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A B S T R A C T   

Lemon myrtle (LM), Backhousia citriodora, is a popular flavouring agent and herbal tea from Australia. To ensure 
traceability and consumer trust in global food supply chain, rapid and non-destructive tools are crucial. In this 
study, hyperspectral images were acquired from 91 L M samples sourced from three different origins (Malaysia, 
Queensland, and New South Wales (Australia)), within 950–2500 nm range. Classification models were devel
oped using linear partial least squares-discriminant analysis (PLS-DA) with two approaches, pixel-based (trained 
by all spectral data points) and sample-based (trained by average spectrum). All models achieved classification 
accuracies above 96%. The sample-based PLS-DA model, trained by mean-centring transformed data, demon
strated the highest discriminatory performance. Both approaches show potential for LM origin classification, but 
the sample-based model is more suitable for automated and rapid industry applications due to its shorter 
calculation time. However, additional spectral data acquisition is necessary to improve the model and fully 
explore its capabilities and limitations.   

1. Introduction 

Backhousia citriodora F. Muell. (Lemon myrtle) belongs to the Myr
taceae family and is native to the rainforests of Queensland in Australia. 
The evergreen lemon myrtle trees usually reach 8 m in height and 
produce glossy green lanceolate leaves with creamy white flower clus
ters that appear in late spring to early summer (Mazzorana & Mazzor
ana, 2016). There are two essential-oil chemotypes of lemon myrtle 
namely citral and citronellal, the former is mainly used for flavouring 
and essential oil production and is commonly cultivated in Australia, 
while the latter is used for its insect-repellent properties (Archer, 2004). 

The leaves have been traditionally used for culinary purposes as well 
as a herbal remedy for various infections such as respiratory, intestinal, 
and skin conditions (Mazzorana & Mazzorana, 2016). Several studies 
have demonstrated the potential health benefits of lemon myrtle such as 
antioxidant (Kang et al., 2020; Lim et al., 2022), antimicrobial (Lim 
et al., 2022), anti-inflammatory (Kang et al., 2020) and anti-diabetic 
(Jung et al., 2017) properties as well as hepatoprotective effects (Jung 
et al., 2017) and improving sarcopenia condition (Yamamoto et al., 

2022). This can eventually pave its way into functional food, nutra
ceutical, pharmaceutical and cosmetic industries. 

Recently, demand for lemon myrtle leaves and their products has 
been increasing in both domestic and international markets, where they 
are mainly used as a flavouring agent in different food products such as 
beverages, dairy, and bakery. Therefore, its commercial production has 
been extended by established plantations from north Queensland to 
northern New South Wales in Australia to supply this growing demand 
(Archer, 2004). However, the cultivation of lemon myrtle in other 
countries creates challenges for the industry to build consumer trust 
about the authenticity and provenance of the product in this expanding 
global market. Products originating from certain regions often have 
unique characteristics and qualities that are associated with that specific 
geographical area. Environmental factors such as soil composition and 
climate as well as the cultivation practices can lead to variations in 
chemical composition of the plant and therefore the aroma, flavour, and 
overall quality of the product. Hence, maintaining the integrity of 
regional products like lemon myrtle from Australia is essential for pre
serving consumer trust, ensuring product quality, and upholding the 
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reputation of the region’s agricultural products. 
The morphological differentiation between the products with 

different geographical origins may be difficult or even impossible by 
visual appearance, which is mainly due to alterations through different 
processing operations such as drying and grinding (Swetha et al., 2017). 
Several techniques have been studied to determine the authenticity and 
provenance of plant material including fingerprint studies of organic 
composition using high-performance liquid chromatography (HPLC) 
and gas chromatography coupled with mass spectrometry (GC-MS), 
DNA (deoxyribonucleic acid) sequencing and barcoding, and the inor
ganic elemental profile using inductively coupled plasma optical emis
sion spectrometry (ICP-OES) (Fang et al., 2019; Su et al., 2019; Zhang 
et al., 2020). Although these techniques are accurate and reliable, they 
are time-consuming and still rely on well-equipped laboratories, 
expensive instruments and sampling techniques and are not suitable for 
rapid recognition of plant’s origin and quality. 

