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Abstract. The objectives of this study were to predict the potential distribution, relative abundance and probability of
habitat use by feral camels in southern Northern Territory. Aerial survey data were used to model habitat association. The
characteristics of ‘used’ (where camels were observed) v. ‘unused’ (pseudo-absence) sites were compared. Habitat
association and abundance were modelled using generalised additivemodel (GAM)methods. Themodels predicted habitat
suitability and the relative abundance of camels in southern Northern Territory. The habitat suitability maps derived in the
present study indicate that camels have suitable habitat inmost areas of southernNorthern Territory. The index of abundance
model identified areas of relatively high camel abundance. Identifying preferred habitats and areas of high abundance can
help focus control efforts.
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Introduction

Since their introduction to Australia in the late 1800s and
subsequent release into the wild, camels (Camelus dromedarius)
have increased and spread across arid Australia (Edwards et al.
2004). Their broad-scale relationship with habitat has not
been examined, but a species distribution model (Guisan and
Thuiller 2005) could have several uses in camel management.
Importantly, identifying preferred habitats can help focus control
efforts. Furthermore, as camel numbers continue to increase,
further expansion in the camel range is likely and knowledge of
habitat preference will indicate likely habitats at risk of invasion
(Edwards et al. 2008).

Current broad-scale distribution is known only as snapshots
in time from infrequent aerial surveys. These surveys provide
useful regional estimates of abundance, but at fine scales
(e.g. <10 000 km2), density estimates are imprecise, leading to
potentially misleading distribution patterns that may result in
misdirected management effort. As an example, two identical
surveys a short time period (e.g. 1 year) apart can yield quite
different patterns of distribution, as only small numbers of camels
are seen when both density and survey intensity are low. To
overcome this problem, a spatial model linking habitat to the
probability of occupancy can beused topredict camel distribution
across the survey area.

Developments in statistical methods and the ease with which
they can be linked to geographic information systems (GIS) has
led to an increase in the number of studies usingmodels to predict
habitat distribution in recent years (Larson et al. 2008). Using a
GIS, the attributes (biotic and abiotic characteristics) of sample
sites can be easily recorded and used in resource selection
function (RSF) models. Using this approach, predicted habitat
distributions can bemapped and comparedwith other variables of
interest such as areas of cultural or conservation importance.

A resource selection function is any function that is
proportional to the probability of use of a resource unit (Manly
et al. 2002). Resource selection functions have been used to infer
habitat quality and their probability of use (Boyce andMcDonald
1999) as well as for conservation and management planning
(Mysterud and Ims 1999; McDonald 2003; Johnson et al. 2006;
Allen et al. 2008). By predicting the probability of habitat use
by camels, RSF models have the capacity to be powerful
management tools that help allocate resources most effectively
and efficiently to manage camel populations.

Generalised linear models (GLMs) have been used to model
the habitat associations of a wide range of animals (Guisan and
Zimmermann 2000). More recently, generalised additive models
(GAMs) have become popular to describe habitat associations
and preferences (Elith et al. 2006; Meynard and Quinn 2007).
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GAMs are frequently more flexible than GLMs when the linear
predictor can best be described as a sum of smooth functions of
covariates plus parametric linear predictors (Wood 2006).

In this paper we use GAMs to analyse the habitat associations
of camels in central Australia. Our objectives were to predict
the potential distribution and probability of habitat use by feral
camels in southern Northern Territory. To make the predictions,
we used a range of biotic and non-biotic predictors that were
statistically related to locations where camels were observed
during the most recent broad-scale aerial survey for camels in the
Northern Territory. We then used the predicted habitat
associations to identify areas of high cultural and ecological
interest that may be heavily impacted by camels.

Materials and methods
Camel locations

In 2001, aerial surveys were flown over an area of ~260 000 km2

of southern Northern Territory. The location of groups of camels
along transectswas recordedusingaGPSconnected toahandheld
computer. The sampling intensity was 3.6% of the survey area.
Full details of the survey design and results are given by Edwards
et al. (2004).

