2002 indicates that mortality rates of N. picta were 59% *No post-mortality data available. | PP | | Cowtail Stingray | Pastinachus
astrus | *Overall interactions likely to be fairly low for this species. *In Kyne 2008, 1 specimen caught in the northern tiger/endeavour prawn sector. Caught very close inshore. *In Kyne 2008, susceptibility ranking of 1.82 - medium. | А | 0% of individuals (n=1) recorded as dead on deck in Kyne 2008 Table 8.2 p. 246. No post-mortality data available. | A | | Stingarees (Urolo | ophidae | | | | | | Common
stingaree | Trygonoptera
testacea | Kyne (2008; PhD thesis) indicated Chondrichthyan by catch in the eastern king prawn (shallow water) sector was dominated by the three batoids Aptychotrema rostrata, Trygonoptera testacea and Urolophus kapalensis which comprised ~92% of Chondricthyan by catch. | Р | 12 of the 13 specimens collected by Kyne (2008) or 92% were dead on deck. Research from the Gulf also indicates smaller species have increased mortality rates in trawl species when compared to larger batoids. | PP | | Patchwork
stingaree | Urolophus
flavomosaicus | *Observer data indicates that species has
been encountered up in the Swains Reefs
region. M. Dunning indicates this species is
regularly encountered in deepwater EKP
sector south of Swains. | Р | *92% of T. testacea were recorded as dead for T. testacea, others around 30%. 'P' considered to be an appropriate proxy for this species. Research from the Gulf also indicates smaller species have increased mortality rates in trawl species when compared to larger batoids. | Р | | Common Name | Interaction throughout life cycle | A or
P | TED/BRD effectiveness | A or
P | Risk
prone
score | Fishery
Impact Profile
level | RISK | |------------------------|--|-----------|--|-----------|------------------------|------------------------------------|------| | Bluespotted
maskray | Most life stages found to interact with the fishery. Kyne 2008 sampled immature and mature males and females. | Р | As above; small size makes TEDs BRDs ineffective | Р | 5 | Н | HIGH | | Speckled
maskray | Most life stages found to interact with the fishery. Kyne 2008 sampled immature and mature males and females. | Р | As above; small size makes TEDs BRDs ineffective | Р | 5 | Н | HIGH | | Cowtail Stingray | Given the size of adults expected to interact with mostly immature specimens as larger rays would be excluded through the TED. | А | For batoids, in tiger/end sector, nets fitted with a fisheye BRD showed a statistically significant difference of capture than nets fitted with a standard codend only (position of device and length of trawl was significant - more research required). Benefits for large ones | A | 0 | L | HIGH | | Stingarees (Urolo | | | | | | | | | Common
stingaree | Likely to interact with juvenile and adult specimens. | Р | Effectiveness likely to be low due to the small size of adults. | Р | 5 | Н | HIGH | | Patchwork
stingaree | Likely to interact with juvenile and adult specimens. | Р | Effectiveness likely to be low due to the small size of adults. | Р | 4 | H-I | HIGH | | | 1 | | | | | |-----------------------------|---------------------------------------|---|-----------------|--|-----------------| | | | | | | | | Common Name | Species Name | Level of interaction | A or P
or PP | Survival after interaction | A or P
or PP | | Skates (Rajidae) | | | | | | | Pale tropical
skate | Dipturus apricus | Regularly caught in deepwater EKP fishery south of Swains (up to a few individuals per shot). Distribution only partially overlaps with fishing effort so species has refugia outside fished areas (M. Dunning) | Р | Deepwater species and unlikely to be robust to fishing/handling as skin relatively soft, so survival expected to be low. | PP | | Argus skate | Dipturus
polyommata | Confusion in identifications has restricted amount of available information (M. Dunning). In some areas of deepwater EKP grounds it appears some are caught quite regularly. | Р | Deepwater species and unlikely to be robust to fishing/handling as skin relatively soft, so survival expected to be low. | PP | | Endeavour skate | Dipturus
endeavouri | Eighteen individuals from 130 shots in the QECTF EKP deepwater sector sampling (Kyne 2008). Sampling took place outside the GBRMP but its distribution extends through the GBRMP | Р | 79% of individuals recorded as dead on deck by Kyne (2008) | PP | | Butterfly rays (Fa | mily Gynmuridae) | | | | | | Australian
butterfly ray | Gymnura
australis | Comprised 13.6% of chondrichthyan by catch in QECTF tiger/endeavour sector sampling in Kyne 2008, Table 3.14. Ambush prey items and wait in sandy areas until last moment, unlikely to flee in advance of trawl. | Р | Stobutxki et al 2002 indicates mortality rates for this species are >40% in the NPF *FOP data indicates that of the 8 caught in the TEP and Bay prawn sectors 7 were dead. *0% of individuals recorded as dead on deck in Kyne 2008 Table 8.2 p. 246 (n = 12) *No post-mortality data available. | Р | | Eagle rays (Famil | · · · · · · · · · · · · · · · · · · · | | | | | |
Banded eagle ray | Aetomylaeus
nichofii | 1 specimen caught in the Hervey Bay sector in Kyne's 2008 study. Unknown whether this displays a depleted population or limited interaction with the fishery. Swim higher in water column and have good swimming ability, so reduced likelihood of interaction with prawn trawl | A | Kyne 2008 used information inferred from similar species to determine the post-capture mortality rank in order to calculate the susceptibility rank for <i>A. nichofii</i> . Not thought to be prone to high mortality risk from trawl interaction. | Р | | Common Name