Nevertheless, on-site, rapid, non-destructive, and chemical-free 
techniques with minimal sample preparation are required to address 
the needs of traceability of products across the food value chain. While 
near infrared (NIR) spectroscopy has been used for identification pur
poses, it has certain limitations. For example, NIR spectroscopy fails to 
provide the information on spatial distribution of constituents within the 
sample since it measures one point of a sample and provides an averaged 
spectrum of the measured point. Measuring a single point necessitates 
using huge number of samples for calibration because the spectral var
iabilities existing within a sample will be overlooked, leading to reduced 
reliability of the models. Additionally, NIR spectroscopy predictions are 
unable to reveal physicochemical variabilities should they exist in the 
sample due to the absence of spatial measurements. 

Hyperspectral imaging (HSI) is a computer vision system that in
tegrates the regular imaging with the traditional NIR spectroscopy. HSI 
facilitates the simultaneous acquisition of both spatial (localisation) and 
spectral (identification) information of the entire load (Feng & Sun, 
2012; Manley, 2014), and therefore allows for the identification and 
characterization of small-scale variations that might be overlooked by 
NIR spectroscopy, providing a more comprehensive understanding of 
the sample. Furthermore, the spatial information captured in the form of 
pixels via HSI enhances the statistical robustness of sample by measuring 
thousands to millions of detection points per sample, in contrast to the 
singular measurement obtained in NIR spectroscopy (Tahmasbian, 
Morgan, et al., 2021). This broader scope facilitates quicker and more 
reliable calibrations. The ability to measure spatial dimension rapidly 
enables scanning the entire load, which in turn minimizes/eliminates 
sampling error due to sampling techniques that otherwise is not prac
tical when using NIR spectroscopy. 

The potential of HSI for chemical detection and quantification as 
well as quality evaluation has been proven by several studies such as 
fruits (Kämper, et al., 2020), Darjeeling black tea (Firmani et al., 2019), 
Dianhong black tea (Ren et al., 2021), cumin powder (Florián-Huamán 
et al., 2022), and meat (Yao et al., 2019). HSI has been recently 
employed for provenance studies in different food products such as 
origin identification of loose-leaf tea (Mishra et al., 2018), green tea (Liu 
et al., 2022), wolfberries (Yin et al., 2017), saffron (Kiani et al., 2023), 
chia seeds (Choi et al., 2021), ginseng powder (Zhao, et al., 2021), white 
asparagus (Richter et al., 2019), pistachio (Vitale et al., 2013), cocoa 
beans (Mandrile et al., 2019), and mutton (Weng et al., 2021). To our 
knowledge, no prior HSI study has been conducted on lemon myrtle leaf 
powder as an herbal tea. Thus, this study represents the first attempt to 
provide NIR-HSI information on lemon myrtle leaf powders. 

This study aimed to conduct a preliminary investigation into the 
potential use of NIR-HSI technology for distinguishing between com
mercial lemon myrtle tea products of various origins. Additionally, this 
study aimed to compare pixel-based and sample-based (average spec
trum) calibration approaches for differentiation of the samples. We 
hypothesized that lemon myrtle samples sourced from different 
geographical areas exhibit distinct physicochemical differences, thereby 

influencing their spectral signatures and enabling differentiation. We 
also hypothesized that models trained using the spectra of individual 
pixels within a sample would outperform those trained using average 
spectra of samples, owing to the significantly larger statistical popula
tion utilized for model training. 

2. Material and methods 

2.1. Sample collection and preparation 

The commercial lemon myrtle samples were provided by Australian 
Native Products Co. (NSW, Australia). A total of 91 samples were 
collected from main lemon myrtle-producing regions, of which 30, 31, 
and 30 samples were from Queensland (QLD) and New South Wales 
(NSW) in Australia, and from Kluang in Malaysia (MY), respectively. 
Samples were collected from different individual trees for each lemon 
myrtle origin during May–July 2022. The leaves were dried, ground, and 
packed in Aluminium airtight sealed pouches (GMD Packaging Pty Ltd., 
Queensland, Australia), followed by storing at room temperature (25 ±
2 ◦C). The drying condition for Australian samples was 55 ◦C for 3 h in a 
lab dehydrator and for Malaysian samples was by withering troughs, as 
is done for their commercial products. The moisture content of QLD, 
NSW, and MY samples were 10.28% ± 0.98%, 10.54% ± 0.99%, and 
11.30% ± 0.26%, respectively and the differences were insignificant at 
p > 0.05. The samples were then delivered to the laboratory in October 
2022 for analysis, where they were also stored at room temperature (25 
± 2 ◦C) until analysis. 

