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ABSTRACT

Functional genomics is the systematic study of genome-wide effects
of gene expression on organism growth and development with the
ultimate aim of understanding how networks of genes influence traits.
Here, we use a dynamic biophysical cropping systems model (APSIM-
Sorg) to generate a state space of genotype performance based on
15 genes controlling four adaptive traits and then search this space
using a quantitative genetics model of a plant breeding program (QU-
GENE) to simulate recurrent selection. Complex epistatic and gene %
environment effects were generated for yield even though gene action
at the trait level had been defined as simple additive effects. Given
alternative breeding strategies that restricted either the cultivar matu-
rity type or the drought environment type, the positive (+) alleles
for 15 genes associated with the four adaptive traits were accumulated
at different rates over cycles of selection. While early maturing geno-
types were favored in the Severe-Terminal drought environment type,
late genotypes were favored in the Mild-Terminal and Midseason
drought environment types. In the Severe-Terminal environment,
there was an interaction of the stay-green (SG) trait with other ftraits:
Selection for + alleles of the SG genes was delayed until + alleles
for genes associated with the transpiration efficiency and osmotic
adjustment traits had been fixed. Given limitations in our current
understanding of trait interaction and genetic control, the results are
not conclusive. However, they demonstrate how the per se complexity
of gene X gene X environment interactions will challenge the applica-
tion of genomics and marker-assisted selection in crop improvement
for dryland adaptation.

HILE THIS PAPER FOCUSES on the simulation of plant

breeding programs from an understanding of gene
action, it is useful to begin with a description of how
connections between crop modeling, genomics (the un-
derstanding of how multiple genes function together),
and plant breeding are developing. Crop simulation
models have been used to integrate physiological under-
standing and evaluate alternative strategies of system
management to account for the soil, climate, and agro-
nomic technologies available. The principal objective of
a plant-breeding program is the generation and selection
of new gene combinations to create genotypes with trait
performance that is superior to current genotypes, with-
in the target population of environments (TPE) (Com-
stock, 1977). This objective applies equally to conven-
tional, molecular, and combined approaches.
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In quantitative genetics, computer simulation is com-
monly used to evaluate alternative plant breeding strate-
gies on the basis of stochastic descriptions of gene action
and interaction (e.g., Hospital et al., 1997; Podlich and
Cooper, 1998). Our aim is to demonstrate how linkages
between gene action and crop performance in dryland
environments can be investigated by combining the bio-
physical response simulation of the of crops to the mois-
ture environment with the quantitative genetics simula-
tion of plant breeding programs. A review of present
research will reveal that substantial resources are being
invested into the cellular and molecular basis for adapta-
tion to dry environments while plant breeding compa-
nies and public programs continue to make advances in
yield through conventional means. Exploitation of the
investment in the former requires the integration of
knowledge from agronomy and cellular, plant, and crop
physiology as well as plant breeding and quantitative
genetics. For those less familiar with the breeding and
quantitative genetics, there are some useful background
texts (e.g., Hallauer et al., 1988; Falconer and Mackay,
1996) in addition to Podlich and Cooper (1998) and
Chapman et al. (2002a).

In combining gene sequencing, gene cloning, and
plant transformation with biochemical and genome da-
tabases, scientists in private and public industry have
identified and constructed genes that control relatively
linear pathways like herbicide tolerance, disease resis-
tance, and product quality (Somerville and Somerville,
1999: Mazur et al., 1999). Molecular biology is beginning
to investigate the role of the other genes that relate to
adaptation to the abiotic environment. For these geno-
type—environment systems, thousands of genes interact
in complex ways to generate crop responses to the en-
vironment via mediation of responses over both short
time scales (e.g., cellular response to environment shocks
like frost) and long time scales (e.g., morphological
growth responses of crop development and morphol-
ogy). Some pathways for abiotic adaptation are compar-
atively straightforward, e.g., direct cellular tolerance of
salt stresses (see review by Hasegawa et al., 2000). How-
ever, it will be some time (>20 yr?) before we under-
stand how the interactions of developmental and signal-
ing genes control yield of crops as a function of responses
at the biochemical, cellular, plant, and canopy or crop
levels of organization. Until then, we need to deal with
adaptive traits at a more integrative level (i.e., traits
observable at the plant or crop level) while beginning

Abbreviations: G X E, genotype X environment; MET, multienviron-
ment trial; OA, osmotic adjustment; PH, flowering time; QTLs, quan-
titative trait loci; SG, stay-green; TE, transpiration efficiency; TPE,
target population of environments.
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to connect the tools and databases that are developing
in all of the research areas (molecular biology, plant
breeding, and plant and crop physiology) to understand
both the effects of genes on pathways and how these are
mediated in the responses of crops to the environment.
Complexity per se has become an area of serious re-
search (Gell-Mann, 1994), and the process of plant
breeding is an example of the challenges to be faced in
understanding the interactions of genes with each other
and with environments.

Simulation of Crop Response to Environment
and Gene Flow through Plant
Breeding Programs

Apart from the ability to accumulate large amounts
of gene and phenotype data, another innovation of the
information age in agriculture is the simulation of
growth processes and gene action (see papers in this
issue and Cooper et al., 2002a, 2002b; Hammer et al.,
2002). Yin et al. (2003) show that models can be parame-
terized using quantitative trait loci (QTLs) derived from
experiments of real near-isogenic lines to test alternative
ideotypes in a wider range of conditions than experi-
enced in the observed trial. Our intention is not to model
biochemical pathways per se (see Giersch, 2000, for
ideas on the current status of this work in plants) but
rather to model the trait effects at the crop level and
simulate near-isogenic lines for different combinations
of traits. As knowledge improves, there is the opportu-
nity to connect these traits to genes via simulation of
the transcriptome, proteome, and biochemical pathways
using models like GEPASI (Mendes and Kell, 1998).

Not all crop simulation models are suitable for use
in these genetic frameworks. Hammer (1998) revisited
the concept of emergent properties (de Wit and Penning
de Vries, 1983). This concept suggests that modelers
should attempt to define the rules that set the boundary
conditions for simulation processes rather than applying
a descriptive structure. The model needs to be able to
handle perturbations to any process and self-correct, as
do plants under hormonal control when growing in the
tield. This philosophy of parameterization and modeling
of the principles of response and feedbacks. cf. descrip-
tion of response. infers that models should be able to
express complex behavior of the type observed in the
field, even given simple operational rules at a functional
crop physiological level. The sorghum [Sorghum bicolor
(L.) Moench] crop module (APSIM-Sorg) within the
APSIM cropping systems model (McCown et al., 1996)
contains several deliberate parameterizations to address
genctic variation using a boundary conditions approach
(Hammer and Muchow, 1994; Hammer et al., 1999;
Chapman et al., 2002a). e.g.. the model employs a
switching method to estimate crop growth rate when
limited by either radiation or water (Chapman et al..
1993) to utilize our ability to characterize the crop level
efficiencies of radiation or water use for different ge-
notypes.