Skates (Rajidae) | Interaction throughout life cycle | A or
P | TED/BRD effectiveness | A or
P | Risk
prone
score | Fishery
Impact Profile
level | RISK | |---------------------------------|--|-----------|--|-----------|------------------------|------------------------------------|------| | Pale tropical skate | A deepwater skate that spends all of its life stages within areas that include the QECTF king prawn deepwater fishery. | P | Unlikely to be effective. | Р | 5 | Н | HIGH | | Argus skate | A deepwater skate that spends all of its life stages within areas that include the QECTF king prawn deepwater fishery. | Р | Unlikely to be effective. | Р | 5 | Н | HIGH | | Endeavour skate | A deepwater skate that spends all of its life stages within areas that include the QECTF king prawn deepwater fishery. | | No significant differences in probability of capture between different gear types although lowest probability was found with SMC and TED attached. | Р | 5 | Н | HIGH | | Butterfly rays (Fa | | | | | | | | | Australian
butterfly ray | All life stages found to interact with the fishery. Kyne 2008 sampled young juveniles through to mature males and females. | | TEDs less effective than for other species of rays because of morphology (flatness etc). | Р | 4 | H-I | HIGH | | Eagle rays (Famil | | | | | | | | | Banded eagle ray | Unknown.
Ecology of species largely unknown. | А | No data for A. nichofii. Not applicable as interaction rate low. | Α | 1 | L | HIGH | | | Impact of trawling (proportion depleted/removed by tr | rawling) | Ability to recover after being trawled (recovery perio | d) | | |---------------------------|---|---------------|--|-----|--| | Structural element | (Guidance: L = <5 per cent per trawl; M = 5-20 per cent H=>20 per cent per trawl) | t per trawl), | (Guidance: H = 1-2 yrs; M = 3-8 yrs; L > 8 yrs) | | Comments | | Whip gardens | | L | | L | | | Tube polychaete beds | | N/A | | N/A | Not recorded in seabed biodiversity report in Great Barrier Reef | | Squid eggs | | N/A | | N/A | Not recorded in seabed biodiversity report in
Great Barrier Reef | | Sponge garden | 10-40 per cent; average 20 per cent depleted | Н | 3-10 yrs for recovery | М | | | Seagrass | Trawl effects mostly above ground biomass, rather than roots | L | From trawl, probably high 1-2 yrs based on Rob Coles work. Trawl effects mostly above ground biomass, rather than roots, so 1-2 yrs to recover for Spinulosa | н | Recovery within decade from widespread destruction if not a few seasons - 5-6 yrs. Cyclone Sandy in the 80s - evidence of depletion/recovery timeframes. | | Live reef corals | Untrawled. Impact low, gear would stop. | L | Recovery rate expected to be similar to hard corals | М | | | Hard coral garden | Impact 40 per cent per trawl or higher. Avoided by trawling if/after first pass now | Н | Flower pot corals grow back quickly, others slower | М | | | Flora | | M | | Н | Seagrass, alga or ? Couldn't define from video | | Caulerpa | Impact gear slips over it. Damages it (above ground biomass) but then once cutter bar (steel bar on research sled) is covered, it slides over it. Sled catches hardly any, so trawl gear would catch even less. | L | | Н | 40 spp. | | Halimeda | Higher impact rate than other algae - chokes the net - certainly M if not higher | М | Recovery rate is probably M | М | Bank integrity can be destroyed too. | | Gorgonian
garden | 5-15 per cent, average 10 per cent impact rate | М | Most have M recovery rate but seawhips slow (L) | L | | | Bivalve shell beds | | N/A | | N/A | Did not find them very much in Great Barrier
Reef. On top of reefs at 20m, found in
Torres Strait | | Bioturbated | Probably not effected, protected by living down in the sediment | L | Expected to take days to years for the mound to come back | Н | | | Algae | Depletion rate likely to be L as lie flat. Trawl damages some with flowerpot corals, not much, L. | L | | L | Coraline habitat type in Habitat 8. | | Algae | | L | Fleshy- like Caulerpas, recovery high, probably ephemeral. Medium for anchored things, but these unlikely to be trawled. Mostly on chain only. | Н | | | Alcyonarians/ soft corals | | Н | | Н | | | No biohabitat | | N/A | | N/A | N/A | | Habitat | Habitats from Seabed Biodiversity
Report | Geographic
distribution in
GBRMP | | Impact of trawling on key structural elements (proportion depleted/ removed by trawling) Major elements (as %), bold ≥ 3% | A or P
or PP | Ability of key structural elements to recover after being trawled (recovery period) Major elements (as %), bold ≥ 3% | | Cumulative pressures | A or P | Resilience
level | |-----------|--|--|---|--|-----------------|--|---|--|--------|---------------------| | Habitat 1 | Habitat 1 represents the most barren seabed type, almost entirely bare (~20%) and bioturbated (>70%) with very little observed biogenic habitat. It is distributed in muddy areas of the inshore and midshelf, as well as the deep end of the Capricorn Channel. | 15,244 sq km
Wide
Pitcher et al 2007 | А | bioturbated (>70%) = L [<1%=H or M] | | bioturbated (>70%) = H [<1%=L or M] | А | Nature of habitat
means little risk | А | Н | | Habitat 2 | and very little epibenthos or algae (<1%). It | 33,670 sq km
Wide
Pitcher et al.