2.2. Hyperspectral imaging system and image acquisition 

Hyperspectral image acquisition was performed using a shortwave 
infrared (SWIR; 950–2500 nm) line-scan HSI system (HySpex, SWIR- 
384, Norsk Elektro Optikk, Oslo, Østlandet, Norway) mounted on a 
laboratory rack with a translation stage (Fig. 1). The images were 
captured in the full spectral range of 950–2500 nm at 5.45 nm spectral 
sampling intervals and with a spatial resolution of 384 pixels per line, 
and at room temperature (25 ± 2 ◦C). Samples were illuminated by two 
linear halogen light sources (100 W each) during imaging, which were 
positioned at two opposite sides of the camera and focused to illuminate 
a line overlapping with the camera’s field of view (16◦). These light 
sources were turned on 15 min prior to scanning to stabilise light-source 
temperature drift and spatial lighting uniformity. System operation and 
data acquisition were performed using the Breeze software (version 
2022.1.0; Umeå, Prediktera, Sweden). 

Fig. 1. The shortwave infrared hyperspectral imaging system used in 
this study. 
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Lemon myrtle samples in polyethylene sealable bags (65 × 75 mm; 
PPS, China; 2 cm depth) were placed on the black conveyor belt to ac
quire HSI data. Prior to image acquisition, the influential parameters on 
image quality were tested and set as follows: conveyor belt speed at 
13.021 mm/s, integration time at 12 ms, and frame rate at 50 frames/s. 
The spectral analysis of the polyethylene bags did not show any 
measurable effect on the spectral data of the samples in the measured 
spectral range. 

The background noises by dark current of camera, illumination 
source and environmental factors were corrected using the black and 
white references. The black reference image was captured before and 
after each sample image by automatically closing the camera shutter, 
and then averaging them. The white reference image was acquired by 

using a white diffuse reflectance standard (Zenith) of 50% reflectance to 
correct the variation in the illumination. The raw hyperspectral images 
were then corrected and transformed into reflectance hyperspectral 
images using the following equation (Park & Lu, 2015): 

R=
R0 − D
W − D

(1)  

where R is the corrected reflectance image, R0 is the raw hyperspectral 
image, D is the dark reference image, and W is the white reference 
image. 

Fig. 2. Workflow of hyperspectral image processing and analysis using pixel- and sample-based approaches.  

M. Seididamyeh et al.                                                                                                                                                                                                                          



Food Bioscience 59 (2024) 103946

4

2.3. Spectral data extraction 

The corrected hyperspectral images were loaded into Evince soft
ware (Version 2.7.17, Umeå, Prediktera, Sweden) to extract the spectral 
data. To facilitate the image processing, the image size was initially 
reduced by Evince resolution-reduction function, which selected data 
from every three rows and columns and every two wavelengths. The 
background and saturated pixel (if any) were removed using a principal 
component analysis (PCA) model with three components (Nturambirwe 
et al., 2021; Tahmasbian, Morgan, et al., 2021). The spectral data of 
each pixel within these images (approximately 5218 spectra) were then 
extracted and stored in the software for further analysis. 

2.4. Data pre-processing and PLS-DA modelling 

Partial least-square discrimination analysis (PLS-DA) algorithm was 
used as a supervised classification approach to identify and differentiate 
the lemon myrtle samples according to their geographical origins, in 
which full spectral data (950–2500 nm) extracted from samples were 
used as predictors. Initially, different pre-processing algorithms were 
applied and investigated individually or in combination to improve the 
accuracy of classification (Farrar et al., 2021; Khamsopha et al., 2021; 
Tahmasbian, Wallace, et al., 2021). These algorithms were applied to 
eliminate the potential artefacts, to correct non-linear behaviour, and to 
improve the data quality. The algorithms used included standard normal 
variate (SNV), multiple scatter correction (MSC), 1st and 2nd derivatives 
(DVT). All the data were subjected to mean centring (MC) prior to 
multivariate data analysis, regardless of the applied pre-treatment. 