The QU-GENE simulation platform (Podlich and

Cooper, 1998) simulates the stochastic properties of
genes, genotypes, and environments in the operation of
plant breeding programs. It can model breeding pro-
grams as search strategies that seek higher peaks on the
adaptation landscape (genetic space) for a given geno-
type—environment system. Searches progress by creat-
ing, identifying, and selecting genotypes with improved
adaptation to the TPE. The rate at which a population
improves with selection is monitored by the change in
grain yield of successive cycles and in the changes in the
fixation (gene frequency) of both positive and negative
alleles related to this yield improvement. Statistical
analyses determine the effectiveness of searches in cre-
ating and finding superior combinations of alleles in the
simulated populations. The superior methods of recom-
bination and searching genetic space can then be consid-
ered for application in conventional plant breeding pro-
grams. The methods evaluated might include such things
as different methods of recombining genotypes and dif-
ferent levels of selection pressure (the proportion of
the population selected for recombination) as well as
improved statistical interpretations of adaptation.

In using QU-GENE to define the genetic space to be
searched, the actions of genes and their interactions with
other genes (epistasis) and with environments (gene X
environment interactions) are prescribed for different
crop traits, as are gene associations with molecular
markers. As in other genetic simulation studies (e.g..
Hospital et al.. 1997; Van Berloo and Stam, 1998), these
actions and interactions have normally been derived
from field experiments as stochastic parameters (esti-
mates of variance components and heritability) and
from direct knowledge of the allelic effects of genes on
traits, yicld, or both. Until now, in QU-GENE, as in
other genetic simulation models, there has been no di-
rect biophysical connection between the gene effects
associated with a trait and the yield phenotype of re-
sulting genotypes as modulated by abiotic environmen-
tal influences. Establishing this direct connection by
linking QU-GENE and APSIM enables direct defini-
tion of the actions of genes on traits so that epistatic
and genotype X environment (G X E) interactions for
yield are emergent properties of the dynamics of the
APSIM crop simulation model.

Improving the Efficiency of Plant Breeding
for Dryland Environments

Three areas suggested by Cooper et al. (2002a) in
which crop modeling could assist in assessing in silico
the multitude of options to improve the efficiency of
plant breeding are: (i) characterizing environments to
define the TPE, (ii) assessing the value of specific puta-
tive traits in improved plant types, and (iii) enhancing
integration of molecular genetic technologies. Hence,
plant breeders can pose questions that range from how
to better utilize field performance data to how knowl-
edge of gene action and/or function can be utilized for
selection in a complex TPE. For example, the sequence
of sample environments in Australia is extremely vari-
able among locations and scasons, such that the selec-
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tion pressures on germplasm are quite different to that
experienced when the sample environments are con-
stant (Podlich and Cooper, 1998), i.c.. in the 2 yr of
testing across six locations (typical for late-stage breed-
ing trials), the proportion of low-stress environments
sampled can range from O to 100% of the sample and
confound the ranking of cultivars where they have dif-
ferential adaptation to low- and high-stress environments
(Chapman et al., 2002a). Podlich and Cooper (1998)
showed that weighting the data from different environ-
ments by their expected frequency in the TPE can be
used to improve the efficiency of selection. Chapman et
al. (2000b) showed how models can assist in achieving
Option i, which can then be used in the weighted selection
approach of Podlich and Cooper (1998), while other pa-
pers in this issue also consider Option ii (Asseng et al.,
2003; Yin et al., 2003) and Option iii (Yin et al., 2003).

Genomic type projects being initiated in the area of
adaptation to drought or other abiotic stresses are
largely focused on traits observed at the molecular and
cellular levels, such as membrane stability or modified
ion exchange and/or exclusion, e.g., Hasegawa et al.
(2000). While these cellular traits may be essential in
plant survival and, in some cases, contribute to economic
yield, adaptation to variable rainfall environments is
greatly mediated by traits observed at the crop level
that influence the seasonal pattern and total water use
of the crop, such as flowering time (PH), canopy transpi-
ration efficiency (TE), leaf development and senes-
cence, and repartitioning of dry matter. Richards and
Belhassen (1996) have discussed examples of these ef-
fects for the adaptation of wheat (7riticum aestivium L.)
to dryland environments. To a great extent, adaptation
to drought as exploited through plant breeding has re-
sulted from modifications of the normal process of
growth and development (e.g., to change the pattern
of water use), rather than the introduction of strong
localized reactions of novel genes to a stress.

The objectives of this paper are to first demonstrate
the simulation of yield resulting from definition of gene
action for four physiological crop traits (additive effects
with several genes and interacting states of expression)
acting in different drought environment types. Second,
we demonstrate how breeding progress is influenced
by selection for yield given two common constraints
experienced by plant breeders: restricted sampling of
representative environments and the need to select
within different maturity groups. The results are pre-
sented for long sequences (>10 cycles of evaluation,
selection, and intermating) of recurrent S1 selection. As
shall be evident, we do not (and may never) have a
complete understanding of the genetic controls and
physiological interactions among the targeted traits. Our
objective is not to provide all of the answers, but to
demonstrate tools to begin to integrate quantitative ge-
netics with dynamic crop simulation in the investigation
of the complexity of gene X gene X environment inter-
action.

MATERIALS AND METHODS

To undertake this study, we established a linkage between
the definition of gene action by the QU-GENE software (Pod-

lich and Cooper. 1998; http://pig.ag.uq.edu.au/qu-gene/; veri-
fied21 Aug. 2002). which simulates the change in the genotype
population between successive steps within a plant breeding
program, and the sorghum module of the APSIM cropping
systems model (McCown et al., 1996: http://www.apsru.gov.au/
Products/apsim.htm; verified 21 Aug. 2002), which simulates
the effect of environment and gene action to generate crop
vield (Fig. 1). The following sections describe the processes
in detail, for which a summary (Fig. 1} is given here:

1. Use APSIM-Sorg to simulate a reference genotype and
characterize the degree of stress and frequency of occurrence
of three drought stress environment types across a sample of
locations and years (Chapman et al., 2000a. 2002a).

2. For four crop traits [TE. PH. osmotic adjustment (OA).
and SGJ. determine the yicld value of all combinations of
different gene expression levels for cach trait (genotypes as
near-isogenic lines) in all location-season combinations. For
each genotype, calculate the mean yield across all of the loca-
tion and year combinations that comprise each of the drought
environment types. These data represent the yield genotype—
environment space for the entire possible population of geno-
type—environment type combinations.

3. Using QU-GENE, model the processes of an example
breeding program:

a. Initially sample the genotype—environment space
where there was a low to moderate frequency (0.2)
of favorable alleles for each gene to choose parents
for intermating.

b. Evaluate S1 offspring in multienvironment trials
(METs) (from a fixed or random sample of environ-
ment types) and select offspring based on mean yicld.

c. Repeat the evaluation, selection. and intermating pro-
cess for 12 cycles of S1 recurrent selection.

The results were then interpreted in terms of changes in the
grain vield of the offspring and in the frequency of favorable
alleles for the genes associated with each trait.