Sample design and habitat associations

The locations of camels observed during aerial surveys provide
information about habitats that camels use, but not about unused
habitats, which may be unused because they are avoided or
unused simply because therewere no camels in the area at the time
of the survey. Aerial survey locations represent a snapshot of
associationbetween animal andhabitat at an instant in time.Using
aerial survey data it is not possible to determine preference since
there has been no measurement of choice or avoidance (Boyce
et al. 2002). Thus, the locations of camels represent ‘presence-
only’ data. Appropriate analyses characterise habitat association
by presence v. availabilitywhereby the characteristics of a sample
of sites where camels occur is compared with a sample of what is
available in the environment (Manly et al. 2002).

We modelled the relationship between camels and the
environment by characterising a range of biotic and abiotic
covariates (Table 1). The characteristics of ‘used’ (where camels
were observed) v. ‘unused’ (pseudo-absence) sites were
compared. The term ‘pseudo-absence’ is used since it refers to
siteswhere camelswere not observed, but this does not imply that
those siteswere avoided.Therewere 494uniquegroups of camels
identified during the aerial survey. An equal number of pseudo-
absence sites were chosen. Pseudo-absence sites were chosen
randomly without replacement along aerial survey transect lines
within the aerial survey block and each site was at least 10 km
from its nearest neighbour (average 18.5 km). Used sites were

assigned the response variable of 1; unused sites were assigned
the response variable 0.

We hypothesised that camels made decisions regarding their
use of a habitat based on resources nearby. Studies of camel
movements (Grigg et al. 1995;Edwards et al. 2001) indicated that
theywill range between~0.1–30 kmper day, butmore commonly
1–10 km per day. Based on this information, we created two
separate buffers around each sample location that we assumed
were representative of the spatial scale over which camels made
their short-term (i.e. daily to a few days) habitat choices. The
buffers were, respectively, 1 and 5 km in radius, measured from
the centre of each site.

The attribute values of covariateswere then either based on the
value at the centroid of each buffer (elevation and aspect), or the
proportion of a covariate within the buffer area (vegetation type)
or the nearest-neighbour distance (human population centres,
water sources and roads).

Statistical methods

Following the general method described by Barry and Welsh
(2002) for modelling zero inflated count data, we modelled the
data in two steps. First, we modelled habitat association using
habitat covariates and presence–absence data. Second, we
modelled the relationship between abundance and the covariates,
conditional on camels being present. The combination of two
steps provides a flexible approach to the problem of modelling
habitat suitability. The method also provides two predictions:
(i) habitat suitability (presence–absence) and (ii) an index of
abundance.The latter is only an indexbecause the count datawere
point estimates of abundance, not density estimates in survey
plots.

We modelled camel habitat association and abundance using
generalised additive model (GAM) methods in the R statistical
computing language (R version 2.9.0) (R Development Core
Team 2008). Early exploratory analyses using GLMs were
abandoned whenwe found they provided low explanatory power
in comparison to GAMs. We fitted GAMs using the gam()
function from the ‘mgcv’ package (version 1.5–5) (Wood 2009).
For presence–absence, fitted models used a binomial error
structure with a logit link. For abundance, fitted models used a
Poisson error structure with a log link and a gamma value of 1.4.
The gamma value inflates the degrees-of-freedom to help prevent
over-fitting (Wood 2006). The best model was chosen by
minimising un-biased risk estimator (UBRE). The UBRE score
can be interpreted in the same way as AIC (Wood 2006).

