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Abstract Genetic resistance to the parasitic root-
lesion nematode, Pratylenchus thornei, is one of
the main management strategies cereal growers can
use to minimise the impact of nematodes on winter
cereal cropping. Screening of genotypes in the pres-
ence of P. thornei populations must provide reliable
resistance measures that are realised under field con-
ditions. Adoption of the latest statistical methodolo-
gies can help to better differentiate between resistant
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and susceptible genotypes. In this study, post-harvest
P. thornei population densities were measured from
a collection of 17 field experiments, with varying
starting P. thornei population densities, conducted
between 2011 and 2018 in locations across the
northern grain growing region of eastern Australia.
The experiments primarily consisted of wheat geno-
types. The post-harvest P. thornei population densi-
ties were analysed across multiple environments in a
linear mixed model framework, with a factor analytic
structure used to model genotype by environment (G
X E) interaction effects exclusively for wheat geno-
types. In general, genetic correlations between envi-
ronments were found to be high, indicating limited
G X E interaction for resistance to P. thornei. Post-
processing of results using the factor analytic selec-
tion tools (FAST) method provided a measure of the
overall performance for each wheat genotype, as well
as a stability measure reflecting the consistency of
the resistance status across environments. The FAST
method quantified genotype resistance on a continu-
ous scale, better reflecting the nature of genetic resist-
ance based on a quantitative variable such as nema-
tode population density, and provided a statistically
robust and informative means of aiding selection
decisions for resistance to P. thornei.

Keywords Root-lesion nematode - Multi-
environment trial - Genotype by environment
interaction - Genetic resistance - Genetic correlation -
Triticum aestivum
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Abbreviations

AIC Akaike information criterion

CE Controlled environment

eBLUP Empirical best linear unbiased prediction

eBLUE Empirical best linear unbiased estimate
FA Factor analytic

FAST  Factor analytic selection tools

GXE  Genotype by environment

LMM  Linear mixed model

MET Multi-environment trial

NVT National Variety Trials

OP Overall performance

gPCR  Quantitative polymerase chain reaction
RLN Root-lesion nematode

RMSD Root mean square deviation
Introduction

Root-lesion nematodes (RLNs) are soilborne migra-
tory endoparasites that penetrate plant roots and inter-
cept the flow of water and nutrients into the plant,
causing a subsequent negative effect on plant health
and grain yield (Trudgill 1991). In favourable con-
ditions, the ability of RLNs to reproduce more than
once in a growing season allows population densities
to rapidly increase (Reeves et al. 2020). The rate at
which RLN population densities increase differs sub-
stantially between plant hosts, depending on their
susceptibility or resistance to the RLN species (Jones
and Fosu-Nyarko 2014; Owen et al. 2014; Thompson
et al. 2008; Vanstone et al. 2008).

Root-lesion nematodes are found across the grain
growing regions of Australia (Thompson et al. 2008;
Vanstone et al. 2008). In the subtropical, northern
grain growing region of eastern Australia (from lati-
tudes of approximately -23.53°N to approximately
-32.25°N), the most common species of RLN is
Pratylenchus thornei (Thompson et al. 2010). The
dominant winter cereal crops grown in the region
include bread wheat (Triticum aestivum), durum
wheat (Triticum durum) and barley (Hordeum vul-
gare), which are all known hosts of P. thornei.

Resistant genotypes of these crops are grown to
control P. thornei population density increases (Fan-
ning et al. 2018; Owen et al. 2014). Genotypes toler-
ant to P. thornei will maintain grain yield despite the
presence of potentially damaging population densi-
ties of the nematode in the soil, but may still allow
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population densities to increase (Fanning et al. 2020;
Trudgill 1991). Genetic diversity for both resistance
and tolerance is evident within the winter cereal crops
grown in the region. Resistant genotypes offer an
effective management option for controlling nema-
tode populations (Fanning et al. 2018; Owen et al.
2014; Reeves et al. 2020; Robinson et al. 2019), while
tolerant genotypes ensure continued crop production
in the presence of higher population densities.

There are multiple rigorous and repeatable meth-
ods of quantifying P. thornei population densities
from soil samples. Since the late 1990s, molecu-
lar polymerase chain reaction (PCR) based meth-
ods have been developed to quantify a wide range
of soilborne pathogen populations more accurately
and quickly (Seesao et al. 2017). A method widely
adopted in Australia is the PreDicta® B testing ser-
vice, which uses quantitative PCR (qPCR) to estimate
the total amount of P. thornei DNA detected in a soil
sample via a DNA extraction system (Ophel-Keller
et al. 2008). The service is used routinely in research
experiments to quantify levels of a pathogen/s follow-
ing the application of experimental treatments, and is
particularly useful for resistance screening of geno-
types for soilborne pathogens such as P. thornei (Fan-
ning et al. 2018; Reeves et al. 2020). It is known that
P. thornei resistance is fundamentally continuous in
nature, due to the polygenic and subsequently quan-
titative nature of the trait (Trudgill 1991; Zwart et al.
2004). As such, the measurement using qPCR (e.g.
PreDicta® B) of a continuous trait such as P. thornei
population densities is well suited to the investigation
of the continuum of P. thornei resistance.

In a research setting, resistance testing of geno-
types to soilborne pathogens can be performed
either in controlled environment (CE) experiments
or in field experiments. In the case of RLNs, and in
particular P. thornei, resistance testing under CE
conditions is well developed (Sheedy et al. 2015;
Thompson et al. 2020). One advantage of controlled
conditions is that a consistent number of P. thornei
can be added to the soil (Sheedy et al. 2015; Thomp-
son et al. 1999), providing uniform P. thornei densi-
ties across all the experiment. However, it is also
important to conduct resistance testing in the field,
as the resistance status of genotypes must be realised
under field conditions, where environmental factors
may vary (Fanning et al. 2018). While field experi-
ments provide natural growing conditions for both
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the crop and the nematode populations, the pathogen
populations in the soil cannot be managed to be as
uniform as in CE experiments.

Currently, the routine screening of Australian com-
mercial and soon to be released bread wheat geno-
types for resistance to P. thornei is primarily under-
taken using CE experiments (Thompson et al. 2020).
Nonetheless, multiple studies exploring the resist-
ance of genotypes to P. thornei have also been per-
formed using field-based experiments (Fanning et al.
2018; Owen et al. 2014), while others have explored
the consistency of genetic resistance between CE and
field-based experiments (Rodda et al. 2016; Thomp-
son et al. 2020).

In the field, it is important to quantify genetic
resistance under different environmental conditions
through a series of experiments conducted across dif-
ferent locations and years, where the combined exper-
iments form a multi-environment trial (MET) series.
Statistical methods for the analysis of MET datasets
are well-documented and are commonly formulated
in a linear mixed model (LMM) framework (Smith
et al. 2005). The LMM framework is powerful, as it
enables the modelling of genotype by environment (G
X E) interaction effects while allowing for appropriate
modelling of experimental design effects and spatial
effects for each experiment (Cullis et al. 2010; Smith
et al. 2001). The factor analytic (FA) variance struc-
ture has been widely used to model GXE interaction
and has been shown to provide accurate MET analy-
sis results for grain yield (Kelly et al. 2007), and more
recently for RLN resistance (Fanning et al. 2018;
Thompson et al. 2020).