2007 | A | bioturbated (~20%) = L
epibenthos or algae (<1%)
= L to H
[<1%=H or M] | | bioturbated (~20%) = H
epibenthos or algae
(<1%) = H to L
[<1%=L] | A | Nature of habitat
means little risk | A | Н | | Habitat 3 | gardens (~4%), sponge gardens (~6%), | 30,213 sq km
Wide
Pitcher et al.
2007 | A | whip gardens (~4%) = L
sponge gardens (~6%) =
H
gorgonian gardens
(~5%) = M
algae (~4%) = L
alcyonarians (~6%) = H | | whip gardens (~4%) = L
sponge gardens (~6%) =
M
gorgonian gardens
(~5%) = L
algae (~4%) = H
alcyonarians (~6%) = H
[9%=L, 6%=M] | | Unknown | A | L | | | | | 1 | Impact of trawling on | 1 | Ability of key structural | ı | 1 | 1 | | |-----------|--|--|--------|--|--------|--|--------|--|--------|------------| | | | Geographic | | key structural elements | | elements to recover | | | | | | | Habitats from Seabed Biodiversity | distribution in | A or P | (proportion depleted/ | A or P | after being trawled | A or P | Cumulative | | Resilience | | Habitat | Report | GBRMP | | removed by trawling) | | (recovery period) | | pressures | A or P | | | Habitat 4 | Habitat 4 is similar to Habitat 3, but with more algae (~16%). It also had <5% Halimeda and seagrass. This habitat may | 31,089 sq km
Wide
Pitcher et al.
2007 | | whip gardens (~2%) = L sponge gardens (~2%) = H seagrass (~2%) = L halimeda (~4%) = M gorgonian gardens (~3%) = M bioturbated (~2%) = L algae (~16%) = L alcyonarians (~1%) = H [3%=H, 7%=M] | Р | whip gardens (~2%) = L sponge gardens (~2%) = M seagrass (~2%) = H halimeda (~4%) = M gorgonian gardens (~3%) = L bioturbated (~2%) = H algae (~16%) = H alcyonarians (~1%) = H [5%=L, 6%=M] | A | Unknown | A | H-I | |
Habitat 5 | Habitat 5 represented mostly bioturbated (~40%) and bare seabed (~40%) with a little algae (~6%) and seagrass algal (~5%) habitat with <1-2% each of whip, sponge and gorgonian gardens, live reef corals, hard coral gardens, Halimeda, alcyonarians and Caulerpa. It is distributed over much of the shelf in central and northern sections of the Great Barrier Reef. | 54,714 sq km
Wide
Pitcher et al.
2007 | A | seagrass (~5%) = L
halimeda (~4%) = M
bioturbated (~40%) = L
algae (~6%) = L
[4%=M] | | seagrass (~5%) = H
halimeda (~4%) = M
bioturbated (~40%) = H
algae (~6%) = H
[4%=M] | A | Unknown | A | Н | | Habitat 6 | Habitat 6 represented seagrass (~30%) and algal (~10%) habitats with ~10% bioturbated and ~35% bare seabed. May also include very small amounts of whip, sponge, and gorgonian gardens, alcyonarians, and Halimeda. It is distributed along much of the inner half of the shelf in the southern Capricorn section of the Great Barrier Reef. | 13,360 sq km
Restricted
Pitcher et al.
2007 | P | seagrass (~30%) = L
bioturbated (~10%) = L
algae (~10%) = L
[<1%=H or M] | | seagrass (~30%) = H
bioturbated (~10%) = H
algae (~10%) = H
[<1%=L or M] | A | Water quality- industrial pollution from port - probably not getting significantly worse in 20 yrs. Potential high vulnerability to climate change e.g upwelling reduction | P | I | | Habitat | Habitats from Seabed Biodiversity | Geographic
distribution in
GBRMP | | Impact of trawling on
key structural elements
(proportion depleted/
removed by trawling) | A or P | | | Cumulative pressures | A or P | Resilience
level | |-----------|--------------------------------------|---|---|---|--------|---|---|---|--------|---------------------| | Habitat 7 | (~30%) and algal (~15%) habitat with | 6,175 sq km
WIDE
Pitcher et al.
2007 | P | seagrass (~30%) = L
halimeda (~3%) = M
bioturbated (~7%) = L
algae (~15%) = L
[3%=M] | | seagrass (~30%) = H
halimeda (~3%) = M
bioturbated (~7%) = H
algae (~15%) = H
[3%=M] | A | Water quality-
more of a
consideration
than for Habitat
6. Potential high
vulnerability to
climate change
e.g upwelling
reduction for 7
(likely impact not
known) | P | I | | Habitat 8 | algae (~20%) and ~12% bare seabed. | 6,414 sq km
Wide
Pitcher et al.