Covariates

Nearest neighbour distance was calculated for human population
centres, water sources and roads usingGIS (Manifold System 8.0

Table 1. Covariates used to predict camel habitat suitability

Data type Covariate Range Source

Nearest neighbour Population centres 0–252 km Manifold (www.manifold.netA)
Water sources (permanent and ephemeral) 0–58.8 km Manifold (www.manifold.netA)
Major and minor roads 0–165 km Manifold (www.manifold.netA)

Proportion Vegetation class (see Table 2) Wilson et al. (1990)

AAccessed 11 August 2009.
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Professional Edition, Build 8.0.12.0) (Table 1).We hypothesised
that camels might be attracted to water sources and avoid
population centres and roads. The nearest neighbour distancewas
recorded as the Euclidean distance between the centroid of each
used and unused sample location and the closest point in the
covariate set.

Using the vegetation classifications (mapping units) described
byWilson et al. (1990), we used 11 simplified vegetation classes
(Table 2). Camels were observed at least once in each class. The
value of each vegetation class was calculated as the proportion of
the total buffer area made up by each class.

Several climate variables, including temperature (mean
annual, mean summer, maximum summer and minimum winter)
and rainfall (mean annual and mean summer) were tested during
preliminary model fitting and found to be unrelated to camel
distribution. A range of topographic variables (elevation, slope
and aspect) were also trialled and found to be unrelated to camel
distribution.

Evaluation of predictive performance

Ideally, the predictive performance of themodels would be tested
using an independent data source. In the absence of independent
data we evaluated the predictive performance of the models by
internal validation using k-fold cross-validation (Kohavi 1995),
with 10 folds. The details of the method are presented by Cowled
et al. (2009).

Briefly, models were evaluated using the area under the
receiver operator characteristic (ROC) curve (Pearce and Ferrier
2000;Wintle et al. 2005). The area under theROCcurve (AUC) is
a measure of the model’s ability to correctly distinguish between
presence and absence. Thus, it is referred to as ameasure ofmodel
discrimination (Pearce and Ferrier 2000). The statistic can be
interpreted in a straightforward manner; a value of 1 indicates
perfect discrimination, whereas a value of 0.5 indicates that the
model performs no better than a random guess (Fawcett 2006).
Swets (1988) considered values above 0.7 provided reasonable
discrimination and the larger the AUC the better the model at
predicting groupmembership. Calculation ofAUCused the auc()
function in the PresenceAbsence package (version 1.1.3) in R
(Freeman 2007).

Predicting habitat suitability and relative abundance

Using the best overall models for each buffer we determined the
habitat suitability and abundance for each point in Fig. 1. The
predicted index of abundance was calculated from the product of

Table 2. Vegetation classes used in the model
Classes followed the classifications of Wilson et al. (1990). The percent of the total area of the study site made up

by each vegetation class is included

Vegetation class Code Percent

Acacia with grass understorey/Acacia georginae low open woodlands AC1 3.2
Acacia with grass understorey/mixed species low open-woodland AC3 3.4
Acacia with grass understorey/sparse shrubland AC4 4.7
Acacia with grass understorey/tall open shrubland AC5 2.0
Chenopod low sparse-shrub/forbland CH1 2.4
Eucalyptus with grass understorey EU1 4.3
Eucalyptus with hummock grass understorey EU2 15.1
Hummock grassland/mixed species low open-woodland HU1 9.7
Hummock grassland/scattered shrub HU2 0.7
Hummock grassland/tall open-shrubland HU3 54.2
Melaleuca forest/woodland ME 0.2

Fig. 1. Point locations for which camel habitat covariate values were
measured.
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the probability estimate from thepresence–absencemodel and the
modelled abundance (Barry and Welsh 2002). We used simple
krigingwith eight nearest neighbours to create smooth surfaces of
predicted camel habitat suitability and relative abundance. These
surfaces are estimates of the potential habitat suitability and
abundance of camels in southernNorthern Territory at the time of
the survey.

Areas of importance

Using GIS, we overlaid the predicted habitat suitability maps on
a map that included areas of indigenous, natural and historic
significance recorded on the Register of the National Estate
(RNE). The intersection of areas of high habitat suitability and
RNE significance indicates potential priority regions for camel
management.