The development of the factor analytic selec-
tion tools (FAST) post-processing methodology has
improved the interpretability of the FA model out-
puts. The FAST method summarises the G X E inter-
action pattern using the FA regression parameters
to form measures of overall genotype performance
and stability (Smith and Cullis 2018). To the best
knowledge of the authors, there have been no pre-
vious reports of the FAST method being applied to
MET datasets with the aim of determining genetic
resistance to P. thornei, or RLNs in general; rather,
this method is primarily designed for use within crop
improvement programs (Cocks et al. 2019; Harris
et al. 2019; Sjoberg et al. 2021). The FAST method
has the potential to provide two simple metrics for the
quantification and selection of genetic resistance to P.

thornei, which retain important information regarding
the continuous nature of overall performance and sta-
bility of genotypes.

In previous P. thornei CE experiments, it has been
found that resistance rankings of bread wheat geno-
types are quite stable across multiple experiments,
due to a distinct lack of interaction in post-harvest P.
thornei densities for genotypes across experiments
(Sheedy et al. 2015; Thompson et al. 2011, 2020). In
addition, minimal G X E interaction in P. thornei pop-
ulation densities was previously reported from a set
of field experiments conducted in southern Australia
(Fanning et al. 2018). Similar field-based results from
the testing of post-harvest P. thornei densities, across
multiple field experiments in differing locations and
years, has not yet been reported in the subtropical
northern grain growing region of eastern Australia.

This study presents results from a MET analysis of
post-harvest P. thornei population densities to quan-
tify the genetic resistance of bread wheat genotypes
to P. thornei in the subtropical northern grain grow-
ing region of eastern Australia. The aims of this study
are to (i) explore genetic resistance to P. thornei of
a set of bread wheat genotypes tested across multiple
field experiments in the target environment, and (ii)
demonstrate the novel application of the FAST post-
processing methodology in the context of P. thornei
resistance. The outputs from the FAST method aid
genetic selection for resistance to P. thornei, provid-
ing metrics that respect the continuum of resistance.
The analysis approach, coupled with the FAST post-
processing methodology presented in this research,
can potentially be applied to any RLN and/or crop
species.

Materials and methods
Characterisation of experimental sites

The MET data comprised 17 field experiments con-
ducted between 2011 and 2018, with experimen-
tal locations spread geographically from southern
Queensland to central New South Wales. Characteris-
tics of each experiment including the soil type (Webb
et al. 1997), sowing and harvest dates, annual rainfall
for the year of the experiment and mean yield are
shown in Table 1. Also presented are the mean pre-
sowing and post-harvest P. thornei population densi-
ties, which from this point on will be referred to as
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‘initial’ and ‘final’ P. thornei population densities,
respectively.

The original research aims of these experiments
varied (Table 1). Eight experiments were conducted
under the National Variety Trials (NVT) testing sys-
tem (https:/nvt.grdc.com.au/), which primarily aims
to assess the yield potential of near to release and
commercial genotypes of the major Australian grain
crops in various agricultural regions across Australia.
In all eight of these experiments, only bread wheat
genotypes were tested and included in the MET anal-
ysis. A second subset of seven experiments aimed
to test genetic variation in the tolerance of cereal
genotypes to the soilborne disease crown rot, caused
by the fungal pathogen Fusarium pseudogramine-
arum. In each of these experiments, genotypes were
exposed to a high level of crown rot pathogen burden,
via inoculation with the pathogen at sowing (Dodman
and Wildermuth 1987; Forknall et al. 2019), versus
a control treatment with no applied inoculum. The
aim in experiment NA13 was to test the impact of dif-
ferential times of sowing (TOS) on genotype perfor-
mance, with bread wheat and durum wheat genotypes
sown at early, standard and late planting windows for
the region in which the experiment was conducted.
Another experiment, TU15, was designed to explore
the impact of TOS on the genetic tolerance of cereal
genotypes to crown rot, with genotypes exposed to
a high level of crown rot pathogen burden, versus a
control treatment, at two different planting times. A
common characteristic of all experiments is the iden-
tification of significant initial P. thornei densities in
bulk soil sampling prior to, or at sowing, as part of
the site characterisation process, and the subsequent
measurement of final P. thornei densities at the plot
level, for assessing genetic resistance to P. thornei
using qPCR (Table 1). The exception to this was
experiment BE14, where P. thornei population den-
sity measurements were only conducted for the bread
wheat genotypes and plots to which the control treat-
ment (no applied crown rot inoculum) was allocated.

Experimental designs

Details of the experimental dimensions and param-
eters are given in Table 2. The NVT experiments
included in the MET dataset were arranged according
to randomised complete block designs, with blocking
in two directions often implemented using the design

package DiGGer (Coombes 2019). Experiment
NA13 was arranged according to a split plot design,
with the TOS treatments randomly allocated to main
plots within replicate blocks, and the genotypes ran-
domly allocated to sub plots within each main plot.
The crown rot tolerance experiments (Table 1) were
arranged according to randomised complete block
designs, with the combinations of crown rot inocu-
lum treatments and genotypes randomly allocated to
plots within replicate blocks. The TOS by crown rot
experiment, TU15, was arranged according to a split
plot design, with the TOS treatments randomly allo-
cated to main plots within replicate blocks, and the
combinations of crown rot inoculum treatments and
genotypes randomly allocated to sub plots within
each main plot.

Experimental material

The genotypes tested were mostly bread wheats, with
some additional barley and durum wheat genotypes
included in approximately half of the experiments
(Table 2). The investigation of G X E interaction
effects for the barley and durum crop types was not a
priority in this MET analysis. This was because there
were relatively low numbers of barley and durum gen-
otypes tested in most experiments (with the exception
of the 24 barley genotypes tested in TU15 (Table 2)),
and there was low concurrence of genotypes belong-
ing to these crop types between experiments. The
bread wheat genotype concurrence between experi-
ments is presented in Appendix Table 6. The num-
ber of unique bread wheat genotypes present in each
experiment (at least 12), as well as the concurrence of
bread wheat genotypes between experiments (at least
four, except between MN15E and MN15M), enabled
a robust assessment of bread wheat G X E interaction
effects for final P. thornei population densities.