1. Characterizing the Target Population
of Environments

Chapman et al. (2002a) have described the environments
(locations-season combinations) used in this expceriment and
their effects on the performance of 54 genotypes with the
extreme (low and high) and standard levels of gene expression
for the four traits considered.

Version 1.5 of APSIM was used to run the SORG (sorghum)
module using weather data on a daily time step to interact
with a specified soil profile and simulate the soil and plant
processes associated with water and N during fallow and in-
crop states (Fig. 1). We simulated an opportunity cropping
system, i.e.. winter or extended fallow. followed by sorghum
during a summer planting window whenever minimum rainfall
(25 mm in 4 d) and soil water conditions (80 mm) were
achieved. Nitrogen was nonlimiting, and the crop was grown
at 50 000 plants ha "

A genotype with all parameters set to the standard valuc
for cach of the traits (Table 1) was run using 108 vr of daily
weather data at six locations (648 potential trials) across the
sorghum production region of northcastern Australia. The
weather data for these locations, obtained from the SILO data
set (http://www.dnr.gld.gov.au/silo/; verified 21 Aug. 2002),
contains actual temperature and rainfall. with actual solar
radiation or, prior to 1956. solar radiation estimated from
tunctions of temperature and cloud cover. The reference geno-
type was used to simulate, for each trial, the final grain yields
and the average level of a water stress index (water supply/
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Fig. 1. Schematic of the modular structures and linkages between QU-GENE and APSIM used to simulate S1 recurrent selection of sorghum
for adaptation to dryland environments. Several other selection strategies that can be simulated as QU-GENE application modules are
indicated (e.g., pedigree selection) although the multiple crop and systems modules of APSIM are not. Gene action is defined as expression
states that become trait value inputs to APSIM-Sorg, together with soil and weather data. Qutput from APSIM is processed to define both
the yield of all possible genotypes (expression state combinations) and the frequency of drought environment types (ETs) encountered in
the target population of environments (TPE). This output comprises the genotype—environment space to which QU-GENE applied S1
recurrent selection to search for superior genotypes. MET, multienvironment trial.

demand ratio) for each successive 100 degree days (thermal-
time weeks) from emergence (Chapman et al., 2000a). This
is simply to provide an objective basis (i.e., compared to sets
of locations and years) for the classification of different stress
environments that might be encountered in the breeding pro-
gram. Individual simulations of genotypes in each environ-
ment (see next section) generate independent levels and tim-
ing of stress and therefore flow-on effects to other traits.
Using hierarchical cluster analysis, each of the 547 runs for
the reference genotype was classified into one of three groups
of drought stress environment types (Mild-Terminal, Severe-
Terminal, and Midseason) on the basis of similarities in the
seasonal sequence of the stress index over thermal-time weeks.
The classification process has been described by Muchow et
al. (1996) and Chapman et al. (2000a) and, for the data set
used in this study, by Chapman et al. (2002a). Given that the
sites used are representative of >80% of the sorghum area,
the frequency of occurrence of drought environment types
across the entire set of simulations is taken as an estimate

of their distribution in the TPE for the Australian sorghum
production region (Table 2). As shown by Chapman et al.
(2002a), the frequencies of occurrence as might be experienced
by a six-location breeding program that samples only two
to three successive years of the weather record can differ
substantially from these 108-yr frequencies.

2. Simulation of Gene-Environment Effects
Specification of Trait Action

The current sorghum module (APSIM version 1.5) has un-
dergone development to enhance its capacity to simulate the
interactions among physiological processes that influence
growth and yield (Hammer, 1998). The model has been vali-
dated across a range of agronomic (density, irrigation, and N
rate} and genetic (varying maturity and SG) treatments in
Australia and India, with predicted yields well correlated (2 =
0.89, n = 23) with observed yields from 0.5 to 8 t/ha (Hammer

Table 1. Values and number of additive genes (and expression states of equal size from the lower to upper range values) for each of

four physiological traits. For trait OA, two model variables were

modified by the same two genes; the five expression states ranged

from the standard to upper values only; and the trait only operated when the crop demand for water exceeded the available water
supply from the roots. See Chapman et al. (2002a) for more detail on traits.

Model variable

Value in allele combination

No. of additive genes

Physiological trait description and units Lower Standard Upper (expression states)
Transpiration efficiency
coefficient (TE) Transpiration efficiency coefficient (MPa) 0.008 0.009 0.010 51n
Flowering time (PH) Thermal time from the end of juvenile stage 90 115 140 3(7)
to panicle initiation (°Cd)
Osmotic adjustment Growth amount required per grain set No down-regulation
(0A) (g grain™") from standard
Fraction of stem biomass available for 0.00083 0.00075
retranslocation (%) 20% 36% 2 (5
Stay-green (SG) Target specific leaf N for new leaf 135 1.5 1.65 5@an

(g N m? leaf)
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Table 2. From the data set of 4235 genotypes, the mean yield
within each of the three drought environment types, and for
each drought environment type and trait, the difference be-
tween the mean of all genotypes containing the highest expres-
sion state for the trait and the mean of all genotypes containing
the lowest expression state for the trait. See Table 1 for trait
definitions and expression states.

Drought environment type (frequency of occurrence
across the target population of environments)

Severe-Terminal Midseason Mild-Terminal
Trait (35%) (28%) (37%)
t/ha
TE 0.82 0.61 0.46
PH -0.32 0.89 1.36
OA 0.42 0.22 0.18
SG 0.10 0.49 1.03
Mean yield 2.58 3.55 4.99

et al., 2001). It has been particularly designed to account for
the genetic variation for the crop traits of TE coefficient,
PH, OA, and SG (Table 1). Traits are defined as heritable
characteristics for which genetic variation is known to exist. As
in any plant breeding context (apart from disease resistance,
perhaps), they are rarely associated directly with a specific
cellular-level characteristic, but rather with a network of gene
controls, the effects of which can be observed by measure-
ments on segregating populations. The mechanisms of opera-
tion of the traits and the evidence for the chosen ranges were
detailed by Chapman et al. (2002a) and are outlined briefly
here, with the gene expression effects described in the next
section.

The TE trait and traits correlated with it (isotopic C discrim-
ination ratio) are considered heritable as they have been se-
lected for in plant breeding programs and backcrossed success-
fully into new germplasm to increase yield. e.g., wheat
(Richards et al., 2002). The TE coefficient is here referred to
as a trait that depends on the balance of the exchange of CO,
and water vapor at the cellular level of the leaf and is expressed
at the level of the crop as the crop growth rate per unit of
water transpired (absorbed by roots). The actual or realized
TE depends on the vapor pressure deficit (VPD) such that:
TE,«u = TE/VPD. The value of TE has been shown in glass-
house and field trials of sorghum to vary across cultivars by
approximately 10%, independent of vapor pressure deficit
(Mortlock and Hammer, 1999). The effect of raising TE is to
increase the efficiency with which water is utilized by the crop
to meet the demand for potential (radiation limited) growth.
Hence, when water supply is sufficient to meet demand, less
soil water is extracted, leaving a larger late-season soil water
reserve in seasons when rainfall is low. Alternatively, when
water is insufficient to meet demand, more dry matter growth
can be produced with that supply. Hammer et al. (1996) con-
sidered that cultivars with an increased TE also had a reduced
radiation use efficiency. This effect was not implemented here
as the data of Mortlock and Hammer (1999) did not support
a clear negative association between these traits at the plant
or crop level.