2007 | Р | whip gardens (~2%) = L sponge gardens (~3%) = H seagrass (~6%) = L live reef corals (~4%) = L halimeda (~40%) = M caulerpa (~4%) = L bioturbated (~4%) = L algae (~20%) = L [3%=H, 40%=M] | | whip gardens (~2%) = L sponge gardens (~3%) = M seagrass (~6%) = H live reef corals (~4%) = M halimeda (~40%) = M caulerpa (~4%) = H bioturbated (~4%) = H algae (~20%) = H | Р | Potential high
vulnerability to
climate change
e.g upwelling
reduction as for
Habitat 7 (likely
impact not
known) | Р | L | | Habitat Habitat 9 | Habitats from Seabed Biodiversity Report Habitat 9 represents ~35% patchy algae (including some Halimeda) with ~15% bioturbation and ~35% bare seabed. Other | GBRMP
8,761 sq km
WIDE | | Impact of trawling on key structural elements (proportion depleted/removed by trawling) sponge gardens (~2%) = H seagrass (~2%) = L live reef corals (~2%) = L halimeda (~7%) = M caulerpa (~2%) = L bioturbated (~15%) = L algae (~28%) = L [2%=H, 7%=M] | A or P or PP | | or PP | Cumulative pressures Overall considered not to be under cumulative pressures, as although upwelling comments apply, there is only sparse coverage of algae, and consequences of loss is lower than for the above habitats. | A or P | Resilience
level | |-------------------|--|--|---|---|--------------|--|-------|---|--------|---------------------| | Habitat 10 | Project, and occurs in the southern | 14,056 sq km,
large area
restricted
distribution. | P | Key structural elements are unknown as lack biological data for habitat, so precautionary assessment. Some deepwater benthos is known to be easily depleted by trawling, however fishery not using heavy impact gear. | | Key structural elements
are unknown as lack
biological data for habitat,
so precautionary
assessment. Some
deepwater benthos is
known to recover slowly
after depletion | PP | Potential high
vulnerability to
climate change
e.g upwelling
reduction (likely
impact not
known) | P | L | | Habitat | Habitats from Seabed Biodiversity Report | Knowledge of
spatial
distribution of
habitat types | | Knowledge of
spatial
distribution of
fishing effort | - | • ` | | Proportion of
total habitat
which is
permanently
protected from
fishery activity | A or
P | Impacts caused
by different
gear types used
in the fishery | | Risk
prone | Fishery
Impact
Profile
Ievel 2005 | RISK
2005 | |-----------|---|---|---|--|---|-----------------------------|---|---|-----------|--|---|---------------|--|--------------| | Habitat 1 | Habitat 1 represents the most barren seabed type, almost entirely bare (~20%) and bioturbated (>70%) with very little observed biogenic habitat. It is distributed in muddy areas of the inshore and midshelf, as well as the deep end of the Capricorn Channel. | Yes, modelled in
Pitcher et al 2007 | A | Yes, detailed
VMS data
analysed | A | 26 %
Pitcher et al. 2007 | P | 56%
Pitcher et al. 2007 | A | Gear overall used in this fishery is not considered high impact gear compared to other fisheries. Industry tending to even lighter gear. | A | 1 | I-L | LOW | | Habitat 2 | Habitat 2 is also very barren, with some bioturbation (~20%), 60-70% bare seabed and very little epibenthos or algae (<1%). It is distributed in muddy-sandy areas of the southern midshelf and far north. | Yes, modelled in
Pitcher et al 2007 | A | Yes, detailed
VMS data
analysed | A | 4%
Pitcher et al. 2007 | A | 55%
Pitcher et al. 2007 | A | As above | A | 0 | L | LOW | | Habitat 3 | Habitat 3 had significant patches of whip gardens (~4%), sponge gardens (~6%), gorgonian gardens (~5%), alcyonarians (~6%), and algae (~4%) separated by tracts of bare seabed (~70%). This habitat may also include very small (<1%) amounts of hard coral gardens, Halimeda and Caulerpa. It is distributed in low mud, higher current areas, primarily in the southern Great Barrier Reef. | Yes, modelled in
Pitcher et al 2007 | A | Yes, detailed
VMS data
analysed | A | 10%
Pitcher et al. 2007 | A | 68%
Pitcher et al. 2007 | A | As above | A | 0 | L | INT-
LOW | | Habitat 4 | Habitat 4 is similar to Habitat 3, but with more algae (~16%). It also had <5% Halimeda and seagrass. This habitat may also include very small (<1%) amounts of live reef corals, hard coral gardens, alcyonarians and Caulerpa. Habitat 4 is distributed in low mud, high current areas with higher benthic irradiance, in both the southern and far northern Great Barrier Reef. | Yes, modelled in
Pitcher et al 2007 | A | Yes, detailed
VMS data
analysed | A | 7%
Pitcher et al. 2007 | A | 66%
Pitcher et al. 2007 | A | As above | A | 0 | L | LOW | | Habitat | Habitats from Seabed Biodiversity Report Habitat 5 represented mostly bioturbated (~40%) and bare seabed (~40%) with a little algae (~6%) and seagrass algal (~5%) habitat with <1-2% each of whip, sponge and gorgonian gardens, live reef | Knowledge of