Measurement of P. thornei populations

Initial P. thornei population densities were measured
for each experiment as part of the site characterisa-
tion process. Between 20 and 30 soil cores (either
0-15 cm or 0-30 cm soil depth) were taken per repli-
cate block, at sowing. Final P. thornei population den-
sities were measured within zero to 60 days post-har-
vest, depending on adequate soil moisture to allow for
collection of field samples. Between eight and 20 soil
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Table 2 Summary of details regarding the experimental
design and treatments for each of the 17 experiments in the
multi-environment trial dataset used to study the resistance of

bread wheat genotypes to Pratylenchus thornei, where treat-
ment combinations in the 17 experiments resulted in 28 differ-
ent environments for genotype assessment

ExpID'  EnvID* Experimental Design Type No. plots No. reps No. bread No. barley No. durum
wheat geno-  genotypes wheat
types genotypes

TRI11 TRI11 Randomised complete block 54 3 18 0 0

BUI12 BUI2 Randomised complete block 159 3 53 0 0

NS12 NS12 Randomised complete block 188 4 47 0 0

NAI13 NAI13TOS1 Split plot design ' 216 3 17 0 7

NAI13TOS2
NA13TOS3*

WO13  WOI3 Randomised complete block 126 3 38% 0 0

BE14 BE14-UT Randomised complete block 64 4 15 0 1

COol14 Ccol14 Randomised complete block 114 3 37% 0 0

WO14 WwO14 Randomised complete block 102 3 34 0 0

MA15 MA15-U, MA15-1T Randomised complete block 96 3 13 2 1

MNISE? MNISE Randomised complete block 96 4 24 0 0

MNI15M% MNI15M Randomised complete block 144 4 36 0 0

TU15 TU15TOS1-U Split plot design ¥ 576 3 19 24 5

TUISTOS1-1
TUI5TOS2-U
TU15TOS2-T*1

WO15 WO15-U, WO15-1 Randomised complete block 96 3 13 2 1

BUI16 BU16-U, BU16-1 Randomised complete block 120 3 13 4 3

WEI16 WE16-U, WE16-1 Randomised complete block 120 3 13 4 3

RO17 RO17-U, RO17-1 Randomised complete block 120 3 12 4 4

WO18 WO18-U, WO18-1 Randomised complete block 120 3 16 0 4

TExpID, the unique experiment identifier

*EnvID, the unique environment identifier, determined from ExpID and the applied crown rot and/or time of sowing treatments in
each experiment

$The trailing capital letters E and M indicate early and main sowing timing, respectively

#The trailing labels of TOS1, TOS2, etc. uniquely define environments within the experiment according to different times of sowing

IThe trailing labels of -U and -I uniquely define environments within the experiment according to crown rot treatments (uninoculated
and inoculated, respectively)

" Times of sowing randomly allocated to main plots; genotypes randomly allocated to sub plots within main plots

#Times of sowing randomly allocated to main plots; combinations of crown rot inoculum and genotype randomly allocated to sub
plots within main plots

$%0One or more of the bread wheat genotypes in these trials occurred twice per replicate, leading to an inflated number of total plots
relative to the number of unique bread wheat genotypes

cores were taken from each plot (either 0—15 cm or
0-30 cm soil depth). The final soil samples were then
combined within each plot to provide one sample per
plot for testing. The PreDicta® B method was used
to extract and quantify the concentration of P. thor-
nei DNA in the soil samples using qPCR. This con-
centration was converted to a population density of P.

thornei (P. thornei/g soil) using a standard conversion
based on soil type (Ophel-Keller et al. 2008).

Statistical methods
The final P. thornei population densities per gram of

soil were analysed in a LMM framework. A square
root transformation of the raw data was necessary

@ Springer
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to satisfy the model assumptions of normality and
homogeneity of variance across the range of fitted
values. Heterogeneity of variance was over-corrected
by a natural logarithm transformation, thus the square
root transformation was favoured (Welham et al.
2014).

In this study, the term ‘environment’ was defined
as the unique condition under which multiple geno-
types were tested. The treatment levels for different
times of sowing or different crown rot inoculum lev-
els were concatenated with experimental location to
define a specific environment, resulting in 28 unique
environments (see EnvID in Table 2). The LMM for
the MET data included fixed effects for crop type,
experiment and their interaction. Design effects were
included as random effects in the model, and spatial
effects were modelled on an experiment basis (see
ExpID in Table 2), following the methods of Gilmour
et al. (1997). Heterogeneity of residual variance was
accounted for at an experiment level. The random G
X E interaction effects were modelled on an environ-
ment basis, rather than on an experiment basis. Three
variance structures were used to separately model
the genetic effects for each of the three different crop
types across environments. Random terms for both
barley and durum genotype effects were fitted, as well
as corresponding terms for the interactions between
these and the environments that they were tested in,
using a simple variance component model (Patterson
et al. 1977).

An FA model was fitted to the G X E interaction
effects for bread wheat (Smith et al. 2001). The FA
model consists of an underlying regression frame-
work for the G X E interaction effects based on a
multiplicative combination of (environment) load-
ings by (genotype) scores. The factor loadings were
rotated according to a varimax rotation (Smith et al.
2001). The percentage of repeatable G X E variance
accounted for by each factor (or by the multiplicative
part of the FA model) is denoted as % VAF.

The genetic variance models for the barley and
durum crop types were kept relatively simple due
to the low number of genotypes of these crop types
appearing in some experiments, and low genotype
concurrence between environments. A variance
structure with homogeneous genetic variance across
environments and homogeneous covariance between
environments was found to be most parsimonious for
these crop types. All further reference to outputs from

the fitting of FA models and mention of genetic or G
X E variation corresponds to that of the bread wheat
crop type alone.

Factor analytic models of increasing order
(denoted by FAk, where k corresponds to the order
of model fitted) were iteratively fitted to the G X E
interaction effects. The most appropriate order of
FA model was selected based upon the agreement
of both the residual maximum likelihood ratio test
(Stram and Lee 1994) and the Akaike Information
Criterion (AIC) (Akaike 1973), with a decision based
on the AIC favoured when the selection criteria indi-
cated different models. Empirical best linear unbi-
ased predictions (eBLUPs) were generated from the
final model for the random G X E interaction effects.
Empirical best linear unbiased estimates (eBLUEs)
were generated for the environment by crop type
interaction (fixed) effects and variance components
were estimated using residual maximum likelihood
(Patterson and Thompson 1971). All models were fit-
ted using the ASReml-R package (Butler et al. 2018),
in the R computing environment (R Core Team
2020).

Outputs from the FA model can be complex and
challenging to interpret without robust post-process-
ing tools. The FAST method (Smith and Cullis 2018)
allows for the regression implicit in the FA model to
be summarised with two key results, namely the over-
all performance (OP) and the stability of each geno-
type in its responses to differing environments. The
OP of a genotype is calculated as the mean of the
rotated estimated loadings for the first factor, mul-
tiplied by the rotated score, also for the first factor,
for that genotype. The interpretation of this result as
the overall, or average, performance of a genotype
is predicated on the fact that (after factor rotation)
the first factor of the FA model explains the major-
ity of the repeatable G X E variation. If all the envi-
ronmental loadings for the first factor are positive,
then an assumption can be made that the first factor
represents non-crossover G X E interaction variation
(Smith and Cullis 2018). Often, this coincides with
a relatively high correlation between the first factor
loadings and the mean of the response variable for
each environment (Smith et al. 2015).