The spectral datasets were randomly divided into a calibration 
dataset containing 70% of total samples to develop the classification 
models and an external validation dataset containing the remaining 30% 
of samples to evaluate their performance. These datasets were used to 
train the classification models in two different approaches, namely 
pixel-based and sample-based (Fig. 2), to identify the most robust 
training approach for classification at pixel and sample levels. The 
former was carried out by applying the spectra extracted from all pixels 
of each image (i.e., approximately 5218 spectra per sample), and the 
latter was carried out by applying the average spectrum of all pixels of 
each image (i.e., one spectrum per sample). It is expected that more 
robust training models can be obtained using the pixel-based approach 
due to its larger datasets, although it is a more time-consuming training 
process and requires powerful computer processors. In contrast, using a 
smaller dataset in sample-based approach results in a simplified and 
faster training, however, it can cause difficulties in pixel classification 
for example to identify the impurities and integrities in the studied 
samples. 

To avoid overfitting, the number of latent variables (LV) was 
adjusted by cross-validating the calibration models using a k-fold (k = 5) 
method (Kohavi, 1995). The optimal number of LVs was determined 
according to the highest coefficient of determination in cross-validation 
(R2

CV) and the lowest number of LVs that resulted in the highest classi
fication accuracy. 

2.5. Model evaluation 

The classification performance of the developed PLS-DA models was 
evaluated using the external validation dataset and the metrics 
described in the following equations (Sokolova et al., 2006, pp. 
1015–1021; Tahmasbian et al., 2024), using the external validation 
dataset: 

Classification accuracy (%)=
TP + TN

TP + FP + TN + FN
× 100 (2)  

False positive error (%)=
FP

TP + FP + TN + FN
× 100 (3)  

False negative error (%)=
FN

TP + FP + TN + FN
× 100 (4)  

Sensitivity (%)=
TP

TP + FN
× 100 (5)  

Specificity (%)=
TN

TN + FP
× 100 (6)  

Precision (%)=
TP

TP + FP
× 100 (7)  

where TP is true positives, TN is true negatives, FP is false positives, and 
FN is false negatives. The multivariate data analysis of the hyperspectral 
images was performed using the Evince software (Version 2.7.17, 
Prediktera). 

3. Results and discussion 

3.1. Spectral features 

The mean spectra of lemon myrtle samples from three different 
geographical origins are illustrated in Fig. 3. The analysis of the mean 
spectra revealed a relatively similar spectral pattern in terms of peak 
shape and positions, which can be indicative of the unique phyto
chemical composition of B. citriodora. Notably, the spectra showed six 
characteristic absorption peaks (Fig. 3) that are integral to under
standing the plant’s molecular signatures. In general, the spectra in the 
near infrared range are relatively related to chemical compounds (Sun 
et al., 2021). 

The peak centring at 1212 nm can be related to C–H stretching 
second overtones, reflecting the presence of aliphatic hydrocarbons 
within the samples (Mark & Workman, 2010; Qiu et al., 2018), which 
are common in plant oils and waxes. The absorption band at 2313 nm 
can be attributed to C–H bending and symmetric stretching (Lee et al., 
2014), which could be characteristic of aromatic compounds and al
kenes, suggesting the presence of aromatic rings that are fundamental in 
polyphenols and flavonoids. Moreover, the peak near 2357 nm suggests 
the presence of C–H vibrations specific to –CH3 groups (Pu et al., 2008), 
which could be attribted to methylated phenolic compounds. The peak 
at 1736 nm is indicative of C–H first overtone vibrations (Tao et al., 
2019), which can be associated with compounds that have –CH2−

stretching vibrations, indicative of long-chain hydrocarbons or fatty 
acids that are common in plant lipids and waxes. The peak at 1768 nm 
can be related to O–H stretching first overtones (Posom et al., 2017), 
which is common in hydroxyl groups of alcohols, phenols and carboxylic 
acids suggesting the presence of polysaccharides and polyphenols. The 
peak at 1452 nm denotes the combination vibration of O–H stretching 
and H–O–H transformation, which is characteristic of water but can also 
indicate the presence of other hydroxyl containing compounds such as 
polysaccharides, polyphenols, and certain amino acids (Mark & 
Workman, 2010). The peak near 1932 nm can be associated with C––O 
band overtones, highlighting the presence of carbonyl groups (Qiu et al., 
2018), which is typical for aromatic compounds, flavonoids, and certain 
amino acids. It may also indicate the presence of ketones, aldehydes, and 
acids within the phytochemical composition of a plant (Xiong et al., 
2015). The spectra, therefore, suggest the presence of a wide range of 
phytochemical compounds in lemon myrtle samples, including poly
phenols, flavonoids, aromatic compounds, polysaccharides, and amino 
acids. 