Results

Habitat suitability

Thepredicted habitat suitability surfaces indicate areas of suitable
habitat for camels. For the 1 km buffer the model selected was:

h ¼ sðlatitude; longitudeÞ
þ sðdistance from population centresÞ
þ sðdistance from roadsÞ þ EU2þ HU1

ð1Þ

where h is the probability of occurrence and s() is a smooth
function. The model explained 43.4% of the deviance. The
statistical significance of parametric and smooth model terms is
presented in Table 3. An explanation of the parametric terms is
presented in Table 2.

Table 3. Significance of smooth and parametric model terms in the
presence–absence model based on a 1 km buffer

s(lat, lon) is the smoothed model term representing location (latitude and
longitude), s(popn) is the term representing distance from centres of
population, s(tran) is the term representing distance from roads, and EU2 and
HU1 are parametric terms representing vegetation classes (see Table 2).
The model had an un-biased risk estimator (UBRE) score of 0.0758. The
parametric term EU2 was included in the model since it was correlated with
other model variables and resulted in a higher UBRE score if it was deleted

Model terms Df/edf Chi-square P-value

s(lat, lon) 131.223 239.69 2.35e-08
s(popn) 5.252 62.04 6.50e-12
s(tran) 4.550 41.03 5.36e-08
EU2 1 2.884 0.0895
HU1 1 23.565 1.21e-06

Table 4. Significance of smooth and parametric model terms in the
presence–absence model based on a 5 km buffer

s(lat, lon) is the smoothed model term representing location (latitude and
longitude), s(popn) is the term representing distance from centres of
population, s(tran) is the term representing distance from roads, and AC3,
AC4, AC5, CH1, EU1, EU2, HU1, HU2 and HU3 are parametric terms
representing vegetation classes (see Table 2). The model had an un-biased
risk estimator (UBRE) score of 0.0693. The parametric term EU1 was
included in the model since it was correlated with other model variables

and resulted in a higher UBRE score if it was deleted

Model terms Df/edf Chi-square P-value

s(lat, lon) 126.0 229.51 4.94e-08
s(popn) 5.47 64.69 2.47e-12
s(tran) 4.47 37.80 2.22e-07
AC3 1 6.282 0.01220
AC4 1 7.697 0.00553
AC5 1 8.895 0.00286
CH1 1 7.344 0.00673
EU1 1 3.041 0.08120
EU2 1 10.524 0.00118
HU1 1 10.819 0.00100
HU2 1 7.270 0.00701
HU3 1 7.329 0.00679
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Fig. 2. Smoothed fits to the covariates distance to population centres (popn)
and distance to roads (tran) used in the final habitat suitability model with a
1 km buffer. Dashed lines give ~95% confidence intervals. The units of the
x-axis are decimal degrees.
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For the 5 km buffer, the model selected was:

h ¼ sðlatitude; longitudeÞ
þ sðdistance from population centresÞ
þ sðdistance from roadsÞ þ AC3þ AC4þ AC5

þ CH1þ EU1þ EU2þ HU1þ HU2þ HU3

ð2Þ

where h is the probability of occurrence and s() is a smooth
function. The model explained 44.2% of the deviance. The
statistical significance of parametric and smooth model terms is
presented in Table 4. An explanation of the parametric terms is
presented in Table 2.

Thedifferences between these twomodelswas the inclusionof
a large number of vegetation categories in the 5 km buffer model,
which were absent from the 1 km buffer model. The most likely
reasonwould be the substantial increase in area of the 5 kmbuffer
relative to the 1 kmbuffer. Consequently, the buffer area from the
5 km buffer intersected with a greater range of vegetation classes.

The smooth terms latitude, longitude, distance to population
centres and distance to roads were common to both models.
Examples of smoothedfits to the covariates distance topopulation
centres and distance to roads are given in Fig. 2. The fitted splines
indicate that the probability of presence of camels increases with
distance from either a population centre or a road, but with
probability of presence declining at large distances from roads.