Following from this interpretation of OP, subse-
quent factors capture the remaining repeatable G X
E variation and are indicative of stability in the OP
measure of a genotype. If a relatively large proportion
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of the repeatable G X E variability for a genotype is
accounted for by multiple factors, then its OP meas-
ure is likely to be less stable. The root mean square
deviation (RMSD) of a genotype can be interpreted as
its overall stability, with further details given in Smith
and Cullis (2018). The FAST method therefore pro-
duces two meaningful measures, OP and RMSD, that
can directly contribute to the quantification and selec-
tion of genotypes for resistance to P. thornei across
multiple environments.

In the context of P. thornei resistance, the OP met-
ric can be used to provide a continuum of genetic
resistance, along which genotypes that comprised
the MET dataset can be individually ranked. This OP
continuum allows for a relative comparison of the
resistances of all genotypes. Additionally, it allows
for head-to-head pairwise comparisons of genotypes
through testing the null hypothesis of equal OPs to
determine statistically significant differences in P.
thornei resistance (Welham et al. 2014). This head-
to-head testing requires standard errors of the OPs
(square root of the prediction error variance), which
can be estimated using the predict.asreml function of
ASReml-R (Butler et al. 2018).

The extent of G X E interaction can be further
investigated with a plot of the eBLUPs for a set of
genotypes of interest at each of the environments
(Smith et al. 2015). This allows visualisation of
consistency of eBLUP rankings between environ-
ments. Environments can be arranged according to
an agglomerative hierarchical clustering process
(Kaufman and Rousseeuw 2009) based on the genetic
correlations, to improve identification of crossover
trends between clusters of environments. Clustering
was performed in this study using the agnes package
(Maechler et al. 2019) in the R statistical computing
environment (R Core Team 2020).

Comparison of MET analysis results with industry
reporting guidelines

In Australia, information on the resistance of geno-
types to disease is delivered to industry using what
are referred to as resistance ratings (https://nvt.grdc.
com.au/nvt-disease-ratings). This resistance rating
system consists of nine discrete ordinal categories,
with genotypes given a rating ranging from what is
labelled as “resistant” to “very susceptible”. In the
case of resistance information related to P. thornei,
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ratings are defined by the equidistant division of the
range of predicted final P. thornei population densi-
ties for the genotypes, based on predictions from
a MET analysis (Thompson et al. 2020). Pratylen-
chus thornei resistance ratings for the genotypes that
comprised the MET dataset are presented in Appen-
dix Table 8, which have been collated from multi-
ple sources, including the NVT website (https://nvt.
grdc.com.au/nvt-disease-ratings), and regional crop
variety sowing guides (Albatross Rural Consulting
2019, 2020; Lush 2016; Matthews and McCaffery
2019; Matthews et al. 2016, 2017, 2018, 2020, 2021),
where data was retrieved on 13 January 2023. The
results from the MET analysis were compared with
the sourced resistance ratings for the genotypes that
comprised the MET dataset.

Results

The iterative process of fitting FA variance models to
the G X E interaction effects is outlined in Table 3. An
FA model of order 4 (FA4) was selected as the most
parsimonious model, as it was optimal according to
both the residual maximum likelihood ratio test and
the AIC (Table 3).

A summary of the parameters from the model fit-
ted to the MET dataset used to study the resistance
of bread wheat genotypes to P. thornei is presented
in Table 4. Three-quarters of the environments (21
out of 28) had greater genetic variance than residual
variance. All environments had positive loadings for
the first factor (Table 4), and all except three environ-
ments had 100% of their genetic variance explained
by all four factors (Appendix Table 7). The overall
%VAF by each factor was 79.39% for the first fac-
tor, 10.20% for the second factor, 7.33% for the third
factor and 2.54% for the fourth factor, resulting in
99.46% of the G X E interaction variation accounted
for by the multiplicative, or repeatable, part of the FA
model (Appendix Table 7). The correlation between
the predicted final P. thornei densities for each envi-
ronment and the first factor loadings (Table 4) was
0.85.

The genetic correlations between environments
in the MET analysis are presented as a heatmap in
Fig. 1. The environments included in the MET analy-
sis were generally highly correlated in terms of final
P. thornei population densities, with almost 80% of
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Table 3 Summary of factor analytic (FA) models of increas-
ing order (denoted by FAk, where k corresponds to the order
of model fitted) fitted to the random genotype by environment
(G X E) effects for bread wheat, in the analysis of the multi-
environment trial dataset used to study the resistance of bread
wheat genotypes to Pratylenchus thornei

Random G No. variance Log-likeli- ~ AIC*  Total

X E effects components’  hood %VAFS
model

FA1 106 —254.7 721 84
FA2 126 —228.1 708 89
FA3 144 —204.6 697 98
FA4* 165 —182.5 695 929

FAS 186 -167.4 707 100

The most parsimonious model is indicated by an asterisk and
related information is in bold text

"The number of variance components estimated, associated
with the random genetic, design and spatial effects in the
model

#AIC, Akaike Information Criterion (Akaike 1973)

STotal %VAF, the percentage of repeatable G x E variance
accounted for by all factors in the FA model fitted to the ran-
dom G X E effects for bread wheat

the pairwise genetic correlations between environ-
ments being greater than 0.5 (Fig. 1). The correlations
ranged from a minimum of —0.266 to a maximum of
0.991. Both environments in the WO18 experiment
displayed weak negative correlations with two other
environments (BU12 and NA13-TOS2) ranging from
—0.198 to —0.266. There were no other negative cor-
relations observed between any of the other pairs of
environments.

The positive loadings for all environments for the
first factor (Table 4) of the FA4 model fitted to the
G X E interaction effects indicated that the first fac-
tor represented non-crossover G X E interaction. This
enabled a comparison of individual genotypes using
the metrics of OP and RMSD (Fig. 2; data for Fig. 2
is supplied in Appendix Table 8).

The bread wheat genotype Strzelecki was the
genotype with the largest positive OP (Fig. 2). This
indicates that Strzelecki was the most susceptible
genotype to P. thornei, resulting in the highest final
P. thornei population density of the genotypes tested.
Conversely, the genotype Suntop had the largest
negative OP, meaning that it was the most resistant
genotype in terms of final P. thornei population den-
sity in the set of bread wheat genotypes tested. Both
Strzelecki and Suntop have moderately high RMSD

values, with a higher RMSD than approximately 79
and 66% of genotypes tested, respectively. These
high RMSD values indicate that Strzelecki and Sun-
top show moderate instability in their genetic resist-
ance across environments. The genotype Mitch had
the highest RMSD value of all the genotypes tested.
Although its OP was higher than the average, its sus-
ceptibility was quite unstable, demonstrating sensitiv-
ity to varying environmental conditions.

The eBLUPs of final P. thornei population density
for two selected subsets of genotypes are displayed for
each environment (Fig. 3), where the two subsets con-
tained genotypes with higher and lower stability of
resistance, respectively. Genotypes in the two subsets
displayed a wide range of predicted OPs, from —0.93
to 0.99 for the stable genotypes, and from —0.68 to
1.28 for the unstable genotypes. The figure provides
further insight into the stability of performance of
particular genotypes across particular environments,
where there was greater cross-over interaction for the
unstable genotypes between environments.