There were however differences in reflectance intensity across the 
measured electromagnetic spectrum (950–2500 nm) among the samples 
from QLD, MY, and NSW (Fig. 3). The average spectrum of MY samples 
showed higher intensity levels compared to those from NSW and QLD, 
potentially due to variations in the drying process and therefore its effect 
on the chemical composition of lemon myrtle samples. Although there 

M. Seididamyeh et al.                                                                                                                                                                                                                          



Food Bioscience 59 (2024) 103946

5

were shifts in the spectral pattern that are specified with vertical grey 
lines in Fig. 3. Specifically, the NSW samples showed lower intensity at 
the 950–1005 nm band compared to QLD samples, and higher intensity 
from 1245 to 1419 nm than MY samples. These intensity differences can 
be related to the geographical origins that influenced the chemical 
composition of plants and their relative concentrations through envi
ronmental factors (Granato et al., 2016; Long et al., 2023) as well as 
processing methods. The chemical variabilities measured using spectral 
signatures can therefore be employed to differentiate them in the global 
market. Notwithstanding, the spectral overlaps and crossovers as well as 
the complexity of lemon myrtle’s phytochemical system did not allow to 
differentiate the geographical origins by spectra only. Thus, further 
analysis of spectral data was required to accurately classify the origin of 
lemon myrtle samples. 

3.2. PLS-DA classification models 

The PLS-DA classification models were established to discern the 
geographical origin of lemon myrtle samples. To establish the pixel- 
based PLS-DA model, different transformation algorithms were 
applied to the raw full spectral data to determine the optimal trans
formation method. As is shown inTable S1, the spectral overall classi
fication accuracy was greater than 93% regardless of the transformation 
algorithm used, which demonstrates the ability of established models to 
easily differentiate samples of different geographical origins. However, a 
comparative analysis among the transformation algorithms revealed 
that the PLS-DA model achieved the highest overall classification ac
curacy of 94.6% with the MC and SNV transformations. Therefore, these 
transformations were selected to develop the pixel-based PLS-DA model, 
with the optimal number of LVs (=6) determined based on the highest 
R2 (=0.78) in the cross-validation step. 

In contrast, the sample-based models simplified the analysis and 
modelling process by averaging spectral data for each sample and 

reducing the size of hyperspectral datasets. Sample-based PLS-DA 
models successfully discriminated the three geographical origins in test 
images with 100% classification accuracy, regardless of applied trans
formations (Figs. 4 and 5). Therefore, the quantitative comparison (i.e., 
confusion matrix) was not reported for sample-based models. The 
optimal number of LVs was determined to be 4, aiming to simplify the 
model while maintaining high accuracy, thereby demonstrating its ef
ficiency in classifying samples with reduced computational complexity. 
This was further validated by the clear separation of geographical ori
gins in the PLS-DA score plots. 

3.3. Model evaluation 

A confusion matrix was used to assess the predictive ability of the 
developed pixel-based PLS-DA model in classifying lemon myrtle 
external validation datasets (Table 1). The model exhibited a classifi
cation accuracy higher than 96% for all three classes, demonstrating its 
substantial classification capability. Additionally, sensitivity, specificity, 
and precision were calculated to further assess model performance. 
While most predicted pixels were classified correctly, there were in
stances of misclassification and unclassified pixels. The model showed a 
slightly better classification efficiency for MY and NSW samples 
compared to QLD, as evidenced by higher accuracy and sensitivity 
values (Table 1). Despite higher accuracy for MY samples, lower speci
ficity, and precision values along with a higher false positive error rate 
(98.6%, 97.3%, and 0.9%, respectively) suggested a bias towards false 
positive predictions for MY samples. Conversely, the lower classification 
accuracy observed for QLD samples (96.2%) was associated with a 
higher misclassification rate, lower sensitivity, and higher false negative 
error, where the latter could be attributed to the unclassified pixels. 
Precision values indicated a more reliable classification of true positives 
for QLD and NSW samples compared to MY samples (98.8%, 99.0%, and 
97.3%, respectively), emphasizing the model’s ability to accurately 

Fig. 3. Average raw spectral reflectance of the lemon myrtle samples from Malaysia (MY), New South Wales (NSW) and Queensland (QLD).  
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group tested samples (Cuadros-Rodríguez et al., 2020; Huang et al., 
2022), which is thus crucial in food authentication applications. 