spatial
distribution of
habitat types
Yes, modelled in
Pitcher et al 2007 | A or P | Knowledge of
spatial
distribution of
fishing effort
Yes, detailed
VMS data
analysed | A or
P | Proportion of
available habitat
impacted by fishing
gear (%effort
exposed)
34%
Pitcher et al. 2007 | | • | | Impacts caused
by
different
gear types used
in the fishery
As above | A or P | Risk
prone
score | Fishery
Impact
Profile
level 2005 | RISK
2005
LOW | |-----------|--|---|--------|---|-----------|--|---|----------------------------|---|---|--------|------------------------|--|---------------------| | Habitat 5 | corals, hard coral gardens, Halimeda, alcyonarians and Caulerpa. It is distributed over much of the shelf in central and northern sections of the Great Barrier Reef. | | | | | | | | | | | | | | | Habitat 6 | Habitat 6 represented seagrass (~30%) and algal (~10%) habitats with ~10% bioturbated and ~35% bare seabed. May also include very small amounts of whip, sponge, and gorgonian gardens, alcyonarians, and Halimeda. It is distributed along much of the inner half of the shelf in the southern Capricorn section of the Great Barrier Reef. | Yes, modelled in
Pitcher et al 2007 | A | Yes, detailed
VMS data
analysed | A | 34%
Pitcher et al. 2007 | Р | 20%
Pitcher et al. 2007 | A | As above | A | 1 | I-L | INT-
LOW | | Habitat 7 | Habitat 7 represents patchy seagrass (~30%) and algal (~15%) habitat with ~40% bare seabed. It is distributed along the mid-shelf from Cape Upstart to Innisfail. This habitat also has very small amounts of whip, sponge and gorgonian gardens, Halimeda, flora, and Caulerpa. | Yes, modelled in
Pitcher et al 2007 | A | Yes, detailed
VMS data
analysed | A | 39%
Pitcher et al. 2007 | Р | 26%
Pitcher et al. 2007 | A | As above | A | 1 | I-L | INT-
LOW | | Habitat 8 | Habitat 8 represents much of the Halimeda (>40%) habitat, as well as some other algae (~20%) and ~12% bare seabed. Other characteristics include ~2% whip gardens, ~3% sponge gardens, ~6% seagrass, ~4% live reef corals, ~1% hard coral gardens, ~1% gorgonian gardens, ~1% flora, ~4% Caulerpa, and ~4% bioturbation. | Yes, modelled in
Pitcher et al 2007 | A | Yes, detailed
VMS data
analysed | A | 3%
Pitcher et al. 2007 | A | 88%
Pitcher et al. 2007 | A | As above | A | 0 | L | INT-
LOW | | Habitat 9 | Habitat 9 represents ~35% patchy algae (including some Halimeda) with ~15% bioturbation and ~35% bare seabed. Other characteristics include ~1% whip gardens, ~2% sponge gardens, ~2% seagrass, ~2% live reef corals, ~1% hard coral gardens, ~1% gorgonian gardens, ~2% Caulerpa, and ~1% alcyonarians. Habitat 9 is distributed primarily in the outer-shelf offshore from Townsville. | Yes, modelled in
Pitcher et al 2007 | A | Yes, detailed
VMS data
analysed | A | 25%
Pitcher et al. 2007 | A | 64%
Pitcher et al. 2007 | A | As above | A | 0 | L | INT-
LOW | | Habitat | | Knowledge of spatial distribution of habitat types | A or B | Knowledge of
spatial
distribution of
fishing effort | A or | Proportion of
available habitat
impacted by fishing
gear (%effort
exposed) | A or P | Proportion of
total habitat
which is
permanently
protected from
fishery activity | A or | Impacts caused
by different
gear types used
in the fishery | | Risk
prone | Fishery
Impact
Profile
Ievel 2005 | RISK | |---------|--|--|--------|--|------|---|--------|---|------|--|---|---------------|--|------| | | Habitat 10 is an additional habitat type to those above from the Seabed Biodiversity Project, and occurs in the southern GBRMP between about 90 and 300m depths and includes X8 Southern Embayment bioregion (within that depth range) and | Until further information is gained it is unknown if the | P | Yes, detailed
VMS data
analysed | A | 113% calculation by DEEDI using methods of Pitcher et al 2007, but assuming a full coverage of each 1 minute lat long cell takes 8.5 hrs with deepwater EKP nets (headrope average 75m) rather than 8hrs. | PP | 13.8 | Р | Gear overall used in this fishery is not considered high impact gear compared to other fisheries. Industry tending to even lighter gear. | A | 4 | H | HIGH | #### Appendix 21. Fishery impact profile of marine habitats 2009 | | Habitats from Seabed Biodiversity | | A
or
P | | A
or
P | Proportion of
available habitat
impacted by
fishing gear
(%effort
exposed) | A or P | Proportion of
total habitat
which is
permanently
protected from
fishery activity | or | different gear types | or | | Fishery
Impact
Profile
level 2009 | RISK
2009 | |-----------|-----------------------------------|---|--------------|---------------------------------------|--------------|---|--------|---|----|--|----|---|--|--------------| | | | Pitcher et al
2007 | A | Yes, detailed
VMS data
analysed | Α | 12 %
Pitcher et al. 2009 | | 56%
Pitcher et al.