The current NVT resistance ratings (https:/nvt.
grdc.com.au/resources/disease-rating-definitions) are
compared with the continuous OP resistance statuses
obtained in this study (Fig. 4). The top facet of Fig. 4
shows the OPs of the commercial genotypes tested in
this MET dataset, where the bars have been coloured
according to the P. thornei resistance rating assigned by
the NVT resistance rating system (Appendix Table 8).
When genotypes are ordered in terms of their OP, there
is only marginal correspondence between the OPs and
the assigned NVT resistance ratings. The bottom facet of
Fig. 4 shows a similar plot, where bars are instead col-
oured by the head-to-head comparisons of each genotype
with a particular reference genotype, EGA Gregory. This
genotype was chosen for comparison, as it was tested in
the majority of environments and is also routinely used
as a standard check for P. thornei resistance in the north-
ern grain growing region of Australia by industry. These
comparisons allow quick identification of genotypes that
are predicted to be significantly more or less resistant to
P. thornei than the widely grown genotype EGA Greg-
ory, in terms of OP.

The key results of OP and RMSD can be condensed
into a simple lookup table presenting the head-to-head
comparisons of all commercial genotypes with three
“check genotypes”, which span the range of resistance
to P. thornei (Table 5). The genotypes used for compar-
ison for this MET dataset were Suntop (resistant), EGA
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Table 4 Summary of the parameters from the factor analytic
model of order 4 (FA4 model) fitted to the random genotype by
environment (G XE) effects for bread wheat in the analysis of

the multi-environment trial dataset used to study the resistance
of bread wheat genotypes to Pratylenchus thornei

ExpID’ EnvID' eBLUEs of sqrt-P. thornei final popu- Genetic Residual Factor 1 Factor 1% VAF*
lation density (sqrt(Pr)/g of soil)* variance® variance Loadings
TRI11 TR11 3.63 0.60 0.13 0.66 73.76
BU12 BUI2 6.93 1.89 1.83 0.88 41.28
NSI12 NS12 1.46 0.16 0.09 0.31 59.93
NAI13 NA13-TOSI 2.16 0.15 0.17 0.35 79.10
NA13-TOS2 2.13 0.08 0.16 33.09
NA13-TOS3 2.19 0.06 0.17 45.30
WO13 WO13 3.30 1.12 0.50 0.91 73.59
BE14 BE14-U* 4.83 2.59 1.51 1.48 84.26
CO14 CO14 3.17 0.65 0.25 0.78 92.90
WO14 WO14 1.45 0.36 0.09 0.55 85.69
MAI15 MA15-U 8.09 5.78 0.82 237 97.25
MA15-T# 7.66 5.64 2.29 93.00
MNISE!  MNISE 3.45 0.85 0.41 0.74 64.10
MN1sMT  MN15M 4.13 0.92 0.52 0.85 77.80
TU15 TU15-TOS1-U 3.51 1.14 0.30 1.00 87.97
TU15-TOS1-I 3.03 0.52 0.63 76.31
TU15-TOS2-U 226 0.27 0.31 35.90
TU15-TOS2-1"# 222 0.26 0.38 57.15
WOl5 WO15-U 2.51 0.60 0.13 0.64 67.47
WO15-1 2.73 0.92 0.84 75.95
BU16 BU16-U 2.92 0.11 0.26 0.16 23.06
BU16-I 3.07 0.43 0.32 24.40
WE16 WE16-U 2.36 0.24 0.15 0.44 82.28
WE16-1 2.07 0.08 0.21 53.12
RO17 RO17-U 3.58 0.65 0.28 0.79 96.97
RO17-1 3.48 0.55 0.67 81.98
WO18 WO18-U 3.97 0.63 0.17 0.42 28.58
WO18-1 3.83 0.61 0.45 33.29

TExpID, the unique experiment identifier. EnvID, the unique environment identifier

*eBLUE, empirical best linear unbiased estimates. Pt, Pratylenchus thornei

$<Genetic variance’ refers to the genetic variance of random G x E interaction effects for bread wheat

#%VAF, the percentage of repeatable genotype by environment (G X E) variance accounted for by a factor of the factor analytic

model fitted to the random G X E effects for bread wheat

IThe trailing capital letters E and M indicate early and main sowing times, respectively

""The trailing labels of TOS1, TOS2, etc. uniquely define environments within the experiment according to different times of sowing

HThe trailing labels of -U and -I uniquely define environments within the experiment according to crown rot treatments (uninocu-

lated and inoculated, respectively)

Gregory (average), and Strzelecki (susceptible). The
results are coloured by RMSD to give an indication of
stability of performance across environments. Table 5
is presented in a similar way to the current NVT sowing
guides, however with resistance ratings replaced with
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head-to-head comparisons to a set of check genotypes.
The information presented in Table 5 is subjective, and
the authors suggest careful consideration of check gen-
otypes, colour schemes, and other graphical tools when
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Fig. 1 Heatmap of genetic correlations between each pair of
environments (labelled “EnvID”, see Table 2 for details), for
the bread wheat genotypes tested in the analysis of the multi-
environment trial dataset used to study the resistance of bread
wheat genotypes to Pratylenchus thornei. Correlations range
between —1 and 1. A correlation of 1 between two environ-
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ments indicates a perfect match of genotype rankings with
respect to final P. thornei population densities; a correlation of
—1 indicates a complete reversal of genotype rankings, and a
correlation of 0 indicates no relationship between the genotype
rankings between environments
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Fig. 2 Overall performance (OP) for each of the 118 bread
wheat genotypes, plotted against their respective root mean
square deviation (RMSD), from the factor analytic selection
tools post-processing of the results from the analysis of the
multi-environment trial dataset used to study the resistance of
bread wheat genotypes to Pratylenchus thornei. The OP val-
ues are indicative of the overall resistance to P. thornei of a
genotype. Large positive values indicate increased susceptibil-

deciding how best to present the key information from
the MET analysis.

Discussion

Cereal growers aiming to identify genotypes resist-
ant to P. thornei require resistance information that
is relevant under field conditions and is also straight-
forward to interpret. The application of the FAST
method in this study has shown that it is an effective
tool for quantifying genetic resistance to P. thornei
in bread wheat genotypes through a MET analysis
of final P. thornei population densities. The results
provide a useful and practical summary of genetic
resistance in terms of OP and RMSD, thereby provid-
ing cereal growers with the information they need to

@ Springer

ity to P. thornei, while large negative values indicate increased
resistance, compared to the average performance of all geno-
types tested in the dataset. The RMSD values indicate the sta-
bility of the predicted OP values; the higher the RMSD, the
more unstable the resistance of a genotype. Genotypes of inter-
est have been labelled with grey text and indicated with grey
dots

make informed bread wheat genotype selection deci-
sions with respect to P. thornei resistance.