The significance of the terms for smoothed latitude and
longitude in the models reflects some of the (2-dimensional)
spatial variation in occupancy that has not been captured by the
environmental covariates. Locations can only be a proxy for
biologically important variables, and they are included in the
model because they are correlated with some underlying process.

The largest difference in the predicted habitat suitability
surfaces occurs on the eastern sector (Figs 3, 4). The model
based on a 5 km buffer included extensive areas in the east that
ranked as medium-high suitable habitat. These areas contained
Acacia with grass understorey and Acacia georginae low open
woodlands (AC1, Table 2).

Aerial survey extent

Probability of use

Boundary

High

Medium

Low

Fig. 3. Predicted camel habitat suitability based on a 1 kmbuffer around sample locations. The extent of
the aerial survey conducted in 2001 by Edwards et al. (2004) is also shown on the map.
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The habitat suitability surfaces indicated that the majority of
southernNorthern Territory is predicted to be suitable for camels.

Relative abundance

Therewas nodifference in the structure of the bestmodelsfitted to
the count data. For both the 1 km and 5 km buffers the selected
model was:

h ¼ sðlatitude; longitudeÞ þ sðdistance from waterÞ
þ AC1 þ AC3 þ AC4 þ AC5 þ CH1

þ EU1 þ HU1 þ HU3

ð3Þ

where h is the camel abundance and s() is a smooth function
(Tables 5 and 6). An explanation of the parametric terms is
presented inTable 2. Thefittedmodels explained69 and71.6%of
the deviance in the data for the 1 and 5 km buffers, respectively.
The predicted count surfaces (Figs 5, 6) indicate that there are
a few ‘hotspots’ of camel abundance. Keeping in mind that the

predicted abundance surfaces are the product of the predictions
of the presence–absence model and the count model, the surfaces
are remarkably similar. Also, the region to the east that was of
medium-high suitability is not predicted to sustain a high
abundance of camels.

The predicted abundance surface indicates that camels will
probably occur at low density across southern Northern Territory
and occasionally reach very high density. However, these
‘hotspots’ of abundance cover on average ~1000 km2 and
biodiversity impacts by camels over such a large area can be
substantial (Edwards et al. 2008).

Hotspots coincided with a wide range of vegetation classes
includingAcaciawith grass understorey/sparse shrubland (AC4),
Acacia with grass understorey/tall open shrubland (AC5),
chenopod low sparse-shrub/forbland (CH1), Acacia with grass
understorey/Acacia georginae low open woodlands (AC1),
hummock grassland/tall open-shrubland (HU3) and hummock
grassland/mixed species low open-woodland (HU1). These
vegetation types are widespread across southern Northern

Aerial survey extent

Probability of use

Boundary

High

Medium

Low

Fig. 4. Predicted camel habitat suitability based on a 5 km buffer around sample locations. The extent
of the aerial survey conducted in 2001 by Edwards et al. (2004) is also shown on the map.
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Table 5. Significance of smooth and parametric model terms in the
count model based on a 1 km buffer

s(lat, lon) is the smoothed model term representing location (latitude and
longitude), s(water) is the term representing distance fromwater sources, and
AC1, AC3, AC4, AC5, CH1, EU1, HU1 and HU3 are parametric terms
representing vegetation classes (see Table 2). The model had un-biased risk
estimator (UBRE) score of 1.566. The parametric terms AC3 and HU1 were
included in the model since they were correlated with other model covariates

and deleting them resulted in a higher UBRE score

Model terms Df/edf Chi-square P-value

s(lat, lon) 165.801 227.44 0.00106
s(water) 8.745 35.62 3.79e-05
AC1 1 5.480 0.01924
AC3 1 0.723 0.39513
AC4 1 4.896 0.02691
AC5 1 7.080 0.00779
CH1 1 5.628 0.01768
EU1 1 7.505 0.00615
HU1 1 2.942 0.08632
HU3 1 5.620 0.01775