2007 | | Gear overall used in
this fishery is not
considered high
impact gear compared
to other fisheries.
Industry tending to
even lighter gear. | A | 0 | L | LOW | | Habitat 2 | ` '' | Yes, modelled in
Pitcher et al
2007 | A | Yes, detailed
VMS data
analysed | A | 1%
Pitcher et al. 2009 | | 55%
Pitcher et al.
2007 | A | As above | A | 0 | L | LOW | | Habitat 3 | 1 3 (1 - 7), - 1 - 3 - | Yes, modelled in
Pitcher et al
2007 | A | Yes, detailed
VMS data
analysed | Α | 4%
Pitcher et al. 2009 | | 68%
Pitcher et al.
2007 | A | As above | Α | 0 | L | INT-
LOW | | Habitat | Habitats from Seabed Biodiversity
Report
Habitat 4 is similar to Habitat 3, but | distribution of habitat types | or
P | Knowledge of spatial distribution of fishing effort | A
or
P | Proportion of
available habitat
impacted by
fishing gear
(%effort
exposed) | A or P
or PP | fishery activity | A
or
P | Impacts caused by
different gear types
used in the fishery | or
P | Risk
prone | Fishery
Impact
Profile
level 2009 | | |-----------|--|---|---------|---|--------------|---|-----------------|-------------------------------|--------------|--|---------|---------------|--|-------------| | Habitat 4 | with more algae (~16%). It also had <5% Halimeda and seagrass. This habitat may also include very small (<1%) amounts of live reef corals, hard coral gardens, alcyonarians and Caulerpa. Habitat 4 is distributed in low mud, high current areas with higher benthic irradiance, in both the southern and far northern Great Barrier Reef. | Yes, modelled in
Pitcher et al
2007 | Α | Yes, detailed
VMS data
analysed | A | Pitcher et al. 2009 | A | 66%
Pitcher et al.
2007 | A | As above | A | 0 | L | LOW | | Habitat 5 | Habitat 5 represented mostly bioturbated (~40%) and bare seabed (~40%) with a little algae (~6%) and seagrass algal (~5%) habitat with <1-2% each of whip, sponge and gorgonian gardens, live reef corals, hard coral gardens, Halimeda, alcyonarians and Caulerpa. It is distributed over much of the shelf in central and northern sections of the Great Barrier Reef. | 2007 | A | Yes, detailed
VMS data
analysed | А | 15%
Pitcher et al. 2009 | A | 53%
Pitcher et al.
2007 | A | As above | Α | 0 | L | LOW | | Habitat 6 | Habitat 6 represented seagrass (~30%) and algal (~10%) habitats with ~10% bioturbated and ~35% bare seabed. May also include very small amounts of whip, sponge, and gorgonian gardens, alcyonarians, and Halimeda. It is distributed along
much of the inner half of the shelf in the southern Capricorn section of the Great Barrier Reef. | Yes, modelled in
Pitcher et al
2007 | A | Yes, detailed
VMS data
analysed | Α | 34%
Pitcher et al. 2009 | P | 20%
Pitcher et al.
2007 | A | As above | A | 1 | I-L | INT-
LOW | | Habitat | Habitats from Seabed Biodiversity
Report | • | A
or
P | Knowledge of
spatial
distribution of
fishing effort | A
or
P | ` | A or P
or PP | Proportion of
total habitat
which is
permanently
protected from
fishery activity | | | or | Risk
prone | Fishery
Impact
Profile
level 2009 | RISK
2009 | |-----------|--|---|--------------|--|--------------|----------------------------|-----------------|---|---|----------|----|---------------|--|--------------| | Habitat 7 | Habitat 7 represents patchy seagrass (~30%) and algal (~15%) habitat with ~40% bare seabed. It is distributed along the mid-shelf from Cape Upstart to Innisfail. This habitat also has very small amounts of whip, sponge and gorgonian gardens, Halimeda, flora, and caulerpa. | Yes, modelled in
Pitcher et al
2007 | A | Yes, detailed
VMS data
analysed | A | 30%
Pitcher et al. 2009 | Р | 26%
Pitcher et al.
2007 | Α | As above | A | 1 | I-L | INT-
LOW | | Habitat 8 | Habitat 8 represents much of the Halimeda (>40%) habitat, as well as some other algae (~20%) and ~12% bare seabed. Other characteristics include ~2% whip gardens, ~3% sponge gardens, ~6% seagrass, ~4% live reef corals, ~1% hard coral gardens, ~1% gorgonian gardens, ~1% flora, ~4% Caulerpa, and ~4% bioturbation. | Yes, modelled in
Pitcher et al
2007 | A | Yes, detailed
VMS data
analysed | Α | 3%
Pitcher et al. 2009 | A | 88%
Pitcher et al.