Comparison of the outputs of this study with both the
literature, and communications to industry

Genetic resistance to P. thornei is informed by final
P. thornei population densities, which are measured
on a continuous scale. Thus, it is proposed that com-
parisons and selections should be made between gen-
otypes on such a scale, rather than attempting to con-
vert resistances to a discrete rating scale. In the recent
literature on P. thornei resistance, analysis methods
employed in studies such as Sheedy et al. (2015),
Fanning et al. (2018) and Thompson et al. (2020) pro-
duced final P. thornei population densities predicted
for each genotype at the average environment, on a
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Fig. 3 Empirical best linear unbiased predictions (eBLUPs) of
the bread wheat genotype by environment (G X E) interaction
effects obtained from the analysis of post-harvest Pratylenchus
thornei population density for two subsets of bread wheat gen-
otypes, in each environment (EnvID) considered in the analysis
of the multi-environment trial dataset investigating the resist-
ance of bread wheat genotypes to P. thornei. The empirical
best linear unbiased estimates (eBLUEs) of the post-harvest
square root P. thornei population densities for each environ-
ment are given in parentheses following each EnvID label on
the horizontal axis. Larger black dots indicate that a genotype
was tested in that environment, while smaller grey dots indi-

continuous scale. Currently in Australia, through the
NVT testing system, these predictions are then con-
verted to a discrete rating scale based on nine equal
subranges (equidistant divisions) of the range of pre-
dictions, respective to each testing region of Australia
(Thompson et al. 2020). This conversion to discrete

cate that the genotype was not tested in that environment. The
two subsets of genotypes were selected to separate genotypes
with higher and lower stability of resistances, to enable visuali-
sation of this stability across environments. The eBLUPs of the
G X E interaction effects are presented as positive or negative
deviations from the mean for each environment. The horizontal
dashed line at zero denotes the overall mean for each environ-
ment. The environments are ordered along the horizontal axis
according to an agglomerative hierarchical clustering algo-
rithm (Kaufman and Rousseeuw 2009), such that environments
that have more similar genotype rankings are clustered together

rating scales is consistent with other conventions of
communicating genotype resistance information
internationally (Agriculture and Horticulture Devel-
opment Board 2021; Onofre et al. 2021). In creating
the discrete rating labels, the actual range of final
P. thornei population densities is obscured from
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Fig. 4 Graph of the overall performance (OP) values for each
of the commercial bread wheat genotypes considered in the
analysis of the multi-environment trial dataset used to study
the resistance of bread wheat genotypes to Pratylenchus thor-
nei. Error bars correspond to the standard error of the OPs.
Genotypes have been ordered from lowest to highest OP, with
a lower OP indicating greater resistance to P. thornei and a
higher OP indicating greater susceptibility to P. thornei. In
(a), the bars are coloured according to the P. thornei resistance
ratings that have been assigned by the National Variety Trial

interpretation. This might be taken to suggest that the
discrete rating labels are relatable from one analysis
to another, which is unlikely to be the case as both
environmental conditions and the set of genotypes
being tested are known to influence the range of final
P. thornei population densities. Thus, the provision
of resistance information on a continuous scale is
vital to the interpretation of genetic resistance to P.
thornei.
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EGA Bounty
Sunprime
LRPB Oryx
Sunvex
Buchanan
QAL2000
LRPB Gazelle
LRPB Lincoln
QALBIS

LRPB Crusader
Strzelecki

(NVT) testing system (Appendix Table 8). Of the nine possi-
ble categorical resistance ratings assigned by NVT, only seven
were observed in the set of genotypes considered. Resistance
rating definitions can be found here https://nvt.grdc.com.au/
resources/disease-rating-definitions. In (b), the bars are col-
oured according to whether or not they result in a significantly
different OP compared to a reference genotype, EGA Gregory.
The vertical red dashed line indicates the position of EGA
Gregory on the horizontal axis

The FAST post-processing methodology was well
suited in this study for summarising the important
findings from the FA model on a continuous scale
(Smith and Cullis 2018). Primarily, this was due to
the relatively low level of crossover G X E interaction,
along with the fact that all the loadings on the first
factor of the FA model were positive (Table 4), the
%VAF by the first factor was substantial (79.39%),
and additionally, there was a strong positive correla-
tion (0.85) between the first factor loadings and the
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Table 5 Summary table
condensing the overall out-
puts from the FAST post-
processing method for each
of the commercial bread
wheat genotypes considered
in the analysis of the multi-
environment trial dataset
used to study the resistance
of bread wheat genotypes to
Pratylenchus thornei, ena-
bling simple comparisons
between genotypes

Genotype

RMSD 02 04 06 08

Comparison to Comparison to

EGA Grego

Comparison to
Strzelecki

EGA Wedgetail
EGA Wylie
Ellison

Elmore CL Plus

LRPB Impala
LRPB Lancer
LRPB Lincoln
LRPB Merlin
LRPB Mustang
LRPB Orion
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Table 5 (continued)

Each genotype’s overall performance (OP) is compared with three check genotypes (Suntop, EGA Greg-

ory and Strzelecki) using head-to-head comparisons; the check genotypes spanned the range of resist-
ance to P. thornei according to their OPs. The results of the head-to-head comparisons are stated as+R
for “significantly more resistant”,+S for “significantly more susceptible’ or ns for “not significantly dif-
ferent” to the check genotype. The results of the head-to-head comparisons are colour-coded to indicate
the root mean square deviation (RMSD) of each genotype, where a darker RMSD indicates greater sta-
bility of performance across environments, and a lighter RMSD indicates lower stability of performance

across environments

eBLUEs of the square root final P. thornei population
densities for each environment. The use of the FAST
approach was an improvement over the post-process-
ing methods employed by Sheedy et al. (2015), Fan-
ning et al. (2018) and Thompson et al. (2020). This
is due to the appropriate separation of the factor that
accounts for non-crossover G X E interaction from
the remaining factors, facilitating separate calcula-
tions of the metrics of overall genotype performance
and stability (Smith and Cullis 2018). In this way,
the metric of overall performance is not clouded by
crossover G X E interaction, however limited that
crossover interaction may be, therefore more accu-
rately capturing the genotypes’ “inherent resistance”.
Additionally, it provided a widely applicable set of
metrics obtainable through the FAST method (OP
and RMSD) for informing P. thornei resistance.
Genotypes with high RMSD values (indicating
higher variability in performance across environ-
ments) can be investigated further, to provide infor-
mation on observed performance in individual envi-
ronments. This is necessary to give context to the OP
for these genotypes and allow growers to make more
informed decisions regarding genotype resistance
within particular environments. Graphical displays
where the zero-centred eBLUPs of the G X E inter-
action effects for each environment are plotted for
selected genotypes (such as Fig. 3), provide an intui-
tive way to visualise this variability in performance
(Smith et al. 2015). This visualisation provides a
practical tool by which to gauge the G X E interaction
of interest, by involving only genotypes which are
relevant to the decision being made. This approach
is an improvement over both the use of overall geno-
type predictions averaged across environments, and
the application of the discrete rating labels that are
the current industry standard in Australia, due to their
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lack of information about variation in performance
across environments.