Table 6. Significance of smooth and parametric model terms in the
count model based on a 5 km buffer

s(lat, lon) is the smoothed model term representing location (latitude and
longitude), s(water) is the term representing distance fromwater sources, and
AC1, AC3, AC4, AC5, CH1, EU1, HU1 and HU3 are parametric terms
representing vegetation classes (see Table 2). The model had un-biased risk
estimator un-biased risk estimator (UBRE) score of 1.470. The parametric
terms EU1 and HU1 were included in the model since they were correlated
with other model covariates and deleting them resulted in a higher UBRE score

Model terms Df/edf Chi-square P-value

s(lat, lon) 172.0 283.75 1.58e-07
s(water) 8.66 36.96 2.03e-05
AC1 1 2.497 0.11403
AC3 1 10.654 0.00110
AC4 1 5.796 0.01607
AC5 1 7.018 0.00807
CH1 1 6.763 0.00931
EU1 1 1.042 0.30745
HU1 1 2.446 0.11786
HU3 1 7.308 0.00686

Aerial survey extent

Abundance

Boundary

High

Medium
Low

Fig. 5. Predicted abundance of camels based on a 1 km buffer around sample locations. The extent
of the aerial survey conducted in 2001 by Edwards et al. (2004) is also shown on the map.
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Territory andmay indicatewhy camels have been so successful in
this region.

Evaluation of predictive performance

The AUC values for the 1 and 5 km buffers were 0.77 and 0.79,
respectively. The slightly higher value for the 5 km buffer model
indicates slightly better cross-validation agreement between the
predicted and observed presence-absence data, but this difference
is still small. Following the classification described by Hosmer
and Lemeshow (2000) the level of predictive ability for these
models is ‘acceptable’, but keeping in mind that values greater
than 0.8 are ‘excellent’ the models are at the right end of
‘acceptable’.

Areas of importance

Given that suitable habitats for camels arewidespread in southern
Northern Territory it is not surprising that there are substantial
areas of natural and indigenous significance that are at risk.

Of particular concern is the south-eastern region that includes
the Simpson Desert (Figs 7, 8). This is a large area of natural
significance that contains large regions of suitable habitat for
camels. Fortuitously, the region does not include many hotspots
of predicted high abundance. Nevertheless, given the logistical
difficulties controlling camels in remote locations it will probably
be difficult to manage camels in this region. Areas of significance
that coincide with hotspots in the south-west include Lake
Amadeus, Watarrka (Kings Canyon) National Park, the George
Gill Range and Finke Gorge National Park.

Discussion

The predicted habitat suitability surfaces indicate that highly
suitable habitats for camels are widespread across southern
Northern Territory. However, with the exception of the south-
west region, these areas did not have very high numbers of camels
in 2001 (Edwards et al. 2004). It may be difficult to limit the
immigration of camels following control operations owing to

Aerial survey extent

Abundance

Boundary

High

Medium

Low

Fig. 6. Predicted abundance of camels based on a 5 km buffer around sample locations. The extent of
the aerial survey conducted in 2001 by Edwards et al. (2004) is also shown on the map.
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their ability to move quickly over large distances (Grigg et al.
1995; Edwards et al. 2001; Saalfeld and Edwards 2008) and
the widespread availability of suitable habitat in southern
Northern Territory. However, the predicted suitability and
abundance surfaces are based on surveys that had low sampling
intensity and camels were at low density. This combination
may have conspired to provide a deceptive picture of camel
distribution.