For trait PH, the thermal time requirement for the comple-
tion of the development stage end-juvenile to floral initiation
was varied to simulate the genetic range of flowering dates
(ca. 14 d) observed in the local germplasm pool. A longer
thermal time requirement allowed more leaves to be initiated.
Hence, increasing the trait PH increases the final number
of leaves produced and therefore delays flowering because
flowering only begins once all of the initiated leaves have
appeared and expanded. To simplify this example, no modifi-
cation of photoperiod response was introduced. Though pho-

toperiod is believed to be a major control of PH in sorghum
(Rooney and Aydin, 1999), the genotype effect can be satisfac-
torily mimicked using the method outlined above as the plant-
ing date and latitude variation in our example is not extreme.

Trait OA was implemented in terms of the observed crop-
level effects in near-isogenic lines that differed in the level of
OA under drought (P. Snell, unpublished data as summarized
by Hammer et al., 1999). The crop-level effect of OA under
drought conditions was to, first, reduce the amount of crop
growth in the period from panicle initiation to flowering that
is required to set a given number of grains and, second, in-
crease the potential remobilization pool for the filling of
grains. Increasing the genetic value of OA only has an effect
under drought (Table 1), and its effect is to increase both the
number of grains (sink size) and the retranslocation potential
should drought continue into grain filling (Table 1).

Genetic variation in SG was simulated by modifying the
target specific leaf N (g N m™? leaf area) of new leaf. Borrell
et al. (2000) reported on physiological studies of the mode of
action of SG in hybrids from a cross of parents with high and
low levels of SG. Increasing the target specific leaf N for new
leaf allows increased N uptake during canopy development
as found by Borrell et al. (2000) in SG type germplasm. Subse-
quently, during grain filling, depletion of N from leaves is
delayed, causing the SG effect although other forms of SG
are also known to exist (Thomas and Howarth, 2000).

In general, higher values for these different traits result in
higher vields but not under all environmental conditions. This
is particularly the case for PH where lower values result in
early maturity, which may be an advantage to escape the
effects of severe terminal drought. The background studies
and references relating to the ranges of the traits described
in Table 1 are given by Chapman et al. (2002a).

Defining Gene Action and Expression States
for Physiological Traits

In QU-GENE, we modeled the multilocus effects for the
states of expression of each trait as unlinked cumulative addi-
tive alleles across loci, with two alleles per locus, e.g.. for the
trait OA, we described two genes that are located at two
loci, which can result in the five evenly distributed levels of
expression (see below). As a convention for referring to genes
and alleles, we use uppercase bold letters to refer to the gene
and upper- and lowercase italic letters to refer to their alleles
(e.g., gene A with alleles A and a). For each locus (position
of a gene), one allele was considered to result in increased
trait expression relative to the other allele. The expression
state of a trait for a genotype was then determined by the
total number of alleles for increased trait expression possessed
by the genotype across all loci for the trait. The uppercase
alleles were defined as the alleles that increased the level of a
trait and are referred to as + alleles. Conversely, the lowercase
alleles were defined as the alleles that decreased trait expres-
sion and are referred to as — alleles. Importantly, the + or —
designation refers to their influence on the expression of a
trait but not necessarily their effect on expressed traits such
as leaf area, biomass, or yield. For a trait (OA) regulated by
two genes [gene A with alleles A (+) and ¢ (—) and gene B
with alleles B (+) and b (—)], there were five possible expres-
sion states for the trait, based on a genotype possessing either
zero, one, two. three, or four of the + alleles across genes A
and B. With this gene expression model, different genotypes
can have the same expression state. For example, genotypes
Aabb, aAbb, aaBb, and aabB all have one + allele and there-
fore have the same expression state. Similarly. for the five
expression states:
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1. aabb (zero + alleles) experiment (Fig. 1). The breeding program operated on a 4-
2. Aabb, aAbb, aaBb, aabB (one + allele) yr cycle, with the first 2 yr used for random intermating. space
3. AAbb, AaBb, AabB, aABb, aAbB, aaBB (two + alleles) plant selection, and seed increase of S1 families that are the
4. AABb, AaBB, AAbB, AABb, aABB (three + alleles) direct offspring of the randomly intermated parents (Podlich
5. AABB (four + alleles) et al., 1999). The S1 families were then evaluated in a MET

For the hypothesized genetic models for the four traits
(Table 1), there are 3% = 14 348 907 different genotypes but
a much smaller number of different expression states (11 X
7 X 5 X 11 = 4235). Alternative gene expression models
could have been considered and would have created different
relationships between the genotypes and phenotypes. The
number of expression states (and genes) chosen for the differ-
ent traits was determined either from some knowledge of gene
action and recombination in breeding experiments (for PH
and OA) or was suggested from the approximate number of
strong molecular markers that have been found (for TE and
SG). With respect to the number of gene expression states
used in Table 1, we note that:

e No QTLs or genes have yet been identified as being
related to TE in sorghum. We used five genes in Table |
with the expectation that it may be reasonably complex
and potentially associated with SG (see below) as sug-
gested by Borrell et al. (2000).

» Hart et al. (2001) found three major QTLs for maturity
in sorghum though breeding studies suggest that there
are six major genes controlling flowering date and that
four of these are common in sorghum germplasm
(Rooney and Aydin, 1999).

e Basnayake et al. (1995) suggested a two-gene model for
OA in the germplasm utilized by Snell (unpublished,
1999) and summarized by Hammer et al. (1999).

e Tao et al. (2000) identified five QTLs associated with SG
in local sorghum germplasm.

APSIM-Sorg was used as described above to generate yields
for all 4235 expression states (equivalent to genotypes for
our discussion) from QU-Gene for all 547 location-season
combinations (Fig. 1). These yields represent a nonlinear inter-
action of the expression states of each trait with each other
and with the growing environments. For each genotype, the
mean yield in each of the three drought environment types
was calculated. This was a simplification of the simulation
experiment though we intend in future studies to sample envi-
ronments from the three drought environment types rather
than using the genotype mean across each drought environ-
ment type.

3. Modeling the Breeding Program

The structure of the adaptation landscape for the genetic
model was defined by the APSIM-Sorg crop model estimate
of yield for different combinations of genes (genotypes) based
on different expression levels of the four traits (Table 1). The
QU-GENE software managed the creation. evaluation, and
selection of genotypes within a breeding program (Fig. 1).
The first stage of QU-GENE is the engine, which specifies
the properties of the genetic models under investigation and
hence the structure of the adaptation landscapes correspond-
ing to the germplasm pool available. The engine creates a
starting-point reference population of genotypes for investiga-
tion by second-stage application modules that simulate the
structure of ditferent plant breeding programs. In the configu-
ration used here. grain yields were generated by APSIM for
all of the genotypes and were averaged for each genotype
over the thrce environment types.