In addition to overall inferences about P. thornei
resistance, the method implemented in this study
also facilitates specific genotype selections through
head-to-head statistical comparisons of genotypes
using their OPs. This is a key point of difference in
the implementation of the FAST method in this study,
compared to previous uses of the method where the
main aim is genetic selection for subsequent progres-
sion within a crop improvement program. In the tradi-
tional setting for the FAST method, a plot such as that
given in Fig. 2 provides all the necessary guidance
to inform selection decisions. However, in this set-
ting, where the aim is two-fold: (i) understanding the
resistance of genotypes in the population, and (ii) per-
forming head-to-head comparisons which determine
statistical significance of a difference in resistance
from one genotype to another, further exploration of
the OPs is warranted using an approach such as that
graphically illustrated by Fig. 4b.

This head-to-head comparison method is likely
better suited to genotype selection in the context of
commercial cropping, where selection for P. thornei
resistance is likely not the only aim, and genotype
selection may have already been narrowed to a hand-
ful of genotypes due to other selection criteria. The
current industry standard of using discrete resist-
ance rating labels for genotypes does not provide any
measure of uncertainty or variability, thereby render-
ing head-to-head comparisons using these discrete
labels potentially misleading (as shown in Fig. 4a).
In contrast, the head-to-head comparison method
detailed in this study retains transparency around the
confidence in the determination of the overall resist-
ance to P. thornei of any bread wheat genotype.

Using the head-to-head comparisons with check
genotypes, a simple lookup table which condenses



Euphytica (2024) 220:141

Page 17 0f 26 141

the key results from the FAST post-processing
methodology can be constructed (Table 5). In this
way, P. thornei resistance, and the stability of resist-
ance across environments, can be communicated
succinctly without having to rely on converting
results to a discrete rating scale. Given that OP is
a metric that is relative to the MET dataset under
consideration, it is more appropriate to summarise
resistance information by presenting key head-
to-head comparisons with check genotypes that
have been chosen to span the range of resistances
observed in the MET dataset. This reduces the ten-
dency for genotype resistance to be taken out of
context of the MET analysis at hand. It also allows
for uncertainty in cases where a particular genotype
has not received sufficient testing; in that case, a
genotype’s performance is more likely to be iden-
tified as not significantly different from that of the
check genotypes. Additionally, the colour-coding
of results based on RMSD indicates how reliable
the result is expected to be across all environments.
Lighter-coloured results suggest to the reader to be
more cautious with their selection of that genotype,
and perhaps investigate its resistance in particu-
lar environments further by using the information
in Fig. 3, for example. It is envisaged that Table 5
could be included in sowing guides, as an alterna-
tive to current resistance ratings.

Crown rot and time of sowing environmental
conditions

The repurposing of the experiments in the dataset
for the investigation of P. thornei resistance pro-
vided a valuable opportunity to investigate G X E
interaction between different environmental con-
ditions of interest within some of the field experi-
ments, namely the different crown rot and time of
sowing treatments (identified in Table 1). Most
of the environments inoculated with crown rot
recorded lower predicted mean final P. thornei
population densities than their corresponding uni-
noculated environments (Table 4). Despite this,
the ranking of bread wheat genotypes remained

similar between crown rot treatments (with corre-
lations from 0.79 to 0.99, Fig. 1). Conversely, the
differences in predicted mean final P. thornei pop-
ulation densities between different TOS changed
in nature between the two experiments where they
were tested (Table 4), and the genetic correlations
between different TOS were lower, although still
moderate (0.61-0.77, Fig. 1). This suggests that
TOS may affect both P. thornei population densities
and genetic resistance to P. thornei more than the
presence or absence of crown rot. A potential expla-
nation for this is the longer growth time afforded
to plants under the earlier TOS treatments, which
would allow the P. thornei more time to infest the
plant roots and multiply (Reeves et al. 2020) but
also result in different environmental conditions
during crop growth due to planting earlier in the
season (Hunt et al. 2019).

Recommendation for the comparison of resistance
testing between controlled environment and field
settings

Quantitative PCR testing can be used to meas-
ure P. thornei population densities in both field and
CE experiments (Fanning et al. 2018; Sheedy et al.
2015), making possible a comparison of genetic
resistance statuses between both types of experi-
ments. For a robust comparison to be made, data
from all experiments (both field and CE based)
should be jointly analysed in an LMM framework.
This was done appropriately in chickpeas (Cicer ari-
etinum) by Rodda et al. (2016), however their study
only included one CE experiment, limiting the con-
clusions that could be made about genetic resistance
more broadly. A more substantial balance of both
field and CE experiments was presented in the bread
wheat P. thornei resistance study by Thompson et al.
(2020), however their analysis approach only incorpo-
rated CE experiments in the LMM framework. Their
subsequent post-hoc approach to compare results
from the CE experiments with the field experiments
failed to account for different sources of variability
in the field, and to estimate robust genetic correla-
tions between the different environments. In order to
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effectively validate resistance statuses generated from
CE experiments with field results (or vice versa), a
suitable number of both types of experiments should
be conducted and the data combined together in the
one MET analysis using a LMM framework.

Conclusions

The MET analysis of final P. thornei population density
measurements from the replicated field experiments
in the dataset considered, along with the application
of the FAST post-processing methodology, respects
the continuous nature of genetic resistance to P. thor-
nei in bread wheat. The high level of consistency in
genotype performance observed across environments,
in terms of P. thornei resistance, was evident from the
relatively small proportion of crossover G X E interac-
tion detected, even between very different environmen-
tal conditions including TOS or background disease
interactions. This limited amount of crossover GxE
interaction lent itself to the application of the FAST
post-processing methodology, enabling a purpose-built
assessment of genotype performance which separates
the genotypes’ inherent resistance from their potential
interactions with different environmental conditions. In
practice, the results from the application of this meth-
odology will allow growers to assess the robustness of
their cereal genotype selections in the context of both
OP and stability of P. thornei resistance across environ-
ments, and to make head-to-head comparisons between
genotypes on a continuum of P. thornei resistance
status.
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Appendix Table 8 Overall performance (OP), standard Fig. 4, for each of the commercial genotypes included in the
errors of OP, and root mean square deviation (RMSD) relevant analysis of the multi-environment trial dataset investigating the
to Figs. 2 and 4, as well as additional information related to resistance of cereal genotypes to Pratylenchus thornei
Genotype Predicted OP Std Err OP RMSD Probability Probability Probability NVT NVT resistance
of difference  of difference  of differ- resistance  rating source
from Suntop  from EGA ence from rating
Gregory Strzelecki
Suntop —1.250 0.105 0253 NA 0 0 MRMS NVT'
LRPB Gaunt- —0.934 0.109 0446 0 0 0 MR Matthews et al.
let (2021)
LRPB Viking —0.927 0.107 0.077 0 0 0 MS Lush (2016)
Sunmate —0.831 0.110 0344 0 0 0 MRMS NVT
LRPB Lancer -0.772 0.106 0440 0 0 0 MS NVT
B53 -0.734 0.258 0.209  0.05 0.02 0 MS Matthews and
McCaffery
(2019)
RGT Accroc  —0.694 0.307 0.081 0.07 0.07 0 MSS NVT
Merinda —0.685 0.396 0.190 0.16 0.17 0 MSS Matthews et al.
(2017)
Beckom —0.683 0.115 0.765 0 0 0 MSS NVT
Suntime —0.635 0.158 0583 0 0 0 MRMS NVT
Kiora —0.588 0.304 0.113  0.03 0.14 0 MRMS Matthews et al.
(2020)
Bolac -0.583 0.403 0.146 0.1 0.28 0 MRMS Matthews et al.
(2018)
Gascoigne —-0.580 0.219 0259 0 0.04 0 No rating
Steel —0.509 0.231 0.127 0 0.11 0 MS Matthews et al.
(2017)
EGA Eagle-  —0.497 0.243 0.300 O 0.14 0 MS Albatross Rural
hawk Consulting
(2019)
Sunguard —0.482 0.102 0326 O 0 0 S Matthews et al.
(2020)
Tenfour -0.475 0.232 0.070 0 0.15 0 S Matthews et al.
(2021)
LRPB Merlin  —0.466 0.457 0.137  0.09 0.48 0 MS Matthews et al.
(2017)
EGA Wylie —0.466 0.232 0425 0 0.16 0 MSS Matthews et al.
(2018)
Hartog —0.462 0.404 0.105 0.05 0.43 0 MS Albatross Rural
Consulting
(2019)
Coolah -0422 0.121 0343 0 0.01 0 MS NVT
SF Ovalo —-0.397 0.307 0.046 0.01 0.41 0 MS Matthews et al.
(2016)
Cobalt -0.384 0.233 0352 0 0.3 0 No rating
LRPB Spitfire —0.380 0.105 0277 0 0.01 0 MS NVT
Livingston -0.322 0.166 0.111 0 0.26 0 MS Matthews et al.
(2020)
Sunzell -0.322 0.272 0.025 0 0.51 0 MS Matthews and
McCaffery
(2019)