2007 | Α | As above | Α | 0 | L | INT-
LOW | | Habitat 9 | Habitat 9 represents ~35% patchy algae (including some Halimeda) with ~15% bioturbation and ~35% bare seabed. Other characteristics include ~1% whip gardens, ~2% sponge gardens, ~2% seagrass, ~2% live reef corals, ~1% hard coral gardens, ~1% gorgonian gardens, ~2% Caulerpa, and ~1% alcyonarians. Habitat 9 is distributed primarily in the outer-shelf offshore from Townsville. | Yes, modelled in
Pitcher et al
2007 | A | Yes, detailed
VMS data
analysed | Α | 20%
Pitcher et al. 2009 | A | 64%
Pitcher et al.
2007 | A | As above | A | 0 | L | INT-
LOW | #### Appendix 21. Fishery impact profile of marine habitats 2009 | Habitat | Habitats from Seabed Biodiversity
Report | - p | A
or
P | | A
or
P | Proportion of
available habitat
impacted by
fishing gear
(%effort
exposed) | | Proportion of
total habitat
which is
permanently
protected from
fishery activity | or | | or | Risk
prone | Fishery
Impact
Profile
Ievel 2009 | RISK
2009 | |------------|--|--------------|--------------|---------------------------------------|--------------|---|----|---|----|--|----|---------------|--|--------------| | Habitat 10 | Habitat 10 is an additional habitat type to those above from the Seabed Biodiversity Project, and occurs in the southern GBRMP between about 90 and 300m depths and includes X8 Southern Embayment bioregion (within that depth range) and the southern part of the NU Terraces bioregion. | gained it is | P | Yes, detailed
VMS data
analysed | A | 112% calculation
by DEEDI using
methods of
Pitcher et al 2007,
but assuming a
full coverage of
each 1 minute lat
long cell takes 8.5
hrs with
deepwater EKP
nets (headrope
average 75m)
rather than 8hrs. | PP | 13.8 | P | Gear overall used in this fishery is not considered high impact gear compared to other fisheries. Industry tending to even lighter gear. | A | 4 | I | HIGH | # Appendix 22. Resilience of species assemblages | Assemblages
from Seabed
Biodiversity
Report | Geographic distribution in GBRMP | | Risk to species with high affinity and fidelity | A or P | Cumulative pressures | A or P | Risk
prone
score | Resilience
level | |--|---|---|--|--------|-----------------------------------|--------|------------------------|---------------------| | Assemblage 1 | 14,709 km sq
Wide (north of Cairns to southern
boundary)
Pitcher et al. 2007, p3-241 | A | None | A | Offshore, no known risks | A | 0 | Н | | Assemblage 2 | 28,565 km sq
Wide (Cardwell to southern boundary)
Pitcher et al. 2007 | A | None | A | Offshore, no known risks | A | 0 | Н | | Assemblage 3 | 14,374 km sq
Wide (north of Rockhampton)
Pitcher et al. 2007 | А | None | A | Offshore, no known risks | А | 0 | Н | | Assemblage 4 | 9,506 km sq
Wide (Bowen to southern boundary)
Pitcher et al. 2007 | A | Orthoscuticells spp p Effort Exp
26%,
Ambiserrula jugosa p Effort Exp
43%,
Xenospongia patelliformis p Effort
Exp 33% | Р | Offshore, no known risks | A | 1 | H-I | | Assemblage 5 | 5,310 km sq
Localised (south of Mackay to north of
Rockhampton)
Pitcher et al. 2007 | Р | Presume no high affinity species | A | Proportion inshore | Р | 2 | I | | Assemblage 6 | 16,545 km sq
Wide
Pitcher et al. 2007 | A | Presume no high affinity species | A | Proportion inshore | Р | 1 | H-I | | Assemblage 7 | 12,940 km sq
Localised in sGBR
Pitcher et al. 2007 | Р | Portunus sanguinolentus p
EffortExp >34% | Р | Mostly inshore and shallow (reef) | Р | 3 | I-L | | Assemblage 8 | 14,172 km sq
Wide (Northern boundary to approx Cairns)
Pitcher et al. 2007 | | None | A | Offshore, no known risks | A | 0 | Н | # Appendix 22. Resilience of species assemblages | Assemblages
from Seabed
Biodiversity
Report | Geographic distribution in GBRMP | A or P | Risk to species with high affinity and fidelity | A or P | Cumulative pressures | A or P | Risk
prone
score | Resilience
level | |--|---|--------|--|--------|--|--------|------------------------|---------------------| | Assemblage 9 | 9,576 km sq
Wide (northern boundary to southern
boundary)
Pitcher et al. 2007 | A | Paradorippe australiensis p Effort