A QU-GENE application module representing an S1 family
recurrent selection breeding program was used to conduct the

over five locations and in 2 yr. Superior Si families were
selected on mean yield performance in the MET, determined
from the database of APSIM runs. Reserve Sl family seed
from the selected families was intercrossed 1o initiate the next
cycle. The program was conducted for 12 cycles (equivalent
to 48 yr), using a spaced plant population of 5000 individuals,
with 1000 S1 families evaluated in both years of thec MET.
The top 100 S1 families were selected on superior performance
in the MET. To simplify the analysis, plot heritability of each
gene was assumed to be 1.0, i.e., there was no experimental
error.

The timing of flowering is an important consideration with
respect to the occurrence of drought, e.g.. earlier-flowering
genotypes are able to escape the effects of a terminal drought.
Further, to fit in with other operations in a cropping system,
breeding programs frequently provide a suite of cultivars dif-
fering in maturity. For summer crops like sorghum, a farmer
may prefer to plant a longer-season variety if an early planting
opportunity arises and a shorter-season variety when planting
late so that the crop does not mature into cool conditions and
interfere with future crop rotations. To consider these practical
issues. several selection scenarios were evaluated:

1. No constraints selection for average yield in the MET,
with the 10 testing environments randomly sampled at their
occurrence rates in the TPE (Table 2).

2. Selection for average yield in the MET, with the 10
environments sampled from only one drought environment
type. This restricted sampling process, repeated for each
drought environment type, demonstrates the effects on selec-
tion of sampling only one type of drought stress pattern, as
can happen when breeding programs experience a series of
wet or dry years, e.g., Chapman et al. (2000b). or repeatedly
sample a particular drought environment type through man-
aged irrigation or drought treatments, e.g., Edmeades et al.
(1999).

3. Selection for yield in the MET as in each of the two
scenarios above but with phenology constrained to be within
a particular class. Three phenology constraints on the selection
process were implemented by retaining in selection only those
genotypes (and hence S1 families) that possessed allelic combi-
nations for the PH trait genes that fell into one of the sets of
expression states 1 to 3 (early maturity), 3 to 5 (medium
maturity), or 5 to 7 (late maturity) (Table 1). This simulates
the common process utilized when breeders are selecting for
adaptation within different maturity classes.

Given that the genetic composition of the initial parents
can vary, the performance of each of the defined selection
scenarios was evaluated as the average of 2000 runs (10 inde-
pendent sets of starting parents X 200 independent runs of
each set of parents) over 12 cycles of S1 recurrent selection.
The initial parents were selected such that the population had
a fixed gene frequency of 0.2 for the + alleles of each of the
15 genes that described the four traits. At each cycle, the mean
of the S1 families in the MET and the average gene frequency
of the genes regulating expression in the four traits were tabu-
lated for interpretation. The genotypic and G X E interaction
components of variance were also calculated for each cycle
of selection and selection scenario.

Running the APSIM simulations was a substantial task.
APSIM was installed on the QCC (QU-GENE Computer
Cluster; Micallef et al.. 2001), which comprises forty-eight 400
MHz (or greater) computers. reducing the simulation time to
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5 d instead of 250 d on a single computer. Report files from
APSIM were assembled from the computer cluster using cus-
tomized scripts written in the Tcl/Tk control language and
were stored in a database before production of data files for
input to QU-GENE (Micallef et al., 2001). The QU-GENE
simulations (sce below) were completed in about 10 h using
all 48 computers in the QCC.

RESULTS

As reported by Chapman et al. (2002a), the overall
frequency of the three drought environment types was
similar across the 547 simulated trials though slightly
lower for the Midseason drought environment type
compared with the Mild- and Severe-Terminal types
(Table 2). The mean yields of the genotype data set
differed by 2.5 t/ha across the three drought environ-
ment types. For the trait TE, the difference in yield
between the genotypes with the highest (11) and lowest
(1) number of expression states (averaged over all ex-
pression states for the other traits) was greatest in the
Severe-Terminal drought environment type, i.e., the ad-
vantage of TE was greater in the Severe-Terminal
drought environment type than in the other types
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(Table 2). The direction of this effect was similar for
the trait OA but with about half the magnitude of that
for trait TE. For the trait PH in the Severe-Terminal
drought environment type, yields were greater for geno-
types with the lowest expression states (i.e., early matur-
ing genotypes) while in the other drought environment
types, yields were greater for later-maturing genotypes
with the highest expression states. The increase in the
size of the difference between the high and low expres-
sion state yields was also present for the trait SG. High
expression of SG was most advantageous in the Mild-
Terminal drought environment type although it was pos-
itive in all types.

For each cycle of selection, the proportion of genes
fixed (gene frequency) for the + alleles was averaged
over the genes for each trait (Table 1) and over the
2000 QU-GENE runs (Fig. 2). When the MET was
conducted using only the Severe-Terminal drought envi-
ronment type, OA and TE were the first traits fixed
for + alleles (Fig. 2a). Once these genes had been fixed,
the SG genes, which had changed relatively little over
the first four cycles, began to be fixed rapidly. The PH
genes were fixed gradually to — alleles (early maturity)
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Fig. 2. For the 2000 simulations of cycles of S1 recurrent selection, mean changes in the gene frequency for + alleles associated with four
physiological traits—transpiration efficiency (TE, average of five genes), flowering time (PH, three genes), osmotic adjustment (OA, two
genes), and stay-green (SG, 5 genes)—given four different selection environments. The selection environments were applied as a multienviron-
ment screen (5 locations by 2 yr) of S1 families consisting of (a, b, and ¢) the same environment type or (d) the target population of
environments in which the three environment types (a, b, and ¢) were sampled in proportion to represent the target population of environments

in the sorghum region of northeastern Australia (Table 2).
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(a) Severe-terminal stress; late flowering
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Fig. 3. For the same traits and the selection environments given in Fig. 2, mean changes in the gene frequency for + alleles with the constraint
that selection was only made among genotypes within one of three maturity types (early, medium, or late). Within each maturity type,
genotypes were restricted to three of seven possible expression states in trait PH (Table 1): early (expression states 1~3), intermediate (3-5),
or late (5-7). Simulations (captioned in figure) are given for selection environment—constraint combinations that contrast particularly with
Fig. 2 (see text).

over seven cycles. By Cycle 9, all genes were fixed to
either + (OA, TE, and SG) or — (PH) alleles. These
effects on PH genes were in contrast to selection under
environments that were solely Midseason drought envi-
ronment type (Fig. 2b) or Mild-Terminal drought envi-
ronment type (Fig. 2¢). In these two environment types,
all trait genes were fixed to + alleles, with the PH trait
fixed the most quickly, followed by a constant, slower
rate of fixing of the + alleles for the TE and OA genes
and then SG (Midseason) or the SG and then TE and
OA (Mild-Terminal). When the MET evaluation was
conducted using environment types sampled in propor-
tions to mimic the TPE (Fig. 2d), the patterns of gene
fixing most closely resembled those observed when the
Midseason drought environment type alone was the se-
lection environment.