@ Springer



Euphytica (2024) 220:141 Page 23 0of 26 141

Appendix Table 8 (continued)

Genotype Predicted OP Std Err OP RMSD  Probability Probability Probability NVT NVT resistance
of difference  of difference  of differ- resistance  rating source
from Suntop ~ from EGA ence from rating

Gregory Strzelecki
Jade —0.300 0.368 0.545 0.01 0.67 0 MS Matthews et al.
(2018)
DS Faraday —0.283 0.404 0.064 0.02 0.73 0 MSS NVT
Sunvale -0.261 0.164 0437 0 0.45 0 MSS Matthews et al.
(2020)
LRPB Hellfire —0.244 0.593 0.138  0.09 0.86 0 MSS NVT
Sunlamb -0.233 0.168 0284 0 0.56 0 MSS NVT
LRPB Flanker —0.220 0.107 0300 O 0.37 0 MSS NVT
Baxter -0.216 0.231 0478 0 0.74 0 MSS Albatross Rural
Consulting
(2019)

LRPB Dart —0.180 0.155 0273 0 0.79 0 MS Albatross Rural
Consulting
(2020)

Sunmax -0.171 0.464 0.040 0.02 0.95 0 MS NVT

EGA Gregory —0.140 0.101 0245 0 NA 0 MSS NVT

Condo -0.131 0.185 0208 O 0.96 0 MS NVT

Wallup —-0.029 0.231 0264 0 0.63 0 MRMS Matthews and

McCaffery
(2019)
Emu Rock —-0.018 0.584 0.010 0.04 0.84 0 S NVT
LRPB Reliant —0.017 0.150 0203 0 0.39 0 MSS NVT
Kennedy 0.052 0.404 0012 0 0.64 0 S Albatross Rural
Consulting
(2020)

Sunco 0.067 0.256 0.115 0 0.42 0 S Lush (2016)

Ventura 0.172 0.231 0408 0 0.18 0 MRMS Matthews et al.
(2016)

EGA Kidman 0.223 0.404 0.051 O 0.37 0 MSS Albatross Rural
Consulting
(2020)

LRPB Orion  0.227 0.394 0.086 0 0.36 0 MSS NVT

Ellison 0.239 0.394 0.153 0 0.34 0 S Matthews and
McCaffery
(2019)

EGA Wedg-  0.258 0.403 0.065 0 0.33 0 A NVT

etail

EGA Bounty  0.281 0.186 0.680 0 0.02 0 MSS Albatross Rural
Consulting
(2019)

Sunprime 0.313 0.594 0.186 0.01 0.45 0.01 S NVT

LRPB Oryx  0.373 0.594 0.222  0.01 0.39 0.01 MSS NVT

Sunvex 0.396 0.424 0403 0 0.21 0 MSS Matthews et al.

(2018)

Buchanan 0.429 0.404 0.097 0 0.16 0 MS Matthews and

McCaffery
(2019)
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Appendix Table 8 (continued)

Genotype Predicted OP Std Err OP RMSD  Probability Probability Probability NVT NVT resistance
of difference  of difference  of differ- resistance  rating source
from Suntop ~ from EGA ence from rating

Gregory Strzelecki

Giles 0.451 0.465 0.107 0 0.21 0 MSS Matthews et al.
(2016)

Yenda 0.519 0.586 0275 0 0.27 0.02 MSS Matthews et al.
(2020)

LRPB Mus-  0.610 0.216 0264 0 0 0 MSS NVT

tang

QAL2000 0.676 0.391 0.117 0 0.04 0.01 MS Matthews et al.
(2020)

LRPB Gazelle 0.678 0.391 0.186 0 0.04 0.01 S Matthews et al.
(2021)

Axe 0.743 0.403 0.186 0 0.03 0.01 MS Matthews et al.
(2016)

Clearfield Jnz  0.785 0.457 0264 0 0.05 0.02 S Matthews et al.
(2016)

Mitch 0.954 0.106 0.857 O 0 0 S NVT

LRPB Impala 0.992 0.192 0.103 0 0 0 S NVT

Janz 1.073 0.393 0227 0 0 0.05 S Matthews and

McCaffery
(2019)
Lang 1.089 0.404 0247 0 0 0.06 MSS Albatross Rural
Consulting
(2019)
Elmore CL 1.230 0.168 0467 0 0 0.02 S Matthews et al.
Plus (2021)
LRPB Lincoln 1.252 0.373 0418 0 0 0.1 SVS Matthews et al.
(2016)
QALBIS 1.259 0.403 0371 0 0 0.12 S Matthews et al.
(2020)
LRPB Cru- 1.282 0.190 0554 0 0 0.03 S Matthews and
sader McCaffery
(2019)
Strzelecki 2.070 0.333 0318 0 0 NA SVS Matthews and
McCaffery
(2019)

Genotypes are ordered from lowest to highest OP. National Variety Trial (NVT) resistance rating definitions can be found here:

https://nvt.grdc.com.au/resources/disease-rating-definitions

TNVT, the resistance rating was sourced from https://nvt.grdc.com.au/nvt-disease-ratings (data retrieved 13 January 2023)

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The
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