The impracticality of full spectra application due to the need for 
massive data analysis (Kamruzzaman et al., 2015) suggests the utility of 
HSI in acquiring spectral information to generate classification maps. 
Therefore, the optimal model was applied to hyperspectral images of 
lemon myrtle samples from different geographical origins, generating a 
prediction map (Fig. 4). The original RGB images obtained by the 
hyperspectral camera did not provide any information about the 
geographical origin of samples (Fig. 4a). However, the developed 

pixel-based PLS-DA model using MC + SNV transformed hyperspectral 
data facilitated clear discrimination between images, assigning each 
geographical class to respective pixels in the prediction map (Fig. 4b). 
The visualization map effectively showed correctly classified, mis
classified, and unclassified pixels, where most of the pixels within one 
sample were accurately assigned to their geographical classes. Although 
a distribution of unclassified pixels was observed in images (mostly QLD 
images), over 89% of the pixels were correctly identified. 

On the other hand, the sample-based models developed using 
different data transformations were evaluated through PLS-DA score 

Fig. 4. Classification of lemon myrtle samples based on their geographical origins using PLS-DA analysis: (a) pseudo RGB images, (b) pixel classification by pixel- 
based PLS-DA model trained using MC + SNV transformed data, (c) sample classification by sample-based PLS-DA model trained using MC transformed data, and 
pixel classification by sample-based PLS-DA model trained using (d) MC, (e) MC + SNV, and (f) MC + SNV+2nd DVT transformed data. MC, SNV and 2nd DVT 
represent mean centring, standard normal variate and second derivative, respectively. The green, blue, and yellow colours represent pixels predicted as Malaysian 
(MY), New South Wales (NSW) and Queensland (QLD) samples, respectively, and the red colour shows unclassified pixels. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. PLS-DA scores plot (LV1 vs. LV2) representing the clustering of the lemon myrtle external validation spectra transformed using (a) mean-centring (MC), (b) 
MC + standard normal variate (SNV) and (c) MC + SNV + second derivative (2nd-DVT). 
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plots (Fig. 5). The score plot (LV1 vs. LV2) demonstrated clear separa
tion of MY samples from other origins along the first predictive 
component, particularly when “MC + SNV” and “MC + SNV +2nd DVT” 
combinations were used for data transformations (Fig. 5b and c). The 
predictive ability of sample-based models was further evaluated by 
generating classification map on test images (Fig. 4c–f). The sample- 
based model developed by MC-transformed data was used to classify 
the test images in two different modes, which were by predicting the 
samples (i.e., average spectrum of each sample; Fig. 4c) and the pixels 
(Fig. 4d). Due to software limitation, we were unable to quantify the 
pixels classified using sample-based models. The visual judgement, 
however, demonstrates the ability of the developed model to clearly 
discriminate the geographical origin of the samples using their average 
spectrum. Although the sample-based model exhibited relatively poor 
performance in predicting individual pixels, which was particularly 
evident in the confusion between QLD and MY pixels (Fig. 4d–f). This 
may be explained by the comparable climatic conditions found in 
Malaysia (tropical) and Queensland (Australia; tropical/subtropical), 
which need to be further studied. Notably, the model developed with 
MC + SNV transformations showed fewer misclassified and unclassified 
pixels compared to other models (Fig. 4d–f). The visualization map 
revealed the higher discrimination ability and predictability of the 
sample-based PLS-DA model developed by MC transformed average 
spectra (Fig. 4c), which was followed by the pixel-based model (Fig. 4b). 

4. Discussion 

The application of PLS-DA models, through different transformation 
algorithms, showed significant potential in distinguishing lemon myrtle 
samples based on their geographical origins with high accuracy. Both 
pixel-based and sample-based models demonstrated robust classification 
capabilities, albeit with strengths and constraints. Despite being data- 
intensive, the pixel-based model’s strength lies in its detailed classifi
cation accuracy, which enables precise geographical origin determina
tion at agranular level as was observed in the predication map as well. 
However, potential biases – evidenced by a higher false positive rate for 
MY samples and a lower sensitivity for QLD samples – indicated the 
model’s limitations and areas for improvement. 