In Fig. 3, several of the more obvious contrasts to the
no constraints scenario are shown. The greatest contrast
of the early maturing constraint with the no constraints
scenario was under selection in a Mild-Terminal stress
where the + alleles for the SG genes were fixed first,
followed by the PH genes and then by the TE and OA
genes (Fig. 3c). The order of fixation of genes was almost
reversed, cf. Fig. 2¢, where maturity was not constrained.
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The changes in gene frequency for selecting early geno-
types in a Severe-Terminal drought environment type
were similar to those for the no constraints scenario
(data not shown). When selection for early genotypes
was done by sampling the TPE or the Midseason
drought environment types (data not shown), PH was
slowly fixed toward the highest value of the three possi-
ble expression states for an early genotype, and the
other traits were simultaneously fixed for + alleles at
a greater rate than the PH genes were but slower than
they had been in no constraints selection (Fig. 2).

The other relationships in Fig. 3 illustrate the effect
of constraining selection to late genotypes when using
a Severe-Terminal drought environment type (Fig. 3a)
or the TPE (Fig. 3d) as the selection environment or
constraining selection to medium-maturing genotypes
in a Midseason drought environment type (Fig. 3b). In
Fig. 3a, selection quickly swept out the rejected early
and medium types and moved the population toward
the earliest (no. 5) of the three expression states (5, 6,
or 7) allowed in a late-maturing genotype, i.e., when all
selected lines were fixed to that phenotype, the gene
frequency was 5/7 = 0.71. In this scenario, the progress
in fixing OA and TE traits to all + alleles was slower
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Fig. 4. For the same traits and selection environments given in Fig. 2, mean yields of successive cycles selected (a, b, and c¢) within different
environment types or (d) by randomly sampling the target population of environments with a specified frequency combination of environments,
given no selection constraints or constraining selection to be within one of three genotype maturity groups (see Fig. 3). Scales are varied to

emphasize differences within selection environments.

than in the no constraints case (Fig. 2a) while the fixing
of + alleles for SG genes was greatly delayed. As was
the case for constraining selection to early genotypes
(data not shown), selection for medium-maturing geno-
types in the Midseason drought environment type
quickly moved toward the latest (no. 5) of the three
states (3, 4, or 5) for this class of maturity (Fig. 3b).
It happens that this maturity (latest medium-maturing
genotype) is the same as the earliest of late-maturing
genotypes that became fixed in Fig. 3a. In Fig. 3b, the
remaining traits were fixed a little slower but more si-
multaneously toward + alleles compared with the no
constraints scenario (Fig. 2b).

The associations between the fixing of genes for +
or — alleles and the mean yield of the population in the
selection environment can be assessed by comparing
Fig. 2 and 3 with Fig. 4. Fig. 4a shows that the maximum
yield ceiling of about 3.5 t/ha in the Severe-Terminal
drought environment type was reached after about nine
cycles of recurrent selection. Constraining the PH genes
to only the early maturing genotypes had minimal influ-
ence on the rate or end point of yield improvement as
these are indeed the best-adapted genotypes. There
were two phases of yield improvement in both selection
scenarios: first, a linear increase from Cycles 1 to 6

(associated with the complete fixing of OA and TE
genes to the + alleles, PH to — alleles, and about 0.6
of the SG genes to + alleles Fig. 2a) and second, a
plateauing of yield improvement in Cycles 6 to 9 associ-
ated with the fixing of the + alleles for the remaining
segregating SG genes and one PH gene. The gene fixa-
tion patterns were similar for the early-constraint sce-
nario in this environment (data not shown).

When there were no phenology constraints under se-
lection environments of either Midseason or Mild-Ter-
minal drought environment types or the TPE, the yield
improvement had a similar form to that under Severe-
Terminal drought environment type, with a plateauing
in Cycles 6 to 10 (Fig. 4b, 4c, and 4d) that occurred
once most PH genes had been fixed to + alleles (Fig. 2).
If selection was restricted to the early maturing geno-
types, the rate of yield improvement was slower, and
the ultimate yield reached was lower than for no con-
straints selection.

Figure 4 also shows the yield improvements associ-
ated with constraining selection to either medium- or
late-maturing genotypes. When selecting in a Severe-
Terminal drought environment type, the yield decreased
for the first two cycles of evaluation (Fig. 4a) while the
PH genes were being fixed to the earliest of the late-
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Fig. 5. For the no constraints selection scenario (Fig. 2), the yield of the population when selected under one of four selection environments
(env) and then evaluated for the effects of indirect selection in each of the alternate selection environments. TPE, target population

of environments.

genotype range (Fig. 3a). After this point, the + alleles
for the OA and TE genes were completely fixed around
Cycle 7, followed by the SG genes from Cycles 7 to
12 in a manner similar to that seen in Fig. 2a. When
constrained to the late genotypes, yield progress in ei-
ther the Midseason stress. Mild-Terminal stress, or the
TPE was slightly slower than in the unconstrained case
although the same end point was eventually achieved
(Fig. 4b, 4c, and 4d). The more rapid fixing of the PH
genes was associated with a delay of between one and
two cycles in the fixation of the genes for the remaining
traits {e.g., in Fig. 3d cf. Fig. 2d). As may be expected.
both rate of progress and ultimate yield of the medium-
maturing genotypes was intermediate to that of the ear-
ly- and late-maturity selection methods.

The results in Fig. 4 show what happens to adaptation
for specific drought environment types or the TPE when
genotypes are evaluated only in the same drought envi-
ronment type or TPE in which selection was conducted.
For the selected proportions of genotypes under any
scenario, it is possible to determine their corresponding
value in other drought environment types and in the
TPE, i.c., even though the selection has been done in
a particular environment combination, we can evaluate
the resulting changes in any other combination (Fig. 5).

This demonstrates the principle of indirect selection
where selection within an environment leads to im-
proved performance in another environment. For exam-
ple, when the TPE was used as the selection environ-
ment, the yield for the TPE and for each of the drought
environment types (i.c.. indirectly selected for) in-
creased at similar rates in percentage terms (data not
shown) although there were differences in absolute
terms (Fig. 5d). If the selection environment was re-
stricted to only the Severe-Terminal drought environ-
ment type (Fig. 5a), then the rate of yield improvement
was most rapid in that drought environment type but
was much lower when the selected population was tested
separately in the other drought environment types or
the TPE. Notice that the final vield for the TPE was
lower than in Fig. 5d (i.e., broad adaptation was lower
than if the TPE had been used for selection) but that the
final yield for a Severe-Terminal drought environment
type was greater than for selection in either of the other
drought environment types (Fig. 5b and 5c¢) or in the
TPE (Fig. 5d).