Exp 33% | Р | Mostly inshore and shallow (reef), with water quality thought to be an issue for Anthozoa spp. | Р | 2 | I | | Assemblage 10 | 21,537 km sq
Wide (northern boundary to south of
Mackay)
Pitcher et al. 2007 | A | Presume no high affinity species | A | Hard to call, mixed but inshore near Bowen | P | 1 | H-I | | Assemblage 11 | 24,367 km sq
Wide (whole of GBR)
Pitcher et al. 2007 | A | Scolopsis taeniopterus p Effort Exp 54%, p Caught 50% | Р | Inshore | Р | 2 | I | | Assemblage 12 | 4,706 km sq
Wide (north of Bowen)
Pitcher et al. 2007 | Р | Cryptolutea arafurensis p Effort Exp
128% | Р | Inshore | Р | 3 | I-L | | Assemblage 13 | 3,851 km sq
Wide
Pitcher et al. 2007 | P | Leiognathus splendens p Effort Exp
54%,
Leiognathus moretoniensis p Effort
Exp 41%,
Gerres filamentous p Effort Exp
50% | Р | Inshore | Р | 3 | I-L | | Assemblage 14 | 2,110 km sq
Wide (north of Cardwell)
Pitcher et al. 2007 | Р | Presume no high affinity species | A | Offshore | A | 1 | H-I | | Assemblage 15 | 13,690 km sq
Localised (south of Mackay, north of
Rockhampton)
Pitcher et al. 2007 | A | None | A | Right across the shelf, with some inshore. | A | 0 | Н | | Assemblage 16 | 3,684 km sq
Localised (south of Mackay, north of
Rockhampton)
Pitcher et al. 2007 | PP | None | A | Offshore | A | 2 | I | Appendix 23. Fishery impact profile for species assemblages 2005 | Assemblages from | | | Proportion of total assemblage which | | | Fishery Impact | | |---------------------|------------------------------------|--------|---------------------------------------|--------|------------|----------------|-----------| | Seabed Biodiversity | Proportion of available assemblage | A or P | is permanently protected from fishery | A or P | Risk prone | Profile level
 RISK 2005 | | Report | impacted by fishing gear | or PP | activity | | score | 2005 | | | • | Pitcher et al. 2007 | | Pitcher et al. 2007 | | | | | | Assemblage 1 | 32% | Р | 49% A 1 | | I | INT | | | Assemblage 2 | 8% | А | 62% | А | 0 | L | LOW | | Assemblage 3 | 2% | А | 84% | А | 0 | L | LOW | | Assemblage 4 | 41% | Р | 30% | А | 1 | I | INT | | Assemblage 5 | 10% | А | 45% | А | 0 | L | LOW | | Assemblage 6 | 13% | А | 49% | А | 0 | L | LOW | | Assemblage 7 | 21% | А | 31% | А | 0 | L | INT-LOW | | Assemblage 8 | 3% | А | 71% | Α | 0 | L | LOW | | Assemblage 9 | 0% | А | 84% | А | 0 | L | LOW | | Assemblage 10 | 2% | А | 44% | А | 0 | L | LOW | | Assemblage 11 | 58% | PP | 43% | А | 2 | H-I | INT-HIGH | | Assemblage 12 | 108% | PP | 43% | А | 2 | H-I | HIGH | | Assemblage 13 | 41% | Р | 27% | А | 1 | I | INT | | Assemblage 14 | 0% | А | 90% | А | 0 | L | LOW | | Assemblage 15 | 0% | А | 84% | А | 0 | L | LOW | | Assemblage 16 | 0% | Α | 95% | Α | 0 | L | LOW | Appendix 24. Fishery impact profile for species assemblages 2009 | Assemblages from Seabed
Biodiversity Report | Proportion of available assemblage impacted by fishing gear | | Proportion of total assemblage which is permanently protected from fishery activity | A or P | | Fishery Impact
Profile level 2009 | RISK 2009 | |--|---|---|---|--------|---|--------------------------------------|-----------| | | Pitcher (PERS COMM. 2009) | | Pitcher et al. 2007 | | | | | | Assemblage 1 | 28% | Р | 49% | Α | 1 | I | INT | | Assemblage 2 | 3% | А | 62% | А | 0 | L | LOW | | Assemblage 3 | 2% | А | 84% | А | 0 | L | LOW | | Assemblage 4 | 27% | Р | 30% | А | 1 | I | INT | | Assemblage 5 | 2% | А | 45% | А | 0 | L | LOW | | Assemblage 6 | 8% | А | 49% | А | 0 | L | LOW | | Assemblage 7 | 24% | А | 31% | А | 0 | L | INT-LOW | | Assemblage 8 | 2% | А | 71% | А | 0 | L | LOW | | Assemblage 9 | 0% | А | 84% | А | 0 | L | LOW | | Assemblage 10 | 1% | А | 44% | А | 0 | L | LOW | | Assemblage 11 | 23% | А | 43% | А | 0 | L | LOW | | Assemblage 12 | 46% | Р | 43% | Α | 1 | I | INT | | Assemblage 13 | 26% | Р | 27% | А | 1 | I | INT | | Assemblage 14 | 0% | А | 90% | А | 0 | L | LOW | | Assemblage 15 | 0% | А | 84% | А | 0 | L | LOW | | Assemblage 16 | 0% | Α | 95% | А | 0 | L | LOW | This ecological risk assessment is available at www.gbrmpa.gov.au