The sample-based models, on the other hand, streamlined the data 
analysis process by reducing data complexity and analysis time, and 
excelled in overall classification accuracy. This simplification did not 
compromise the model’s ability to distinguish between geographical 
origins, although less granular than pixel-based approaches, which was 
evidenced by the PLS-DA score plots and classification maps. The 
models’ performance in separating the MY samples from other Austra
lian origins with clear distinctions between the three classes highlighted 
their effectiveness. Our results showed better classification accuracy 
compared to those reported on using PLS-DA models for geographical 
origin discrimination of green tea with 92.5% accuracy (Liu et al., 
2022), Longjing tea with 91.98% accuracy (Hong & He, 2020). Never
theless, sample-based approach suggests a highly effective model for 
broader classification tasks and is potentially more suitable for rapid 
screening. 

A challenge in both models was the confusion between QLD and MY 
samples, likely due to the spectral similarities caused by relatively 
similar climatic conditions. The observation of misclassified pixels in the 
test images, particularly between QLD and MY samples, indicates chal
lenges in dealing with overlapping spectral features. This hurdle has 
been also observed in previous studies such as using ECOC-SVM (error 
correcting output codes-support vector machines) models to discrimi
nate six different commercial tea products (Mishra et al., 2018). The 
results from using different data transformation combinations suggest 
that specific transformations may enhance the model’s discriminative 
power, further emphasizing the need for careful selection of 
pre-processing techniques in developing robust classification models. 
This points to the need for further research into additional discrimina
tive features such as spectral and extrinsic factors or the integration of 
advanced pre-processing methods to reduce misclassification and 
improve model performance. These advancements will reinforce the use 
of PLS-DA models combined with hyperspectral imaging as a 
non-destructive and rapid method for food provenance determination. 
The ability of these models to visually represent the geographical origins 
of samples demonstrated their practical utility and the effectiveness of 
the transformation algorithms applied, despite the observed limitations. 

These findings affirm the practical applicability of PLS-DA models in 
food provenance studies. However, the variation in model performance 
and the challenges in classification highlight the importance of ongoing 
model evaluation in identifying and addressing limitations, and adap
tation to specific analytical needs to ensure reliable and accurate clas
sification outcomes. Continued research and model refinement are 
essential for harnessing the full potential of these analytical methods, 
offering a promising alternative to traditional methods through 
enhanced efficiency and accuracy in food authentication. 

5. Conclusion 

This study demonstrates the potential of combining HSI with 
multivariate data analysis to determine the origin of lemon myrtle leaf 
powders rapidly and non-destructively. The classification models were 
developed by two approaches including pixel-based (using all spectra) 
and sample-based (using average spectrum), which exhibited over 96% 
accuracy in distinguishing the origin of lemon myrtle samples. The 
sample-based model was found to be more robust in classifying results 
when built with MC-transformed datasets, compared to other combi
nation transformations and the pixel-based model. Since average spectra 
is used to develop the sample-based model, data handling complexity 
and calculation time is therefore reduced. Overall, this technique is 
promising for traceability applications due to its automation, non- 
destructive nature, rapidity, and objectivity. However, to build a 
robust and proper calibrated classification model, additional spectral 
data collection is necessary. This would result in rapid sample identifi
cation with acquisition of HSI data, which is beneficial for industrial 
applications. 

Table 1 
Confusion matrix and classification performance of the MC + SNV-transformed pixel-based PLS-DA model evaluated using the external validation dataset.   

Actual Classes CA (%) FPE (%) FNE (%) Sensitivity (%) Specificity (%) Precision (%) OCA (%) 

MY NSW QLD 

Predicted Classes (no. of pixels) MY 52103 24 1441 98.6 0.9 0.5 98.6 98.6 97.3 94.6 
NSW 186 50776 326 98.1 0.3 1.6 95.4 99.5 99.0  
QLD 32 517 45369 96.2 0.4 3.4 89.5 99.5 98.8  
No Class 501 1889 3572        

Malaysian, New South Wales, and Queensland lemon myrtle samples are presented as MY, NSW and QLD, respectively. No class is for unclassified pixels. 
MC, mean centring; SNV, standard normal variate; CA, classification accuracy; FPE, false positive error; FNE, false negative error; OCA, overall classification accuracy. 
Bold values in confusion matrix represent samples classified correctly. 
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