When either the Midseason or Mild-Terminal drought
environment type was used as the selection environ-
ment. performance in the TPE and in the alternate of
these stress environments was relatively rapid (Fig. 5b
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and 5c). However, yield improvement for the Severe-
Terminal drought environment type was minimal until
about Cycle 5. Inspection of Fig. 2 shows that this was
the point when the PH genes had been mostly fixed with
about half of the genes fixed for the remaining traits.

Under the maturity-constrained scenarios for selec-
tion in the TPE, the computed genotypic variance com-
ponent had decreased by about 30% at Cycle 3, with
little further change until Cycle 6, and then decreased
more gradually compared with the no constraints sce-
nario (Fig. 6a). The pattern was similar for the G X E
interaction variance components (Fig. 6b), such that the
ratio of G X E interaction and genotype effects was
initially highest in the no constraints scenario (Fig. 6c).
The G X E variance for the early maturing constraint
was greater than for the other PH constraint scenarios.
In the last three cycles, the ratio of G X E interaction
and genotype effects increased greatly and was variable
across the last few cycles of selection as both compo-
nents of variance had become relatively small by this
time.

DISCUSSION

Hammer et al. (1996) and Chapman et al. (2002a)
showed that the methodology of using a sorghum simu-
lation model (APSIM-Sorg) to generate yields for a set
of genotypes was able to reproduce genotypic and G X
E interaction effects over locations and seasons that
were similar to those observed in the sorghum breeding
program trials in northeastern Australia, e.g., Chapman
et al. (2000a). In this paper, the genotypes were ex-
tended to a complete near-isogenic set with a defined
gene action associated with different expression states
for the traits. The connection of biophysical simulation
of G X E effects (APSIM-Sorg) to the simulation of a
plant breeding program (QU-GENE) provided a test
framework to evaluate polygenic (genomic) effects on
selection for sorghum yield. In this case, it demonstrated
that when the genotype population was sampled and
recombined in a recurrent selection program, the rate
of gene fixation and the alleles that were fixed varied
with the traits in association with their value in improv-
ing yield for particular combinations of gene effects and
drought environments (Fig 2).

Apart from the trait PH in the Severe-Terminal
drought environment type, increasing the level of trait
expression (by increasing number of + alleles for a trait)
resulted in greater grain yield (Table 2). Higher values
for the PH and TE traits had a greater effect on yield
as the environments changed from Severe-Terminal
stress to Midseason stress to Mild-Terminal stress. Con-
versely, greater values of TE and OA had a greater
absolute effect on yield in the Severe-Terminal drought
environment type. When the 4235 genotypes were sam-
pled in the recurrent selection breeding program, the
relative effects of the traits on yield in different drought
environment types determined the rate at which genes
were fixed by selection for grain yield.

Under the no constraints on maturity scenario, clear
differences existed in the rates at which genes were fixed
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Fig. 6. For the simulations of S1 recurrent selection, the changes in
(a) genotypic, (b) genotype X environment (G X E) interaction
variance components, and (c) their ratio for different cycles of
selection under the target population of environments (TPE)
(Fig. 2) when evaluated in the TPE.
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during selection under different drought environment
types or under the sampled mixture of drought environ-
ment types representing the TPE. When selected in the
TPE, late-maturing genotypes were favored due to their
higher yields in 65% of the component environments,
i.e., in both Midseason and Mild-Terminal drought envi-
ronment types (Fig. 4). The pattern of fixation of +
alleles in the TPE was similar to that observed in the
Midseason drought environment type. Hence, this was
the best surrogate of the three drought environment
types to represent the variation in the real-world TPE.
However, in the TPE, the rate at which the PH genes
were fixed to the latest-maturing genotypes was clearly
slower than that observed in the Midseason and Mild-
Terminal drought environment types.

The utility of + alleles for different traits in improving
adaptation depended on the constraints set by both the
maturity times of the genotypes and the selection envi-
ronment. Early genotypes were favored in the Severe-
Terminal drought environment type, with most of the +
alleles for the SG trait not being fixed until the — alleles
of the PH genes had first been fixed (Fig. 2). When the
phenology was constrained to early-maturity types, the
value of the + alleles for SG was increased in all environ-
ments as the SG alleles began to be fixed earlier in the
selection process. Where the Severe-Terminal drought
environment type was part of the selection environment
(Fig. 2a and 2d). + alleles for OA genes were fixed
more rapidly than those for TE. This reflects that fact
that the OA genes were implemented in the crop simula-
tion model to only have an effect under conditions of
severe stress around flowering and during grain filling.
As these conditions were less frequent in the Midseason
and Mild-Terminal drought environment types than in
the Severe-Terminal drought environment type, OA
genes were not particularly favored over TE genes,
which provide a yield advantage in all environment
types.

The selection criteria (maturity) and the selection
environment also interacted to influence the effective-
ness of selection for yield. For example, in the Severe-
Terminal drought environment type, selection with a
constraint to early maturity resulted in the same rate
of gain as no constraints. In contrast, although late matu-
rity was favored in the other two drought environment
types, constraining the selection to late-maturing types
in these drought environment types reduced the rate of
improvement in grain yield. It seems that restricting the
selection in these environments effectively reduced the
selection pressure for yield, i.e., if only 300 of the 1000
families met the late-phenology requirement and 100
of the 1000 have to be selected, then selection pressure
is lessened to the degree that some superior-yielding
genotypes (of early or medium maturity but with other
favorable genes) did not meet the maturity criteria. This
equates to a selection bottleneck in the breeding program
where favorable-yicld genes can be lost from the breed-
ing population as their value is masked by the use of a
rigorous culling criteria, in this case, maturity. Another
type of bottleneck arises when breeding programs ex-

perience a particular sequence of environment types
though we do not attempt to evaluate that here.

When evaluated in the TPE, the no constraints selec-
tion scenario retained the greatest degree of genotypic
variance for yield for a longer period (until approxi-
mately Cycle 6) of the selection process (Fig. 6a). Con-
straining the phenology during selection quickly eroded
the genotypic variance for yield although the later-
maturing genotypes actually had lower G X E interac-
tion effects in the TPE, again due to the dominance of
favorable environments (Midseason and Mild-Terminal
drought environment types) for them in the TPE com-
pared with the early maturing genotypes.

It is clear from Fig. 2 that, in an unconstrained sce-
narioselecting in the TPE, itis difficult to retain segrega-
tion for maturity because of its strong association with
yield in the better environments. If we were employing
this methodology in practice to deliver a suite of cultivar
maturities to the industry, the results suggest that it
would be useful to set up a separate early maturing
population for adaptation to Severe-Terminal stress
drought environment type as this drought environment
type tends to be associated with locations in the shallow
soils of Central Queensland and the poorer rainfall
zones of northern New South Wales (Chapman et al.,
2000b, 2002a). There seems less justification to have a
medium-maturing population as the Midseason drought
environment type where its quality of performance is
not particularly biased in any location. Nevertheless,
medium-maturing cultivars would provide greater sta-
bility (i.e., less G X E interaction for yield) in these
poorer water environments than late-maturing cultivars.