Discrepancies between predicted habitat suitability and
abundance and observed distribution may be due to the fact that
camels are not near carrying capacity in the Northern Territory.
Camel populations are still growing at, or close to, theirmaximum
rate (Pople and McLeod 2010) and it may take many more years
until some type of equilibrium is reached between camel
abundance and the environment. Even at low density, camels can
have damaging impacts and holding the long-term density to the
recommended level of 0.1–0.2 camels/km2 (Edwards et al. 2008)
will pose a difficult challenge. Given the large areas of suitable
habitat for camels, planning of management will be hindered
without more up-to-date information regarding their current
distribution and abundance.

Errors in either the model, such as important covariates not
being included, or data, such as misidentification of true absence,
can lead to prediction errors (Fielding and Bell 1997; Barry and
Elith 2006). For example, normalised difference vegetation index
(NDVI), which measures live green vegetation (Schowengerdt
2007), has been used as a proxy for plant productivity and habitat
quality of ungulates (e.g. Verlinden andMasogo 1997; Pettorelli
et al. 2006) and birds (e.g. Osborne et al. 2001). Green vegetation
may be an important influence on the distribution of camels that
are able tomove large distances in search of food (Iqbal andKhan
2001).Unfortunately,wewereunable toobtainNDVI for the time
of the aerial survey. The models presented in this paper make
specific predictions regarding the suitability of habitat and
relative abundance of camels in theNorthern Territory at the time
of the survey in 2001. It would be timely to conduct additional
surveys todetermine current camel density in specifichabitats and
validate this model and collect data on other co-variates, such as
NDVI, which may be important predictors of camel distribution
and abundance.

Latitude and longitude were important predictors of camel
habitat association and abundance. It is very unlikely that location

Register of National Estate

Habitat suitability

Historic

High

Medium

Low

Indigenous

Natural

Fig. 7. Overlap between areas of significance on the Register of National Estate and camel habitat
suitability based on a 1 km buffer around sample locations.
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per se would be an important determinant of habitat association.
Rather, location is likely to be correlatedwith important variables
that influence habitat suitability. Although we examined a range
of climate variables likely to be correlated with latitude
and longitude, none were significantly related to the observed
distribution of camels. This result highlights our general lack of
knowledge regarding the ecology of wild camels in Australia.
Increased knowledge of the most important factors influencing
their rate of increase are likely to provide a much more focused
method of selecting variables that influence distribution. It will
also lead to greater generality of the predictions of the models.

Until more information regarding the physiology and ecology
of camels becomes available and we can make predictions
without the use of explicit spatial variables, such as latitude and
longitude, there remains a caveat on the predictions: the model’s
predictions outside of surveyed areas are unreliable. However,
within surveyed areas the predictions of the model were robust to
cross-validation and can be considered to be valid.

There have been suggestions that commercial use of camels
may be a useful form of control (Zeng and McGregor 2008).

However, commercial use of wildlife requires infrastructure for
harvested animals to be held, handled and transported from often
remotefield locations. In addition, the profitability of commercial
enterprises is improved by camels being at high density. The
analysis of habitat suitability and relative abundance indicated
that many suitable habitats and areas of potentially high relative
abundance are large distances from the necessary infrastructure,
such as roads and population centres. The models of relative
abundance predict that camels will occur at low density across
most of southern Northern Territory. In combination, these
factors are likely to reduce profitability and might make
commercial use nonviable in many areas.

The management of camels in Central Australia poses unique
problems, the solutions to which are not clear. Camels can have
large impacts even when they are at low density (Edwards et al.
2008) and they are difficult and costly tomanage (Drucker 2008).
The habitat suitability maps derived in the present study indicate
that camels have suitable habitat in most areas of southern
Northern Territory. Maps of suitable habitats and abundance can
play a major role in strategic approach to managing camels and

Register of National Estate

Habitat suitability

Historic

High

Medium

Low

Indigenous

Natural

Fig. 8. Overlap between areas of significance on the Register of National Estate and camel habitat
suitability based on a 5 km buffer around sample locations.
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their impacts. However, to maximise their usefulness we need
better information on the ecologyof camels so that thesemaps can
be refined and generalised.
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