The process of defining cumulative additive genes
for traits and then expressing them via crop simulation
generated both pleiotropic (where genes affect multiple
traits, e.g., TE and yield) and epistatic (where different
gene combinations interact with each other) effects for
yield. These effects can be illustrated if we examine the
results of a QU-GENE simulation for the same breeding
program employing a conventional quantitative genetic
model, i.e., many genes of small effect (see Podlich and
Cooper, 1998. for examples of this simulation). The
model was specified with 15 genes (as we used), each
having small, equal additive effects on yield in different
environments but with no specified epistatic or G X
E effects and no elaboration of the trait effects via a
biophysical crop simulation model. Figure 7a shows that
with selection, each of these genes for yield becomes
fixed at a similar rate. This similarity in gene fixation
contrasts with the case for the QU-GENE results when
using the sorghum crop model to determine crop yield
as controlled by 15 genes directly affecting four traits
(Fig. 7b). The use of the crop model has modified the
relative yield value of the different genes in the environ-
ment types sampled and hence has influenced the rate
and timing of fixation of the + alleles for the different
traits. The difference between these two approaches
also indicates the importance of the state of the current
germplasm as well as the selection environments in the
potential for progress in the breeding program, i.e.,
while the relative value of each of the genes in Fig. 7a,
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Fig. 7. For the simulations of S1 recurrent selection, the rate of fixation of + alleles for (a) a 15-gene additive model and (b) the 15 additive
genes (across four traits) processed through the sorghum crop simulation model. Data in (b) are for the separate gene effects that had been
averaged for each trait in Fig. 2d. TPE, target population of environments.

indicated by its rate of fixation, is more or less similar,
this is not the case for Fig. 7b where the genes clearly
have different values in terms of yield.

When set up to use information from analysis of quan-
titative genetics, applications in QU-GENE account ex-
plicitly for gene effects, G X E interactions, and gene X
gene interactions (epistasis) (Podlich and Cooper,
1998). In the configuration that we have used here, only
additive gene expression models were considered. How-
ever, the filtering of these expression states through a
crop simulation model to determine the effect on yield
has introduced epistasis for the yield trait. The most
dramatic epistatic effects are evidenced by the necessity
to fix favorable alleles for different genes in some sort
of order that varied with environment type. Changing
the order of the selection for major genes, by restricting
selection for PH genes, could slow progress by reducing
the opportunities for recombination of other non-PH
genes that were present at low frequencies within the
maturity class chosen. By the same inference, where
plant breeders have observed epistatic effects for yield,
they may really be seeing a complex combination of
simple additive effects for traits (perhaps not measured)
that determine yield.

Consideration of the effects of epistasis when model-
ing selection scenarios is vitally important. It suggests
that for different combinations of traits being tested in
particular environments, the fixation of some traits is
unlikely to proceed until one or more other traits have
been improved and in some cases, partially fixed, e.g.,
SGin Fig. 2a and TE and OA in Fig. 3c. If we conducted
a molecular marker experiment to identify molecular
markers for SG using the Cycle 3 population from Fig.
2a, we would find a low frequency of + alleles for SG
genes and possibly discover some useful molecular
markers. However, even if we had perfect markers, we
would not achieve any advance in yield until the genes
for other traits had also become fixed, i.e., the marker
experiment may appear to fail even though the newly
fixed alleles would be coming into play following fur-
ther phenotypic selection for yield. Similarly, if we were
evaluating the same population in different environ-

ments, our assessment of the existence of markers would
change. These scenario results have significant implica-
tions for the manner in which strategies such as marker-
assisted selection are introduced to improve the effi-
ciency of the breeding program for yield.

The QU-GENE software can be used to investigate
the inclusion of markers and degrees of recombination
and linkage among the genes in the model to answer
some of the questions posed in the previous paragraph.
In an extension of our current analysis, for example,
we examined the effects of the precision of molecular
markers on the efficiency of selection (Chapman et al.,
2002b). A sophisticated enhancement would examine
the issue of the difficulty of finding molecular markers
for yield, per se. This difficulty is not unexpected (al-
though many marker projects continue to attempt it)
because yield is a pleiotropic effect of multiple genes
controlling subprocesses of crop growth over the season.
By outputting the values of other key attributes from
the crop model (e.g., crop growth rate at flowering), it
is feasible for a researcher using this model to find sets
of attributes that control yield but are simpler in their
genetic control. Investigating the interaction between
the biophysical simulation and the breeding program
simulation should also allow derivation of key traits and
genetic networks controlling yield in different environ-
ments. Additional issues that could be addressed are
the effects of variation in the genotype response within
an environment type, the effects of selection within fixed
sequences of environment types, and the effects of indi-
rect selection for traits other than yield.

With the availability of high-throughput capacity to
sequence genomes, it has been widely claimed (e.g.,
Bassett et al., 1999) that biologists have not determined
how to cope with the massive amounts of DNA se-
quence and gene expression data that are being gener-
ated. Worse, there are few examples of linking this infor-
mation to crop phenotypes in the field—most are
laboratory-based phenotypes in simple controlled-envi-
ronment screens, which may bear little correlation with
field performance. As we expand our ability to describe
and understand the structure and function of plant ge-
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nomes, there is an urgent need to investigate how the
effects of genes are integrated at the different organiza-
tional levels of the organism and how these organiza-
tional structures (e.g., pathways, traits, and trait combi-
nations) interact with the biophysical properties of
environments to determine the crop phenotype. While
the task of understanding the relationship between gene
and phenotype is a major undertaking, even for many
simply inherited traits, the integration of genetic models,
that can simulate the properties of gene—environment
systems, with dynamic biophysical crop models, that
simulate plant growth and development processes, pro-
vides a quantitative framework to support these ambi-
tious investigations. Within the generic crop template
design in APSIM, developments in improved modeling
of the traits are quickly captured (Hammer, 1998). Im-
provements in computer speed and the use of computer
clusters, as outlined here, are essential to process the
large numbers of scenarios to be investigated. More
importantly, it is necessary to continue the field experi-
mentation to improve the ability of crop models to cap-
ture the interaction of crop traits with the environment.

While much basic research investment is in the cellu-
lar and molecular physiology of traits, the interaction
effects and levels higher in the hierarchy of growth (or-
gan, plant, and crop) greatly complicate the expression
of these traits, and many complex crop-level traits are
yet to be dissected. In most situations, experimental
evaluation of conventional and molecular breeding
strategies for manipulating complex yield adaptation
traits will be impractical or beyond the resource base
of breeding programs. Therefore, simulation tools will
have an important role in the design and testing of
breeding strategies. This role will become increasingly
feasible as our understanding of the genetic architecture
of quantitative traits improves. A critical step in devel-
oping these simulation tools is to establish the link be-
tween gene- and genome-based information and the
biophysical processes that determine plant growth and
development and adaptation to the biotic and abiotic
stresses. In this paper, we have demonstrated the link-
ages that have been achieved between the QU-GENE
and APSIM-Sorg modeling platforms to begin to ad-
dress the issue of the complexity of interactions among
gene, trait, and environment effects.
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